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ABSTRACT
In this paper, we propose a novel approach based on machine learning to simulate facial expressions related to
physical activity. Because of the various factors they involve, such as psychological and biomechanical, facial
expressions are complex to model. While facial performance capture provides the best results, it is costly and
difficult to use for real-time interaction. A number of methods exist to automate facial animation related to speech
or emotion, but there are no methods to automate facial expressions related to physical activity. This leads to
unrealistic 3D characters, especially when performing intense physical activity. The purpose of this research is to
highlight the link between physical activity and facial expression, and to propose a data-driven approach providing
realistic facial expressions, while leaving creative control. First, biological, mechanical, and facial expression data
are captured. This information is then used to train regression trees and support vector machine (SVM) models,
which predict facial expressions of virtual characters from their 3D motion. The proposed approach can be used
with real-time, pre-recorded or key-framed animations, making it suitable for video games and movies as well.
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1 INTRODUCTION
Whether in video games or in movies, 3D animation
is becoming more and more realistic, particularly with
the use of motion capture. However, facial animation
remains one of most tricky, time-consuming, and costly
aspects of 3D animation. Facial expressions are diffi-
cult to model because of the numerous factors underly-
ing them: emotions (joy, sadness, etc.), mouth move-
ments (speech, deep breath, etc.), eye and eyelid move-
ments (blinking, gaze direction, etc.) and physiological
(fatigue, pain, etc.).

Different approaches for automating facial expressions
related to emotion or speech exist, but none are avail-
able to automate expressions related to physical activ-
ity. In the visual effects and computer animation com-
munities, facial animations are most often key-framed
or motion-captured. Even though this is a relatively
long and costly procedure, it is understandable for main
characters. For secondary characters, such as a crowd
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for example, the facial animation related to physical ac-
tivity will often be disregarded. In the video game in-
dustry, although characters often have to provide sig-
nificant physical exertion, facial animation related to
this component is somewhat neglected. It is sometimes
present during cinematic sequences, but it suffers from
a crude approximation during gameplay, and it is often
simply overlooked. According to discussions we have
had with video game companies, current approaches for
gameplay facial animations related to physical activity
rely on ad hoc techniques based on linear functions and
thresholds. Such approaches are far from the complex-
ity of human facial animations, in relation to physical
activity. In this paper, we propose a novel approach
based on machine learning to simulate facial expres-
sions related to physical activity, in order to improve
the realism of 3D characters. The approach is based
on the analysis of motion capture data acquired from
real exercise sessions. Given the captured animations
and physiological data, specific machine learning tech-
niques are selected to enable the synthesis of facial ex-
pressions corresponding to physical activity. The main
contributions of the proposed approach can be summa-
rized as:

• A machine learning framework to derive facial ex-
pressions from physical activity;

• An approach to link mechanical, physiological, and
facial measurements;



• An analysis of the most effective way to compute
energy values for machine learning purposes;

• A set of empirical rules relating physical activity to
specific facial expressions;

• A normalization procedure to make better use of
heart rate and blend shape data.

With this machine learning framework and captured
data, we are able to synthesize realistic facial expres-
sions. The approach can be used for real time as well
as off-line facial animation. Furthermore, the method
allows for control over stylization, as key-framed data
could be used instead of captured data. It enables con-
trol over expressiveness, as the animator can adjust var-
ious parameters that have an impact on the facial ex-
pression of the character. Finally, the models developed
in this work also provide metabolic data that could be
used for purposes other than facial animation.

2 RELATED WORK
Previous works are categorized in four topics: the de-
scription of facial expressions, the synthesis of speech-
related expressions, the synthesis of emotion-related
expressions, and the description of facial expressions
related to physical activity.

2.1 Facial Expression Description
Several objective and systematic approaches to encode
facial expressions have been proposed. Although fa-
cial expressions are due to a wide range of factors,
only facial changes due to emotions, intentions or so-
cial communication are taken into account [12]. Var-
ious coding systems have been developed mainly for
psychological studies, including FACES (Facial Ex-
pression Coding System) [9] and FACS (Facial Action
Coding System) [4], and are presented in a survey pa-
per [13]. FACS is an anatomically-based expression
space grouping together facial muscle groups as AUs
(Action Units), whose combination can be used to form
any possible expression [20]. The MPEG-4 standard
proposes a similar approach using FAPs (Facial Action
Parameters), which has been used in various research
projects. In the proposed approach, the facial expres-
sions are built using blend shapes that correspond to
facial muscle groups similar to the FACS approach.

2.2 Speech-Related Facial Expressions
Animation synthesis is generally done by analyzing an
audio input, extracting phonemes, and then animat-
ing the 3D face model’s visemes (phoneme’s visual
counterpart) [10]. Different approaches have also been
developed to enhance realism in animation, such as
blending speech-driven animation into emotion-driven
animation [11] and using anatomically-based struc-
tures [11, 21]. Other works have focused on improving
the visual behavior related to speech [24]. Some works

use machine learning methods such as SVMs [25] or
neural networks [3, 15]. All of these methods help to
achieve more realistic results in facial expressions re-
lated to speech, and substantially reduce manual anima-
tion time. They give good results, given that there is a
single input (the audio) that captures all of the required
information to adjust the facial animation.
When considering physical activities, a character’s mo-
tion involves several limbs, as well as potential and ki-
netic energy, torques, etc., which results in a broader set
of inputs. Furthermore, simulating speech-related ani-
mation from audio is synchronized to one input signal,
while the facial expression from the character’s motion
might be the result of both its instantaneous motion and
the movements or activities performed by the character
in the past few minutes. Finally, the character’s motion
triggers facial expressions that will influence parts of
the face that are not related to speech, such as the re-
gion around the eyes. For these reasons, works dealing
with speech cannot fully solve the problem of generat-
ing the facial animation related to physical activity.

2.3 Emotion-Related Facial Expressions
Researchers in psychology studied emotions and came
up with classifications based on a limited number of
emotions. To further simplify the relationships between
emotions, they can be represented in simpler 2D expres-
sion spaces [18, 23]. Computer graphics researchers
have taken advantage of such approaches and pro-
posed different two dimensional emotion layouts that
allow a meaningful blending between emotions [19].
Other approaches have relied on coding systems such
as FACS to provide realistic transitions between emo-
tion expressions [1]. While these works provide in-
teresting approaches for the transition and blending of
facial expressions, they work when the emotion is al-
ready known, and when a set of face poses is provided.
Creating the mesh deformations corresponding to a set
of emotions was studied in the work of Puklavage et
al. [16]. Animating the right combination of emotions
through time remains a complex problem. It is simi-
lar to the challenge involved in this work: developing
an approach that can predict the facial expression from
observations and models describing how a human sub-
ject reacts in different circumstances.

2.4 Physical Activity-Related Facial Ex-
pressions

Even though 3D characters often perform intense phys-
ical activities, we could not find any research that ad-
dresses the automatic and realistic facial animation re-
lated to moderate and intense physical activity. Outside
of the computer graphics literature, the work of McKen-
zie [14] describes the facial expressions related to sub-
stantial effort, exhaustion, and fatigue. In the com-
puter graphics field, facial animation literature related
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Figure 1: Machine learning facial expressions

to physical activity is found mostly in art books [5, 7].
These contain numerous facial expressions, some of
which are related to physical activity. While these
works provide useful information for manually animat-
ing facial expressions, they are not useful in the context
of automatic facial animation from the character’s mo-
tion. Other works [26, 2] target the modeling and con-
trol of 3D models in relation to laughter or respiration.
Numerous works address facial animation in the con-
text of speech and emotion, but they are not adapted to
the synthesis of physical activity expressions. Based on
machine learning and captured data, the proposed ap-
proach derives a model, to animate facial expressions.

3 FACIAL EXPRESSION SYNTHESIS
Fig. 1 shows an overview of the proposed approach.
The first step is to acquire real-life motion capture
data, providing information on the facial expressions
observed under various types of exercise. This data is
used to train machine learning models, which are then
used to generate realistic facial expressions.

3.1 Data Acquisition
Various capture sessions were conducted in order to
gather the information required to develop a model that
gives realistic results. During these sessions, informa-
tion describing the type of activities and physical state,
heart rate, and facial expressions were recorded.
A full-body motion capture was done in a large room
where 15 participants of different age [20, 46] and train-
ing level [0, 7.5] exercised freely without training de-
vices. The motion capture system cameras’ resolution
did not permit facial capture along with the full-body
capture. Furthermore, using training devices during
this capture session would have led to markers occlu-
sion. For these reasons, the data acquisition was split
in two capture sessions: full-body and facial. The goal
of the full-body session was to provide data to estab-
lish the relationship between the motion and physiolog-
ical measures, such as the heart rate. The participants

were asked to alternate between exercises of low and
high levels of intensity, and to slow down to make sure
a large range of data was acquired. While participants
were training, both full-body motion and heart rate data
were recorded. The software used to record the heart
rate provided an estimation of other metabolic indica-
tors, such as metabolic energy consumption, breathing
rate and EPOC (Excess Post Oxygen Consumption).
The second capture session was done at a fitness center,
where 17 participants from the same age groups and
training level as the previous session, were asked to ex-
ercise on either a cardiovascular training machine or a
mixture of strength training machines and free weights.
The goal of this capture session was to establish the re-
lationship between motion, heart rate, and facial expres-
sion. Again, this capture involved exercising at differ-
ent levels of intensity and a slow-down period. Using
this procedure, the data collected for each exercise in-
cluded repetitions for the same participant as well as for
different participants. Facial expressions were filmed,
while heart rate data were recorded following the same
procedures and with the same material as the first cap-
ture session. Together with the height and weight of the
participants, the specific loads used with the strength
training machines and free weights allowed for a good
approximation of the involved work and forces.

3.2 Biomechanical Model
One of the key inputs to both the off-line and on-
line phases of the proposed approach is the mechani-
cal work resulting from the motion. Different meth-
ods were evaluated to approximate the work: potential
energy, translational kinetic energy, and rotational ki-
netic energy. Different ways of evaluating the mechan-
ical energies were tested: using the center of mass of
the whole character, lower/upper body and computing
these values for each limb. Potential energy, transla-
tional and rotational kinetic energies were used.
Tests were conducted to find an approach that would be
efficient to compute, while providing good results for
both the learning and synthesis phases. While separate
inputs for each limb intuitively seemed to provide better
knowledge about the type of exercise and effort, they
resulted in noisy facial animations with blend shape
weights that changed too rapidly compared to the real
data. An explanation for this phenomenon is that even
though there are several captures, the amount of input
data is still too small to correctly capture the intricate
interrelations between specific limbs and facial expres-
sions. Ultimately, what provided the best result was
using the sum of the mechanical work (potential, trans-
lational kinetic and rotational kinetic) for all limbs.

3.3 Machine Learning Facial Expressions
To get a better understanding of the underlying mech-
anisms and relations between the exercises and the fa-



cial expressions, a preliminary analysis of the data was
conducted. As the relations between the metabolic,
mechanical and facial parameters are too complex to
model using simple polynomial equations, it made
sense to use machine learning to predict the facial ex-
pressions. Given the type of captured data and the kind
of predictions required, regression techniques were the
most appropriate. To select the best approach, several
models were trained using different sets of features as
input, and the quality of these models was evaluated
on a test data set. Likewise, appropriate model parame-
ters were selected using cross-validation. The data flow,
learning approaches and models are presented in Fig. 1.

3.3.1 Metabolic Parameters Prediction
To predict the heart rate from the character’s motion,
various learning techniques were tested with different
combinations of features as input. The heart rate in-
creases or decreases depending on the intensity of the
exercise: for each person, there is a certain threshold in
exercise intensity that results in an increase or decrease
in the demand for oxygen. To model this behavior, re-
gression trees were found to give an accuracy compa-
rable to more complex models such as SVM. Further-
more, this technique was also selected for its ability
to provide a human-interpretable model, which can be
used to get more artistic control on the final result.

Since the range of input values affects learning tech-
niques, and as the range of heart rates varies among the
candidates, the data was transformed to the [0,1] inter-
val resulting in the normalized heart rate (NHR):

NHR =
current heart rate− resting heart rate

maximum heart rate− resting heart rate

The maximum and resting heart rates are found in stan-
dard training charts based on the age and training level.

A regression tree model was built using the UserClassi-
fier in the Weka Software [8]. Several combinations of
inputs were tested (mechanical work as input and heart
rate as output, mechanical work and heart rate differ-
ence as input and heart rate difference as output, etc.).
Among the tested models, the one providing the best
results was to predict the difference in heart rate using
the current heart rate and the instantaneous mechanical
work. By using the last predicted NHR in the subse-
quent prediction, the model considers the temporal in-
formation and the accumulated fatigue.

While a model trained using the data from a single
participant could accurately predict the heart rate of
this participant (correlation coefficient of 0.88 and root-
mean-square error – RMSE – of 19%, see Fig. 2(a, c)),
combining the data from every participant in a single
model resulted in significant errors (correlation coeffi-
cient of 0.21 and RMSE of 79%, see Fig. 2(b, d)). To
improve the results, simpler models were derived.
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Figure 2: Comparison between real (blue) and pre-
dicted (red) NHR as a function of time (in minutes). (a-
b) cardiovascular and (c-d) strength training exercises.
(a,c) the same candidate and (b,d) a different candidate.

Using appropriate regularization parameters and tree
pruning to limit the complexity of the regression
yielded simple regression trees with only two leaves.
By analyzing these simpler models for each partici-
pant, a common structure emerged: all regression trees
had the same test at the root node, and the test com-
pared the mechanical work w to a threshold value troot ,
which broke down the predictions into increases or de-
creases in the heart rate. Moreover, the main difference
between these personalized models was the threshold
value used in the test, this value depended largely on
the fitness level of the participant. Based on these ob-
servations, a linear regression between the training level
and troot was used to improve the model. The resulting
model based on the linear regression and regression tree
is as follows:

troot = 7.13+0.42× training level

∆(nhr) =
{

cinc × (w− troot)× (1−nhr)2 troot < w
cdec × (w− troot)×nhr2 w ≤ troot

cinc = 0.0056−0.00043× training level

cdec = 0.0009+0.00025× training level

The threshold troot determines when the heart rate starts
to increase while cinc and cdec are the factors of increase
or decrease. These values were obtained by calculating
a linear regression between the individual values ob-
tained in the regression tree of each participant.

Using this model provided a prediction that was almost
as good as the one for separate candidates, with corre-
lation coefficient of 0.87 and an RMSE of 24%. Fur-
thermore, the training level can be used by animators as
a parameter to control the response level of characters
to various types of exercises.
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Figure 3: Comparison between real (blue) and pre-
dicted (red) mouth stretching blend shape weight (0 to
100) for (a) a cardiovascular exercise and (b),(c), and
(d) strength training exercises. Curves in (a) and (b) are
for the prediction of the same person for the same exer-
cise. Curves in (c) are for the prediction of a different
person, but the same exercise, and (d) is the prediction
of the same person, but a different exercise.

The normalized heart rate is used to approximate the
oxygen consumption (VO2) and respiration rate. Both
the VO2 and respiration rate have to be normalized rel-
atively to their minimal and maximal values. Given the
normalized values, the VO2 and respiration rate are pro-
portional to the normalized heart rate [22]. With the
VO2 estimation, EPOC can be approximated [6]. These
estimations, together with the mechanical work and me-
chanical power, are then used in the prediction of facial
animations as will be described in the next section.

3.3.2 Predicting Expression Components
To animate a virtual character, the four weights corre-
sponding to the blend shapes associated with the basic
components identified in the preliminary analysis (see
Section 4.1.1) should be obtained from the movement
of the character. Compared to the metabolic parame-
ters, the facial expressions in our capture data exhibited
more sudden and frequent changes. Because of this be-
havior, regression trees did not provide adequate results
to predict blend shape weights.

Instead, we opted for SVM regression, which provided
better prediction results and had already been used suc-
cessfully for facial animation [24]. Tests were con-
ducted with multiple participants, for multiple exercises
as well as for single participants and single exercises
(see Fig. 3). For a single participant, the prediction
of the participant’s blend shapes corresponding to exer-
cises not used to train the model was accurate, as shown
in Fig. 3(d). Compared to what was observed for the
metabolic parameter, the prediction from strength train-

ing exercises (Fig. 3 (b), (c), and (d)) lines up quite well
with the real data, while the prediction for cardiovascu-
lar exercises (Fig. 3(b)) follows the general trend of the
curve, but presents variations of smaller amplitude due
to the regularization of the model.

For multiple participants, training with a single exercise
enabled a relatively good prediction of the same exer-
cise for a participant not used in the training data (see
Fig. 3(c)). Nevertheless, generalization across all of the
participants and exercises was relatively poor. Again,
the data had to be normalized, but this time with respect
to the expressiveness of the participant. This can be
seen in Fig. 3(c), as the curves are well aligned, but the
blend shape weights are on a different scale. Some of
the participants could endure incredible exertion with a
relatively neutral expression while others depicted pro-
nounced expressions. The expressiveness could not be
linked to any of the parameters collected about the par-
ticipants (age, training level, height, etc.). It still can
be computed for each participants by finding the max-
imal weight for each blend shape, resulting in a four-
dimensional expressiveness vector. The captured blend
shape weights of the participants were then normalized.
This expressiveness vector allows the animator to con-
trol the facial expressions by increasing or reducing the
expressiveness values.

Given these normalized blend shape weights, the whole
dataset could be learned using an SVM. To select the
best-suited set of inputs and model parameters, several
combinations were evaluated on a test data set and us-
ing cross validation. The combination that gave the best
results was mechanical work, mechanical power, nor-
malized heart rate and EPOC as inputs, and blend shape
weight as output. As the predicted heart rate is used as
an input for the next prediction (see Fig. 1), the mod-
els consider the temporal information and do not only
model the correlation at a single-frame level.

With respect to the selection of the SVM parameters,
the radial basis function (RBF) kernel was selected, and
several combinations of parameters were tested: regu-
larization parameter and gamma of the RBF varying in-
dependently from 10−10 to 1010. The values of these
parameters that produced the best results were different
from one blend shape to the other. The regularization
parameter ranged from 103 to 106 while the gamma of
the RBF ranged from 10−5 to 10−2.

Since different areas of the face reacted in different
ways depending on the physical activity and the candi-
date, the predictions use four SVM models. Although
these are independent, the predictions were consistent
in all of our tests. The training RMSE of the models
was in the [17%,26%] range. The final models enabled
a good generalization of the captured data, which indi-
cates that our method could be used to generate realistic
facial animations on other types of movements.
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Figure 4: The physical effort resulted in a broad range of facial expressions
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Figure 5: Results for five minutes of running at medium
speed with different training levels: (a) 10, (b) 5, (c) 0

4 RESULTS
In this section, the approach and its experimental evalu-
ation are discussed in the context of the expected use of
the models. The accompanying video presents results
for different types of exercises. The results present be-
lievable expressions based on the physical activity of
the character, and these expressions improve the real-
ism of the 3D character (see Fig. 5).

A prototype was developed to test the approach in real
time and visually validate the resulting predictions. The
learned regression tree and SVM models were used to
animate facial expressions of a 3D head model. Us-
ing the LibSVM implementation to perform the predic-
tions showed that the approach can easily achieve real
time frame rates. On an average computer, 60 to 600
FPS were obtained depending on the render settings and
mesh complexity. The prototype can be used either by
triggering pre-recorded animation clips or by using a
live input from a Kinect device. The user can specify
the age, height, weight, fitness level and expressiveness
vector of the 3D character, and can also add weights
lifted in each hand as well as on the back. The facial
expressions change relatively to the motion of the char-
acter and the specified parameters. The user can change
the character parameters and get a real time feedback.
Fig. 5 shows different results achieved with different
training levels and Fig. 6 shows different results ob-
tained by changing the expressiveness vector.

4.1 Discussion
4.1.1 Observations on the Captured Data
A qualitative analysis of the captured data (full-body
capture, video and heart rate) was conducted. It led
to several key observations capturing the complex rela-
tions between physical activity and facial expressions.

While these observations helped us in the selection of
the appropriate machine learning methods, they should
also benefit artists in animating 3D characters. Two
types of relations were discovered: general relations
that hold for most facial expressions, and specific re-
lations that apply to particular expressions.

The first general rule linking the physical activity to the
facial expression is that the intensity of expressions is
proportional to the displaced mass and inversely pro-
portional to the mass of the muscles involved. The ex-
pression related to the instantaneous exertion is propor-
tional to the mechanical power. The evolution of the ex-
pression intensity is proportional to the change in heart
rate and metabolic energy. Finally, the recovery time
is proportional to the effort intensity and inversely pro-
portional to the training level.

Rules specific to individual components of facial ex-
pression were also observed. It was determined that the
facial expression features associated with physical ac-
tivity were concentrated around the eyes and the mouth
(see Fig. 4). Regarding the expressions related to the
mouth, the stretching is induced by two factors: instan-
taneous physical exertion and fatigue level. The mouth
remains closed at the beginning of the training session.
After a certain time, it starts to open, and the opening is
linked to the respiration rate and the fatigue level.

Other observations were related to the region of the
eyes. Eye squinting is mainly induced by instantaneous
physical exertion until a certain fatigue level. At a
higher level of fatigue, the eyes tend to relax in con-
nection with the fatigue level with a remaining constant
squinting value. The behavior of the eyebrows is a com-
bination of a downward movement related to the physi-
cal exertion and an upward movement related to fatigue.

Finally, some observations were made with respect to
both the breathing and the swallowing. The frequency
of occasional breathing movements related to loud and
quick expiration is induced by two factors: fatigue level
and respiration rate. The frequency of the occasional
gulping is proportional to the fatigue and to the regular
respiration rate. These observations helped in defining
blend shape selection greatly inspired by the muscular
groups of the human face, as described in FACS [4].
The model consisted of a neutral face and four blend



(a) (b) (c) (d) (e)
Figure 6: Results obtained with different expressiveness vectors: (a-b) softened expressions, (c) predicted expres-
sion, and (d-e) exaggerated expressions. The red lines are added as guides to help in comparing the expressions

(a) Neutral (b) Mouth Stretch (c) Mouth Opening (d) Eyes Squinting (e) Eyebrows
Figure 7: The four blend shapes used in our implementation.

shapes that can be used in various expressions linked to
physical activity (see Fig. 7).

4.1.2 Manual Blend Shapes Recovery

As explained earlier, to simplify the capture sessions,
only a video recording of the face was used for the
facial expression capture. Different techniques were
evaluated for retrieving facial animation data from the
recorded video, such as video tracking software and fa-
cial tracking software, but it was found that manual an-
imation provided more reliable results. To recover ob-
jective values that can be used with machine learning
approaches, a virtual character’s face was key-frame an-
imated to match the expression of the participants.

To ensure the results are reproducible, blend shapes
were key-framed, one at a time, and always in the
same order. Furthermore, to measure how perceptually
meaningful the values were, three different people in-
dependently adjusted the blend shape weights for a se-
lection of eighteen representative poses. Even though
the blend shape weights were not identical, the error re-
mained limited to 11% on average and was considered
to be quite sufficient for the purposes of this work.

4.1.3 Limitations

As shown in Fig. 7, the blend shape model used in this
work is sufficient, but it does not cover the whole range
of expressions that can be observed. Since each blend
shape is predicted separately, there could be inconsis-
tencies in the face of the character. Resolving such
inconsistencies and providing a better correspondence
among the muscular groups could be achieved through
a constrained weight propagation [17]. While the mesh

deformation used in this paper is based on blend shapes,
the models could be learned with the use of other con-
trol mechanisms, such as bone systems.

The generated facial expressions are generalizations of
the observed data. As such, they correspond to mean
values and sometimes lack expressiveness as compared
to motion capture (see Fig. 8). The models sometimes
output results that deviate significantly from the obser-
vations. As they happen quite infrequently, and as the
subsequent predictions are in accordance with the cap-
tured data, they can be easily filtered out.

The metabolic prediction model uses its last prediction
as input. It is thus subject to error accumulation and
could diverge from the observed values over time. This
should become noticeable for long animations. Ap-
proaches to steer the values back to the observed range
should be used to solve such problems.

(a) (b) (c)
Figure 8: Comparison between real and predicted facial
expression from one person to another: (a) generated,
(b-c) different candidates doing the same exercise.

Using SVM regression proved to be an effective way of
predicting facial expressions. Nevertheless, it remains
a “black box” technique that does not provide many op-
tions for customization.



5 CONCLUSION
Creating realistic facial animation based on physical
activity is a challenging task. By analyzing two sets
of captured data, this paper reveals several important
observations about what triggers specific facial expres-
sions. Based on the captured data, a combination of
two machine learning techniques was used in order to
automatically synthesize some metabolic parameters as
well as the facial animation of a 3D character. While
being automatic, this approach provides meaningful pa-
rameters that animators can change to deliver realistic
and compelling facial animations that automatically ad-
just to the motion of the character. Furthermore, the
metabolic parameters provided by the approach could
also be helpful in animating other aspects of the char-
acter, such as breathing and sweating. Finally, the ap-
proach can be used for real-time applications as well as
off-line high quality rendering. The approach provides
more realistic characters while reducing the burden of
capturing or hand animating the facial expressions re-
sulting from physical activity.

Some limitations were noticed throughout the develop-
ment of the proposed approach. Like other methods de-
scribed in Section 2, the proposed approach addresses
a single aspect of facial animation (only from physical
activity). A future work would be to provide a frame-
work that allows mixing different types of expressions.

While the proposed approach does provide realistic re-
sults, it is deterministic in nature: given the same con-
trol parameters and motions, it will result in the same
facial animation. An interesting avenue for future re-
search would be to incorporate the probabilistic and
stochastic nature of human reactions into the models.
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