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A Prediction-Correction Approach for Stable SPH Fluid
Simulation from Liquid to Rigid

François Dagenais · Jonathan Gagnon · Eric Paquette

Abstract The simulation of highly viscous fluids us-

ing an SPH (Smoothed Particle Hydrodynamics) ap-

proach is a tedious task. Since the equations are typ-

ically posed as stiff problems, simulating highly vis-

cous fluids involves strong forces applied to the parti-

cles. With these strong forces, a very small time step is

needed to keep the simulation stable and produce good

results. The approach detailed in this paper uses an it-

erative prediction-correction scheme to optimize forces

that act on the fluid, in order to produce a behaviour

that varies from liquid to solid. This approach signif-

icantly reduces the computation times when the fluid

is very viscous and almost rigid. At every time step,

each particle position is predicted. The deformation is

then compared with a target deformation and forces are

adjusted to counteract the deformation. In addition to

requiring lengthy computation times and tedious ad-
justment of time step to maintain a stable simulation,

typical SPH simulators make it difficult to achieve the

desired behavior. This difficulty is caused by the highly

non-linear effect that the viscosity has on the behavior

of the fluid. Compared to the typical viscosity parame-

ter which varies from zero to infinity, the proposed rigid-

ity parameter is easier to control, providing an intuitive

variation from 0 (liquid) to 1 (solid). Since simulat-

ing high viscosity fluids is subject to large computation
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times and instabilities, we complement the proposed

model with some important improvements. Firstly, an

improved time step adjustment is proposed that results

in both reduced computation times and increased sta-

bility. Secondly, an implicit temperature diffusion pro-

vides stable melting and solidification, regardless of the

size of the time step. Thirdly, a constraint propagation

provides faster convergence of the rigid forces to visu-

ally realistic behaviours. Together, these improvements

and the proposed model allow the simulation of fluids

with viscous behaviours that were very difficult, if not

impossible, to simulate with current SPH approaches.

Keywords Fluid simulation · SPH ·Melting · Extreme

viscosity · Heat diffusion · Prediction-correction ·
Stability

1 Introduction

Current techniques can simulate relatively viscous flu-

ids using Lagrangian simulations. However, it is diffi-

cult to simulate fluids that are so viscous that they al-

most look rigid. This problem arises because simulating

an almost rigid fluid involves generating strong viscous

forces. Simulating these strong forces requires an ex-

tremely small time step to ensure stability and correct-

ness of the simulation. This implies high computational

times and the result is still far from looking like a rigid

object. Also, since the fluid is discretized into particles

which can only influence their neighbors, several time

steps are needed for the effect of a collision with an ob-

stacle to propagate throughout the whole fluid. Again,

the use of a smaller time step helps in solving this prob-

lem, but at a large computational cost.

Consequently, our goal is to lower the computational

cost of simulating extremely viscous fluids, while in-
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creasing stability and the range of viscous behaviors

that can be simulated using a Lagrangian simulation.

Instead of using a smaller time step, the proposed ap-

proach executes additional work at each time step to

properly handle viscous behaviors of the fluid. While

these extra calculations are iterative, each iteration

takes less time to compute than a simulation time step.

Furthermore, the proposed approach introduces a new

model to handle viscosity. Although this new model is

not physically based, it produces visually plausible re-

sults while providing a more intuitive control over the

particles rigidity. With this new model, the viscosity

simulation is not posed as a stiff problem, making it

possible to use a larger time step, thus reducing the to-

tal computation time. The contributions of this paper

are summarized as follows:

– A model able to simulate extremely viscous fluids

(almost rigid) using a Lagrangian simulation.

– Reduced computation times when simulating ex-

tremely viscous fluids.

– An unconditionally stable simulation of heat diffu-

sion between particles using an implicit scheme.

– A constraint propagation method that reduces com-

putation times while improving the results when

dealing with constraints such as collision with rigid

objects.

– An accurate calculation of the time step to maintain

the stability while providing large time steps.

– A simulation controlled by a single easy to adjust

parameter ranging from 0 (liquid) to 1 (solid).

2 Related Work

2.1 Lagrangian Gas-Liquid Phases

SPH simulation was introduced in computer graphics

by Desbrun and Cani [3]. Later, Müller and al. [6] ex-

tended this method focusing on fluid simulation. They

introduced a new implementation of the Navier-Stokes

equation of viscosity and pressure. The SPH method

has been used to simulate phase changes by Müller and

al. [7] who introduced multiple fluid simulation using

SPH. Phase transition uses the temperature of the par-

ticles to model boiling water by changing the types and

densities of particles dynamically. These approaches are

related to ours as they use SPH to simulate different

phases or states of matter, in this case, liquid and gas.

Nevertheless, since they do not handle liquid to solid

transitions and interactions, they cannot be used to

solve the problem that the proposed approach solves.

2.2 Eulerian Gas-Liquid-Solid Phases

Carlson and al. [1] proposed a multiphase method han-

dling liquid and solid. The Eulerian fluid simulation

enables complex water behaviour. The approach used

Eulerian (Marker-and-Cell) simulation with an implicit

scheme allowing large time steps. To simulate the tran-

sition between liquid and solid, it used a very high

viscosity fluid. With this technique, a realistic melting

object is possible. However, it needs high computation

times when simulating very viscous fluids. Rasmussen

and al. [10] enhanced the viscosity solver of Carlson and

al. [1] to better handle fluids with varying viscosity. The

approach provides control over the viscosity using con-

trol particles. However, regions of the fluid with many

control particles can be time consuming and less real-

istic. While Eulerian approaches have been successfully

used to simulate liquids with high viscosity, our contri-

bution focuses on improving SPH simulations. It should

also be noted that both Eulerian and Lagrangian fluid

simulations require lengthy computation times when

considering liquids with high viscosities and one of our

contributions is in reducing the computation times of

Lagrangian SPH highly viscous simulations.

2.3 Lagrangian Fluid-Solid Phases

The approach of Paiva and al. [8] used a transition

model based on a stress tensor. It allows the possibil-

ity to simulate melting objects by controlling a single

parameter called the “jump number” which affects the

“apparent viscosity” of the fluid. The numerical stabil-

ity is improved by using artificial viscosity and an adap-

tive time step based on the CFL (Courant-Friedrichs-

Lewy) condition. Later, they adapted their approach

to handle collisions with complex object surfaces [9].

Chang and al. [2] later proposed a viscoelastic model

which they used to simulate melting objects by modify-

ing the elasticity and viscosity of the particles according

to their temperature. Both approaches have the disad-

vantage of requiring lengthy computation times when

simulating extremely viscous fluids. Heat diffusion was

also simulated in both approaches in order to produce

more visually realistic results. Both authors uses a sim-

ilar approach, but Paiva and al. [9] approximated the

laplacian of the kernel using only its first derivative,

which is always positive. While this represents an im-

provement, this heat diffusion approach can become un-

stable for large values of the diffusion coefficient or the

time step.

Solenthaler and al. [12] developed a Lagrangian sim-

ulation to create a unified model which allows the com-

putation of fluid-solid interaction. They used an elas-
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tic model to handle the phase transition between solid

and liquid. Melting is done by modifying the elastic-

ity and updating the rest model using temperature and

“stress” between particles. Melting and viscoelastic de-

formation is also possible with the work of Chang and

al. [2]. This approach adds an elastic stress tensor to

the SPH simulation in order to achieve the viscoelastic

behavior. It uses a coefficient, according to the temper-

ature, that affects the melting and flowing phenomena.

Unfortunately, for both approach the time step needed

to simulate “close to” solid material is really small, thus

affecting computation time.

A similar problem arises when simulating incom-

pressible fluids using SPH, which also involves strong

forces. Solenthaler and Pajarola [11] introduced an ap-

proach based on a “prediction-correction” solver to op-

timize pressure forces for the current time step. Using

this approach, they could ensure stability of the sim-

ulation with a larger time step while generating good

visual results. Although the optimization process takes

much more time than a normal simulation iteration,

the large time step allowed with this technique enables

faster simulation of incompressible fluids. There is no

corresponding approach for simulating extremely vis-

cous fluids. This paper fills that gap by introducing an

approach to simulate high viscosity and almost rigid

fluids based on a prediction-correction approach and a

new deformation error metric. The proposed approach

smoothly handles the transition between a liquid and

an almost completely rigid fluid.

3 Foundations of the SPH Simulator

The proposed approach is based on a fluid simulation

to which forces controlling its rigidity are added (see

Sec. 4). Although it can be applied to any particle-

based simulation, our implementation is based on an

SPH (Smoothed Particle Hydrodynamics) simulation.

Our simulator is based on the work of Müller and al. [7].

At every time step, particles velocities vi are updated

using standard SPH forces:

dvi
dt

=
1

ρi

(
fpressurei + fexternali

)
(1)

The force fexternali includes any external forces such as

gravity. The force fpressurei is the internal pressure force

of the fluid. It is computed using this equation:

fpressurei = −
∑
j

mj
pi + pj

2ρj
OW (xij , h)

Note that Table 1 summarizes all the symbols used in

this paper. Density ρi and pressure pi of particle i, can

Table 1 Symbols

Symbols Definition
vi,xi,mi Velocity, position and mass of particle i
µi,pi,ρi Viscosity, pressure and density of particle i
ρ0 Rest density
h Smoothing radius
xij xi − xj
Wij W (xij , h), Smoothing kernel
c Speed of sound
αv Bulk viscosity
x0ij Initial relative position of i from j

x
solidj

i Position of i when solid according to j

xliquid
i Position of i when liquid
αij Rigid bond coefficient of particles i and j
si Rigidity of particle i
Ti Temperature of particle i
Tsolid Temperature when fluid is completely solid
Tliquid Temperature when fluid is completely liquid
dist0 Initial distance between particles

be computed using these equations:

ρi =
∑
j

mjW (xij , h)

pi = c2 (ρi − ρ0)

The choice of kernels influences the visual result as well

as the stability of the simulation. We used the same

kernels as Müller and al. [6] who used strictly positive

gradient and laplacian kernels.

A damping force [4,9] is used in order to prevent

particles from oscillating due to the pressure forces:

fdampingi = −ρi
∑
j

mjΠijOiW (xij , h)

Πij =


− 2αvµijc

ρi+ρj
, (vi − vj) · (xi − xj) < 0

0, (vi − vj) · (xi − xj) ≥ 0

µij =
h (vi − vj) · (xi − xj)
|xi − xj |2 + 0.01h2

This force is added to equation 1:

dvi
dt

=
1

ρi

(
fpressurei + fexternali + fdampingi

)
(2)

Finally, to improve the quality of the results, a leap-

frog integration scheme is used to update particles in

order to provide second order accuracy without addi-

tional computational costs.

4 Melting and Solidification

Alg. 1 provides an overview of the simulation loop of the

proposed approach. It can be seen that the approach

provides improvements that integrate well within the

standard SPH framework. Phase 1 from Alg. 1 is related
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while Simulation time ≤ End time do
// Phase 1: Compute liquid SPH forces (Sec. 3)
Compute particles density ρi and pressure pi

Compute forces fpressure
i , fexternal

i , fdamping
i

Compute ∆t (Sec. 5.1)
// Phase 2: Optimize rigid forces
while Stopping criterion not met do

Predict particle positions (Sec. 4.2)
Compute particle deformations (Sec. 4.1)

Adjust f rigid
i (Sec. 4.2)

// Phase 3: Integrate
Update particle positions and velocities
Diffuse the temperature (Sec. 5.2)
Simulation time += ∆t

Algorithm 1: Simulation step

to the typical SPH simulation of forces with an improve-

ment on the computation of the time step. Phase 2 is

the core part of our approach where rigid forces are

iteratively optimized in order to maintain the fluid in

a more or less viscous state based on the user speci-

fied rigidity factor. Phase 3 is also quite typical of SPH

simulations that handle melting and solidification, with

our proposed improvement for a more stable tempera-

ture diffusion. These improvements are detailed in this

section, which addresses the iterative adjustments of

the rigid forces, and Sect. 5, which covers contributions

regarding the stability of the simulation.

In our model, the rigidity si varies from 0 (com-

pletely liquid) to 1 (completely solid) as a function of

the temperature:

si =


1, Ti ≤ Tsolid

Tliquid−Ti

Tliquid−Tsolid
, Tsolid < Ti < Tliquid

0, Tliquid ≤ Ti

The initial temperature is provided by the user. Then,

the diffusion of the temperature is used (see Sec. 5.2)

To produce the desired deformation based on si, an

additional force, f rigid is added to the SPH equation:

dvi
dt

=
1

ρi

(
fpressurei + fexternali + fdampingi + f rigidi

)
To correctly control the deformation of the material,

the computation of f rigid is based on a target deforma-

tion. This target deformation corresponds to a defor-

mation that can range from completely liquid to com-

pletely solid, based on si. It is used to compute the

deformation error ϕ which represents the difference be-

tween the current deformation and the target deforma-

tion (see Sec. 4.1). The proposed method seeks to find

rigid forces that minimize this error:

minf rigid

(
ϕ(particules, f rigid)

)

Finding the optimal f rigid forces that minimize the

global deformation error would require too much com-

putation. As can be seen in Alg. 1, the optimization

of the rigid forces is computed iteratively. From the

particles deformation errors, the best rigid forces are

computed on a per particle basis. The next iteration

then computes the resulting position of the particles,

the new deformation errors and the new rigid forces.

With the mutual influence of the neighbour particles,

the rigid forces converge to a visually realistic solution.

Sec. 4.1 explains how to compute the deformation error

while Sec. 4.2 explains how to obtain the rigid forces.

4.1 Deformation Error

In order to control the deformation of the material, a

deformation error metric is used. The deformation error

is the difference between the current deformation and

a target deformation. Considering a solid material, the

deformation error for particle i is computed based on

the difference in position with the neighbor particles

j ∈ 1..n:

ϕi =
∑
j

αij

(
x
solidj
i − xi

)
Wij (xij , h)

The difference in position is computed using relative

positions. The initial relative position x0ij is computed

before every time step using the current value of xi
and xj . The solid position x

solidj
i is computed using

the position xj of the neighbor j and x0ij :

x
solidj
i = xj + x0ij

In order to have a continuous transition between solid

and liquid, the target position x
targetj
i is used instead

of x
solidj
i :

x
targetj
i = sijx

solidj
i + (1− sij)xliquidi

ϕi =
∑
j

αij

(
x
targetj
i − xi

)
Wij (xij , h)

The position xliquidi is the position according to the

SPH forces excluding the rigid force. The solid position

x
solidj
i and the liquid position xliquidi of the particle i are

blended together in order to find the target position of

particle i according to j. This approach to compute the

deformation allows for the melting and solidification of

the material.

If two particles have different si factors, the

minimum of both rigidity coefficients is used

(sij = min(si, sj)). This way, liquid particles and

semi-rigid particles will not act like rigid particles

when surrounded by rigid particles. Similarly, more
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importance is given to neighbors when both particles

are rigid or highly viscous using the rigid bond coeffi-

cient αij = sij
b. In the tests presented in this paper,

the exponent b was empirically fixed to b = 20.

This new metric allows to measure how much the

actual position of the particles is diverging from the

desired position. Using a prediction-correction scheme,

it is possible to determine forces that minimizes this

metric in order to produce the desired visual result.

4.2 Deformation Correction

This section describes how the rigid forces are com-

puted. The terminology used in this section follows the

one used in the PCISPH approach [11]. While inspired

by the prediction-correction scheme of PCISPH, the

proposed approach provides a new correction formu-

lation applied to a different phenomenon. A prediction-

correction solver is used to minimize the deformation er-

ror metric (see sect. 4.1). The proposed iterative solver

applies a correction to the rigid forces at every sub step

to reduce the deformation error. While iteratively ap-

plying sub steps, the rigid forces converge to smaller

and smaller deformation errors.

The main goal here is to adjust the forces so that

the position of the particles at the next time step will

result in smaller deformation errors. In order to adjust

the force for each particle, the relation between the rigid

force and the deformation error of a particle i is first

detailed. From the beginning (time t) to the end (time

t + ∆t) of a simulation time step, the difference in de-

formation error is as follows:

ϕi(t+∆t) =
∑
j

αij

[
x
targetj
i − xi(t+∆t)

]
Wij

=
∑
j

αij

[
x
targetj
i − (xi(t) +∆xi(t))

]
Wij

=
∑
j

αij

(
x
targetj
i − xi(t)

)
Wij

−
∑
j

αij∆xi(t)Wij

= ϕi(t)−
∑
j

αij∆xi(t)Wij

= ϕi(t) +∆ϕi(t)

Since all of this happens at a single time step, Wij and

x
targetj
i remain constant.

Let us say that the movement of the particle was

the result of a force fdeformi . This force influences the

position of the particle i in the following manner:

∆xi(t) =
dvi
dt
∆t2 =

fdeformi ∆t2

ρi

Introducing this into ∆ϕi(t) yields:

∆ϕi(t) = −
∑
j

αij∆xi(t)Wij

= −
∑
j

αij

(
fdeformi ∆t2

ρi

)
Wij

= −f
deform
i ∆t2

ρi

∑
j

αijWij

From these equations, the force needed to produce a

specific change in a particle deformation error function

can be computed as follows:

fdeformi = −∆ϕi(t)
ρi

∆t2
∑
j αijWij

Since the goal is to have ϕi(t+∆t) ≈ 0, we set ∆ϕi to

−ϕi, resulting in the following frigid force:

f rigidi = ϕi(t)
ρi

∆t2
∑
j αijWij

As a result of the interrelation between each particle,

the computed rigid forces are not likely to yield the

minimal ϕ(t). This is why an iterative process is intro-

duced in Alg.1, where the rigid forces are repeatedly

adjusted. At the first iteration, the rigid forces are set

to null forces. Then, at each iteration, the position of

the particles are predicted using the previously adjusted

rigid forces, the deformation error ϕi of each particle is

computed and finally the forces are adjusted based on

this predicted deformation error.

4.3 Stopping Criterion

In order to determine whether or not the iterative ad-

justment of the rigid forces should stop, a stopping

criterion is evaluated after every iteration. Firstly, the

sum ϕ of the deformation errors ϕi is computed. Then,

the difference between that sum and the one computed

during the previous iteration is evaluated. The algo-

rithm stops when this difference is below the threshold

0.01ϕprevious.

However, that approach might be sensitive to irreg-

ular variations of ϕ over successive iterations. To avoid

an erroneous early termination of the iterative process,

a window of 5 iterations (fixed empirically) is used when

evaluating the variation of ϕ at the current iteration.

4.4 Constraints Propagation

While the proposed iterative optimization of the rigid

forces produces good overall results inside the material,
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it is not always effective in adapting the rigid forces

to hard constraints at the boundaries of the material.

Examples of such constraints include particles in col-

lision with the surface of rigid objects outside of the

SPH simulator, as well as particles that would be key

frame animated. When dealing with such constraints,

the iterative process requires too many iterations to

converge, and sometimes it converges to a local mini-

mum that is too far from a realistic result. To overcome

this issue, the proposed approach uses a priority based

constraint propagation method, which correctly and ef-

ficiently propagates the effects of the constraints to the

rigid forces of all particles. Right before the iterative

rigid forces adjustment of phase 2 in Alg. 1 begins, par-

ticles affected by a constraint are flagged as high pri-

ority, while the remaining particles are flagged as low

priority. Whenever a particle has one or more neighbors

flagged as high priority, only these high priority neigh-

bors are considered during the calculation of the de-

formation error and the correction of rigid forces. This

way, neighbors of particles affected by constraints are

adjusted correctly according to these particles. At each

iteration of phase 2, particles that become high priority

are considered as correctly affected by the constraints

and allow their neighbours to become adjusted accord-

ingly. This process is continued until the constraint has

been propagated through the whole fluid. At each rigid

forces iterative adjustment of phase 2, new particles can

become high priority if these two conditions are met:

– The sum of the lengths ‖xtargetji − xi‖ is below a

threshold:∑
j

‖(xtargetji − xi)‖ ≤ 0.01
∑
j

dist0

– Out of the particles that have at least one high pri-

ority neighbor, the particle is among the ones with

the highest si.

If a particle meets the second condition but fails to

fulfill the first one after a predetermined number of it-

erations (5 in our examples), it becomes high priority

in order to prevent the algorithm from being blocked.

The second condition prevents artifacts caused by con-

straints propagating through particles with different

values of si. The most rigid particles are affected by the

constraints first, preventing less rigid parts from trans-

ferring unrealistic deformation into the rigid regions.

While the constraints are propagated, the iterations

of phase 2 are forced to continue, even if the stopping

criterion might have been fulfilled. After the constraints

have reached all the particles, the iterations continue

until the stopping criterion of Sec. 4.3 is met. This en-

sures that the constraints can propagate their effects

to all of the particles. As a result, the number of iter-

ations required to achieve a satisfactory result is much

smaller and the result preserves the effect of the con-

straints much better.

5 Simulation Stability

A variety of factors affect the stability of the simulation.

For example, when simulating extremely viscous fluids,

strong forces are generated which require a small time

step to maintain stability. The approach introduced in

this paper eliminates these strong forces as well as the

instability, making it possible to use a larger time step

while simulating fluids with high viscosity. However, be-

cause larger time steps are used, other sources of in-

stability, such as strong pressure forces and fast heat

diffusion can affect the simulation. Approaches able to

handle these instabilities are presented in this section.

5.1 Dynamic Time Step

As stated previously, the size of the time step affects

the stability of the simulation. While a small time step

improves the stability of the simulation, it results in

lengthy computation times. Hence, it is important to

find a time step that will ensure stability with the min-

imum computational costs. Paiva and al. [9] proposed

an approach to adapt the time step dynamically at ev-

ery iteration of the fluid simulation. They adapt the

time step based on the pressure term of the SPH equa-

tion and the “apparent viscosity” of the fluid using the

CFL condition. Since our approach eliminates the insta-

bility caused by viscosity forces, we will focus only on

the pressure forces. Their approach relies on the speed

of sound c and the maximum velocity at the previous

time step |v(t−∆t)max |, to compute ∆t:

∆t = 0.1
h

|v(t−∆t)max |+ c

However, when the pressure is very strong their ap-

proach might not ensure stability since the strongest

acceleration might be larger than c. Also, when the fluid

is at rest, the impact of pressures forces on the velocity

is smaller than c. Therefore, their approach will not give

the optimal time step while still being prone to insta-

bility when there are high pressure forces. By using the

maximum acceleration of the current time step instead

of c it is possible to compute a larger time step while

keeping the simulation stable.

The CFL condition tells us that a particle should

not travel more than a fraction β of its radius in one



A Prediction-Correction Approach for Stable SPH Fluid Simulation from Liquid to Rigid 7

time step. Therefore the ideal time step should be com-

puted using the following equation:

∆t = β
h

|ṽmax|
(3)

It is impossible to know the maximum velocity with-

out knowing the time step, since the velocity is affected

by the acceleration. However, it is possible to approx-

imate the maximum possible velocity using |ṽmax| =

|v(t−∆t)max | + |amax|∆t, where amax is the maximum ac-

celeration of a particle during the current time step.

Applying this to equation 3 yields:

∆t = β
h

|v(t−∆t)max |+ |amax|∆t

Solving for ∆t yields:

∆t = −
|v(t−∆t)max | −

√
|v(t−∆t)max |2 + 4|amax|βh
2|amax|

(4)

At every simulation step, equation 4 is used to com-

pute a time step value that will ensure stability while

providing good performances.

5.2 Implicit Heat Diffusion

When handling melting and solidification, computing

heat diffusion is an important simulation step in order

to provide realistic results. As seen in Sec. 4, the ap-

proach presented in this paper allows larger time steps

while simulating a highly viscous fluid. Typical heat

diffusion approaches are prone to instabilities when the

time step or the heat diffusion coefficient are large.

By using larger time steps, typical heat diffusion tech-

niques [2,8] are more subject to instability. Let’s take

the heat diffusion equation of Chang and al. [2], which

is a commonly used formulation as an example:

dTi
dt

= k
∑
j

mj

ρj
(Tji)O

2Wij (5)

Tji = Tj − Ti

It is obvious that it can become unstable when the time

step or k is too large since dTi might become larger

than Tj − Ti. Computing the limits of dTi according to

k and ∆t gives dTi = ±∞ in both cases, confirming the

unstable nature of the equation.

By adapting the approach of Monaghan [5], who

used an implicit formulation of the viscosity equation

for each pair of particles, it is possible to compute

heat diffusion using an implicit formulation. First, let’s

rewrite equation 5 in its implicit form using the tem-

perature at time t+∆t:

dTi(t)

dt
= k

∑
j

mj

ρj
(Tji(t+∆t))O2Wij

With a few simplifications and assumptions, it is pos-

sible to derive from this equation an unconditionally

stable expression for the temperature Ti at time t+∆t.

If each pair of particles is treated individually, it is easy

to determine how particle i and j affect each other:

Ti(t+∆t) = Ti(t) + k
mj

ρj
(Tji(t+∆t))O2Wij∆t (6)

Tj(t+∆t) = Tj(t) + k
mi

ρi
(Tij(t+∆t))O2Wij∆t

= Tj(t)− k
mi

ρi
(Tji(t+∆t))O2Wij∆t (7)

By making the assumption that the density (ρi and ρj)

and the laplacian of the kernel O2Wij are constant over

∆t it is possible to find an expression to compute the

temperature Ti at time t+∆t involving only variables

at time t. Furthermore, this new expression produces

good results. Using equations 6 and 7, we can express

Tji(t + ∆t) as a function of Tji(t), thus removing any

dependencies on variables at time t+∆t:

Tji(t+∆t) = Tj(t+∆t)− Ti(t+∆t)

=

[
Tj(t)− k

mi

ρi
(Tji(t+∆t))O2Wij∆t

]
−
[
Ti(t) + k

mj

ρj
(Tji(t+∆t))O2Wij∆t

]
= (Tji(t))− k

(
mi

ρi
+
mj

ρj

)
(Tji(t+∆t))O2Wij∆t

Moving terms containing Tji(t + ∆t) to the left hand

side we get:

(Tji(t+∆t))

(
1 + k

(
mi

ρi
+
mj

ρj

)
O2Wij∆t

)
= Tji(t)

Keeping only Tji(t+∆t) on the left hand side we get:

Tji(t+∆t) =
Tji(t)

1 + k
(
mi

ρi
+

mj

ρj

)
O2Wij∆t

(8)

Replacing Tji(t + ∆t) in Eq. 6 with the formulation

of Tji(t + ∆t) of Eq. 8, it is now possible to compute

Ti(t+∆t) using only variables at time t.

In order to find the temperature Ti(t+∆t), Ti is up-

dated for each neighbor using the following operation:

Ti ← Ti + k
mj

ρj
TjiO

2Wij∆t (9)

Since the result is dependent on the neighbors traversal

order, this operation is applied a second time using the
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(a) (b)

Fig. 3 The “h” example.

reverse order and then the average of the two results

is used as the new temperature Ti. This approach is

unconditionally stable, which allows us to use a large

time step or diffusion coefficient. Calculating the limits

according to ∆t and k confirms that Eq. 9 stays stable

even with a high time step or diffusion coefficient:

lim
k→+∞

dTi(t+∆t) =
mjρi (Tji(t))

miρj +mjρi

lim
∆t→+∞

dTi(t+∆t) =
mjρi (Tji(t))

miρj +mjρi

6 Results

The proposed approach was tested on many scenes,

with several values of si and in the context of melting

and solidification with varying si. See the accompany-

ing video for animations of all examples. The Stanford

bunny in Fig. 1 shows how a whole object can melt in

a plausible way. Notice how the top part of the bunny

stays rigid while following the movement of the bottom

part that is melting. In Fig. 2, the “two blocks” test

was repeated with different rigidity factors. It shows

that the rigidity factor si provides a continuous, vi-

sually realistic, and easy to control transition between

solid and liquid. The “h” test of Fig 3 illustrates the ro-

bustness of this approach. In Fig 3(a), note how the left

part remains rigid while the right part melts. Fig. 3(b)

illustrates the propagation of two constraints through

particles with different rigidities. Note that the top part

remains solid. In Fig. 4, the armadillo arms are melted,

and they stretch and deform in a reasonable way. In

that exemple only, a subset of particles was not simu-

lated and kept still (head, torso and legs). While these

particles are fixed, they still influence the other particles

in the simulation. The result shows the arms correctly

stay attached, therefore the approach has the advan-

tage that it can be coupled with particles that are not

simulated by the solver.

Table 2 summarizes the statistics for our simula-

tions. The optimization of the rigid forces takes most

of the simulation time. The more rigid the particles

Table 2 Statistics for the figures presented in this paper:
number of particles, rigidity factor si, average time per frame,
average time per time step, average number of time steps
per frame, ratio of the time spent adjusting rigid forces with
respect to the total time of a simulation time step. Note that
all times are in seconds.

Fig. # si Avg. Avg. Avg. ratio

# part.
time

frame

time

t.s.

t. s.

frame

t rigid

t total
1 52.4k [0.8, 1.00] 480.1 50.3 9.5 0.97
2 52.7k 0.00 17.0 1.0 16.2 0.33
2 52.7k 0.25 88.1 9.0 9.7 0.88
2 52.7k 0.50 90.2 9.9 9.0 0.89
2 52.7k 0.75 56.8 7.4 7.6 0.91
- 52.7k 0.90 94.5 14.5 6.4 0.92
- 52.7k 0.95 92.0 15.9 5.7 0.93
- 52.7k 0.99 65.5 17.1 3.8 0.94
2 52.7k 1.00 23.5 21.4 1.1 0.97
3a 55.7k [0.8, 1.00] 619.7 49.3 12.5 0.97
3b 55.7k [0.8, 1.00] 848.7 53.1 15.9 0.98
4 17.1k [0.9, 1] 165.2 14.1 11.6 0.92

are, the more time it takes to optimize the forces. How-

ever, simulations where si is larger often need fewer

sub steps. This can be seen in the examples where

0.9 < si ≤ 1.0 for all particles. Although it takes more

time to compute the rigid forces, fewer times steps are

needed since the fluid remains still, hence the smaller

simulation time. Simulations with varying viscosity suf-

fer from larger simulation times per time step. This is

caused by the constraint propagation mechanism which

must iterate while the most rigid particles stabilize, be-

fore continuing the propagation.

Compared to the standard SPH approach [6], our

approach is slower when the rigidity of the fluid is low.

However, the computation times of theses approaches

vary linearly with respect to the viscosity µ, while the

variation of the perceived rigidity of the fluid is consid-

erably sub-linear. This makes our approach more prac-

tical with particles that are almost rigid.

The proposed adaptive time step was compared

with that of previous works [4,8]. For a completely liq-

uid simulation (no rigid forces), our adaptive time step

was more aggressive, by a factor of 1.5, with an average

time step ∆t of 0.00530 for our approach compared to

0.00347 [4] and 0.003221 [8]. During the impact of the

water drop, a similar timestep value was observed com-

pared to the previous approaches, while a higher value

was observed once the fluid became more calm. This

results in a faster simulation while preserving stability

and visual realism as can be seen in the video.

Figure 5 compares our implicit heat diffusion with

a standard explicit approach [2]. Our approach gives

similar results, but stays stable even with a large time

step (also see the accompanying video).
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Fig. 1 Stanford bunny.

Frame
Rigidity

10 15 25 50 100

0.25

0.50

0.75

1.00

0.00

Fig. 2 Two blocks.

Δt=0.1

explicit implicit

Δt=0.01

explicit implicit

Fig. 5 Heat diffusion comparison. The color represents the
temperature.

7 Discussion

In this paper we presented an approach for simulating

extremely viscous fluids using a very stable simulation.

Even though it is not physically based, it produces very

convincing results. The approach enables the simulation

of extremely viscous fluids that were very difficult to re-

produce with standard SPH simulation, while providing

a smooth transition between the liquid and solid states

through parameter si which is intuitive to control.

The proposed approach requires long computation

times. Fortunately, the computation of the rigid forces

optimization could be parallelized since it is composed

of several independent computations. Currently, our

implementation is not optimized and only uses one core

on a single processor.

Another limitation of the approach is that it does

not handle rotations inside the material very well. In

the Armadillo of Fig. 4, the arms fall straight instead

of curving toward the body. This is a limitation of the
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Fig. 4 Melting Armadillo’s arms.

proposed model which does not consider the orientation

variation of a particle according to its neighbors.

In this paper an SPH simulation is used, but this

approach could be applied to other Lagrangian simula-

tions. The only step needed is to add the optimization

of the rigid forces before integrating the particles and

adding the rigid forces to the advection equation.

8 Conclusion

In this paper, we presented an approach able to sim-

ulate highly viscous fluids using a Lagrangian simula-

tion. The approach is based on a deformation error used

in an iterative optimization of rigid forces. It allows a

smooth transition between the liquid and solid states

using a single parameter that can be easily controlled.

While it may take more time per iteration to compute

the rigid forces needed to keep the fluid rigid, the ap-

proach allows a larger time step to be used, hence mak-

ing it more suitable for extremely viscous fluids, while

maintaining stability. A constraint propagation mecha-

nism also helps converging toward a more visually real-

istic solution. Furthermore, the proposed approach also

introduces some numerical stability improvements to

the SPH simulation. Firstly, it introduces a new way to

compute a more efficient time step, to ensure simulation

stability with less sub steps, thus less computational

time. Since the technique presented in this paper al-

lows larger time steps to be used, typical heat diffusion

equations pose a problem as they are prone to instabil-

ity when considering larger time steps. To overcome this

problem, an implicit and unconditionally stable formu-

lation of the heat diffusion equations has been derived.

Together, these contributions allow the simulation of

extremely rigid fluids using a Lagrangian simulation,

while ensuring the stability of the simulation.

With respect to future work, the method is unable

to realistically simulate rotations inside the material.

This limitation can be overcome for completly rigid par-

ticles by using a a rigid body simulation as in the works

of Solenthaler and Pajarola [12]. However, melting par-

ticles attached to theses particles won’t follow correctly

the rotational behavior. Therefore, it would be inter-

esting to modify the deformation error model to allow

these behaviors. Another interesting avenue for future

work would be to conduct user studies to compare the

realism of the proposed approach with respect to other

current approaches.
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