
Neural UpFlow: A Scene Flow Learning Approach to Increase the
Apparent Resolution of Particle-Based Liquids

BRUNO ROY, Université de Montréal, Canada and Autodesk, Canada
PIERRE POULIN, Université de Montréal, Canada
ERIC PAQUETTE, École de technologie supérieure, Canada

(a) Coarse Input (b) Ours (c) Reference

Fig. 1. Our learning deformation field reproduced (b) most of the small- and large-scale details from the high-resolution ground truth (c) using solely the
low-resolution input example (a). Particles are added and displaced by our network to generate plausible details of up-resed animations at a fraction of a
high-resolution simulation cost.

We present a novel up-resing technique for generating high-resolution liq-
uids based on scene flow estimation using deep neural networks. Our ap-
proach infers and synthesizes small- and large-scale details solely from
a low-resolution particle-based liquid simulation. The proposed network
leverages neighborhood contributions to encode inherent liquid properties
throughout convolutions. We also propose a particle-based approach to in-
terpolate between liquids generated from varying simulation discretizations
using a state-of-the-art bidirectional optical flow solver method for fluids in
addition with a novel key-event topological alignment constraint. In con-
junction with the neighborhood contributions, our loss formulation allows
the inference model throughout epochs to reward important differences in
regard to significant gaps in simulation discretizations. Even when applied
in an untested simulation setup, our approach is able to generate plausible
high-resolution details. Using this interpolation approach and the predicted
displacements, our approach combines the input liquid properties with the

Authors’ addresses: Bruno Roy, Université de Montréal, Canada and Autodesk, Canada,
bruno.o.roy@umontreal.ca; Pierre Poulin, Université de Montréal, Canada, poulin@iro.
umontreal.ca; Eric Paquette, École de technologie supérieure, Canada, eric.paquette@
etsmtl.ca.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ARTSubmission to SCA’21: # 31 $15.00
https://doi.org/0000001.0000001_2

predicted motion to infer semi-Lagrangian advection. We furthermore show-
case how the proposed interpolation approach can facilitate generating large
simulation datasets with a subset of initial condition parameters.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: fluid simulation, particle-based liquid,
deformation field, optical flow, up-resing, machine learning, deep neural
network

ACM Reference Format:
Bruno Roy, Pierre Poulin, and Eric Paquette. 2021. Neural UpFlow: A Scene
Flow Learning Approach to Increase the Apparent Resolution of Particle-
Based Liquids. ACM Trans. Graph. 1, 1, Article Submission to SCA’21: # 31
(August 2021), 16 pages. https://doi.org/0000001.0000001_2

1 INTRODUCTION
Machine learning approaches have been rising in popularity in the
last few years due to their accessibility and versatility. These learn-
ing approaches have been adapted for many applications in media
and entertainment areas, and more specifically in graphics, such as
animation [Aberman et al. 2020], motion capture [Tung et al. 2017],
style transfer [Wang et al. 2016], 2D-to-3D sketching techniques [De-
lanoy et al. 2018], physically-based rendering [Chaitanya et al. 2017],
texture synthesis [Gatys et al. 2015], fluid simulations [Kim et al.
2019], and so on.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

Submission to SCA’21: # 31:2 • Roy, B. et al.

In recent years, the use of machine learning on fluids has con-
siderably reduced the emphasis on computationally expensive nu-
merical methods while taking advantage of the existing knowledge
in the field. So far, machine learning techniques have been used
to improve numerical solvers [Ladický et al. 2015; Tompson et al.
2017; Yang et al. 2016], to compute fluid features [Kim et al. 2019;
Um et al. 2018; Ummenhofer et al. 2019; Wiewel et al. 2019], and
to infer visual details [Chu and Thuerey 2017; Prantl et al. 2018].
However, very few of these methods have directly addressed the
notion of improving the apparent resolution of particle-based fluids,
particularly in the context of learning on unstructured data. Lately
though, researchers in the computer vision community [Qi et al.
2017a,b] have studied irregular data, such as point clouds, and intro-
duced ways to directly process them as inputs for 3D classification
and segmentation tasks. Moreover, their work has been recently
extended [Liu et al. 2019; Wang et al. 2020] to learn on temporal
motions of point clouds such as defined using scene flow estimation
methods. Considering structural similarities between point clouds
and particle systems, we demonstrate in this paper that using scene
flows expressed as Lagrangian motions on particles is promising to
infer fine and controllable details on fluids.
The work most similar in spirit to ours is the one by Prantl et

al. [2018]. They propose to leverage neural networks to learn pre-
computed deformations of liquid surfaces. While we partially share
their goal in encoding space-time deformations for liquids, there are
several noticeable differences. First, we target particles as opposed
to signed distance functions (SDF) to provide greater flexibility on
the method used to apply deformations. We show that applying
deformations directly on particles before generating a surface facil-
itates bringing out fine details, often depending on the discretiza-
tion. Second, using a neighborhood embedding layer, our network
does not require multiple learning phases to encode realistic high-
resolution liquid features. In addition, we use a deformation weight
obtained from the work of Thuerey [2017] to guide (i.e., through
our deformation-aware loss function) and speed up convergence.

In this paper, we propose an adapted deep neural network archi-
tecture that combines a recent scene flow machine learning method
with particle neighborhood interactions expressed as fluid simula-
tion properties. Our network exploits particle neighborhoods in-
spired by hybrid liquid simulation methods to encode hierarchical
features of the particle-based simulations during the convolution
operations. We show that we are able to preserve important liquid
features at every level of convolution. Our loss function also includes
a coefficient to weigh important local features while reducing con-
vergence time. Finally, we introduce an advection scheme that allows
us to displace the particles while taking the actual low-resolution
motion into account. This same advection scheme is also used to
artificially grow our existing multi-resolution simulation dataset
using an adapted interpolation method. With this comprehensive
learning pipeline, our approach is able of accurately reproducing
high-resolution details using solely a very coarse particle-based
liquid. To summarize, the main contributions of our work are:
• an adapted deep neural network architecture using particle neigh-
borhoods and a deformation-aware loss function reducing the
inference noise encoded during convolutional operations,

• an advection scheme that transposes a scene flow into Lagrangian
motion using the input velocity field,
• an interpolation scheme for matching key events topological
changes between simulations at different resolutions, and
• a data augmentation framework that artificially grows an existing
particle-based simulation dataset.

2 RELATED WORK
Multi-Scale and Procedural Methods. In the last decade or so,

several methods have been proposed to enhance the apparent reso-
lution of liquid simulations. While procedural methods were more
practical for decoupling simulations from discretization, multi-scale
methods were particularly efficient to process independently sur-
face details and separate them from coarse volumes of liquid. Using
a resampling strategy to segregate multiple layers of the simula-
tion data (e.g., particles) has been revisited multiple times. Adaptive
models were proposed to dynamically adjust the size (and contribu-
tions on forces) of particles using split-and-merge operations within
the simulation loop [Adams et al. 2007; Winchenbach et al. 2017].
While these methods share the same goal in spirit, Winchenbach et
al. [2017] leverage the fundamental basis of Smoothed Particle Hy-
drodynamics (SPH) methods. Their proposed scheme enables defin-
ing with precision particle masses to improve stability while preserv-
ing small-scale details. Similarly, Solenthaler and Gross [2011] in-
troduced an adaptive method to couple a dual particle-layer scheme
using two distinct particle resolutions. The method of Winchenbach
et al. [2017] was also recently extended to improve spatial adaptiv-
ity by introducing a continuous objective function as a refinement
scheme for SPH [Winchenbach and Kolb 2021].
A method focusing on preserving thin sheets was introduced

by Ando et al. [2012] allowing them to adapt the resolution of parti-
cles in Fluid Implicit Particle (FLIP) simulations. Later, narrow-band
methods were introduced to get the best of both Eulerian and La-
grangian schemes by expressing the liquid surface with particles
and the coarser volume with a grid [Ferstl et al. 2016]. The method
was first introduced to FLIP given its semi-Lagrangian nature. The
method was then extended by Sato et al. [2018] to process arbitrary
locations (as opposed to exclusively the liquid surface), identifying
where particles are needed to refine the appearance of the surface.
The same idea was revisited and adapted to SPH methods [Chen-
tanez et al. 2015; Raveendran et al. 2011; Roy and Poulin 2018]. Other
adaptive methods were also proposed to exploit spatially adaptive
structures to capture different simulation scales [Aanjaneya et al.
2017; Ando et al. 2013].
Meanwhile, procedural methods have also been introduced as a

refinement scheme by generating surface points through wave sim-
ulations. As noted by Kim et al. [2013], high-frequency details are
not necessarily coupled to the coarse simulation and can be indepen-
dently generated directly onto the animated mesh. In comparison
to the work of Kim et al. [2013], which was applied in an Eulerian
setup (i.e., solely based on the corresponding SDF and the velocity
field), Mercier et al. [2015] proposed a Lagrangian up-res method to
increase the apparent resolution of FLIP with a secondary surface
wave simulation. Recently, another procedural method was intro-
duced focusing solely on splashing liquid details [Roy et al. 2020].

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:3

(u

 xl1

 xh1
)

(u

 xlN

 xhN
)

...

..

.

.

..

.

Xh Xup

Xl

FFNet(u, Xl , Xh): ω Refine(Xl , ωup , θ): XupUpFlOF(Xl , Xh): u

Input
Simulations

Data Preparation Particle Displacement
Learning

Inference and
Re�nement

Output
Up-Resed

Xl

*

Xl

Xup

ωup+

disp(Xl , ω+ u)

*

Fig. 2. Overview of our up-resing pipeline. The input data used during the training phase is prepared using pairs of simulations at low (in orange outline) and
high resolution (in green outline)
, which is also used to generate a deformation field. Our network encodes particle displacements using differences between neighboring
particles as a scene flow. These predicted displacements are then refined and applied directly to the particles to infer details (result in blue

outline).

As we focus on neural networks (NN) to enrich the liquid surface,
we will not compare our work with procedural methods. Although
we share the similar goal of improving the apparent resolution of
the liquid surface at a fraction of the cost and computational time,
our approach offers the capabilities to synthesize plausible details
because it is trained on real fluid simulations.

Machine Learning for Fluids. Leveraging machine learning
methods for fluids was first introduced in graphics by Ladickỳ et
al. [2015]. They demonstrated the inference of SPH forces to approx-
imate Lagrangian positions and velocities using regression forests.
Along the same line of ideas, a similar method was lately proposed
to apply neural networks to Eulerian methods [Yang et al. 2016].
More recently, NNs were combined with numerical solvers to model
diffuse particle statistics for the generation of splashes [Um et al.
2018]. Convolutional neural networks (CNN) were also widely used,
but instead to predict Eulerian simulation properties. Thompson et
al. [2017] introduced a method exploiting CNNs to speed up existing
solvers. They proposed a CNN-based architecture as a precondi-
tioner for the pressure projection step. CNNs were also used to
learn flow descriptors to visually enhance coarse smoke simulations
using precomputed patches [Chu and Thuerey 2017]. In a context
where synthetic and plausible samples can be generated on-demand,
using generative adversarial networks (GAN) seemed suitable for
fluids. GANs were initially used as a super-resolution technique to
enhance temporally coherent details of smoke simulations directly
in image-space [Xie et al. 2018]. Meanwhile, Kim et al. [2019] pro-
posed another generative network for precomputing solution spaces
for smoke and liquid flows. Super-resolution was later revisited for
fluids, enabling an LSTM-based architecture to predict the pres-
sure correction and generate physically plausible high-frequency
details [Werhahn et al. 2019]. Due to their sequential properties,
LSTM-based layers were later used by Wiewel et al. [2019] to pre-
dict changes of the pressure field for multiple subsequent timesteps.

Another work on convolutional networks for Lagrangian fluids has
been presented by Ummenhofer et al. [2019]. They proposed a way
to express particle neighborhoods using spatial convolutions as dif-
ferentiable operators. In contrast with these methods, our network
learns to encode differences between resolutions as opposed as to
map fluid features using similarities.
Recently, Prant et al. [2018] proposed a stacked neural network

architecture allowing them to learn space-time deformations for
interactive liquids. Although we share the same goal of precom-
puting simulation data of the liquid surface, our work focuses on
the learning in a Lagrangian setup for up-resing purposes. More-
over, in comparison to the work of Prant et al. [2018], in which two
stacked NNs are used to learn deformations, we propose a simpler
and more efficient NN architecture by using a deformation coeffi-
cient directly in our objective function and by exploiting the particle
neighborhoods to guide the convolution downsampling layers.

3 METHOD
Given consecutive frames of an input animation of a liquid, our
approach predicts Lagrangian deformations to infer high-resolution
details and behavior. We propose an adapted scene flow learning
architecture, that we call FluidFlowNet (FFNet), to determine La-
grangian motions on particle-based liquids. Our learning archi-
tecture is inspired from FlowNet3D [Liu et al. 2019]; it encodes
displacements between two unstructured and unordered particle-
based liquids simulated at different resolutions using solely their
positions and velocities as input (§ 5.1). Our dataset is composed of
over one thousand randomly generated pairs of liquid simulation
scenarios in which each pair is composed of two simulations using
the same initial parameters but at different resolutions: one simula-
tion at a coarse resolution and the other at a high resolution (§ 4.2).
Similarly to the work of Thuerey [2017], we compute a mapping
correspondence between the two liquids using an optical flow solve

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:4 • Roy, B. et al.

on a 4D volume. However, in our case, the resulting optical flow is
used to capture the deformations between pairs of multi-resolution
simulations guiding our loss function. We use the multi-resolution
liquid pairs as a training set to encode a deformation using our
FFNet model. Finally, the inferred deformation field obtained from
our learning pipeline is transposed into Lagrangian displacements
and used as up-resing operators on the low-resolution particle-based
liquid (§ 6). With these displacements, we encode the missing details
and behavior bounded from the input low-resolution simulation.
In addition, a post-processing step refines the particles’ positions
combining the low-resolution input velocities with the applied dis-
placements while reducing the inference noise. Fig. 2 shows an
overview of our up-resing pipeline for liquids. In this paper, we use
bold lowercase symbols for vectors and bold uppercase symbols
for matrices. For clarity in Fig. 2, we use dotted symbols for the
Lagrangian properties. For instance, the velocity of a particle would
be noted as ¤𝒖.

Preparing Simulation Data. The dataset is built in three stages:
(1) generating many pairs of liquid animation scenarios (i.e., low-
resolution and high-resolution) using different subsets of initial
conditions, (2) producing a deformation field using an optical flow
solve on generated 4D volumes (used later in our loss function), and
(3) augmenting artificially the number of training samples using the
deformation field to interpolate new variants of simulated scenarios.

Learning Particle-Based Deformations. We use a neural net-
work to learn and encode Lagrangian deformations between low-
and high-resolution particle-based liquids. The proposed FFNet ex-
ploits the output of the optical flow solve to weigh each deformation
between the input local features. The input features to our network
are then expressed as the particle positions for the low- and high-
resolution liquids.

Inference and Refinement. Because we apply the deformations
directly on particles, our approach firstly requires to upsample the
particles close to the liquid interface before inference. Also, we
generate our results using Narrow Band FLIP liquids to reduce the
memory footprint since the deformations are mainly modeled ac-
cording to surface particles. Finally, we deploy a refinement step at
inference to account for generalization errors and to adjust the final
particle motion according to the input velocity field.

4 INTER-RESOLUTION LIQUID INTERPOLATION
In this section, we adapt an algorithm originally fromThuerey [2017]
to interpolate between a low- and a high-resolution liquid. We refer
to inter-resolution as an interpolation performed between a low-
resolution simulation and a high-resolution simulation from an
SDF point of view. We use this interpolation approach in our pro-
posed pipeline for two reasons: preparing the data for training with
our neural network, and combining Eulerian deformations with
the particle motions. Using an Eulerian deformation factor along
with a particle-based deformation field (¤𝒖 in Fig. 2), our approach
interpolates between resolutions directly on the particles. We are
expressing these deformations in a Lagrangian manner to increase
small-scale details and to offer a more intuitive control to infer

deformations to particles. As highlighted in Fig. 3, applying defor-
mations directly on the particles allows a more faithful reproduction
of fine details of the interpolation target (e.g., the sharp edges of
the cube). In addition, we have observed that our approach gives
a more realistic liquid appearance while preserving certain visual
characteristics such as surface tension. In order to provide a fair
comparison, both interpolation methods were performed using the
same grid resolution.

(a) Input (b) Interpolation (c) Target

Fig. 3. A simple case where a sphere is morphed at three different steps (b)
into a cube: comparing our interpolation approach applied directly on parti-
cles (bottom in green) with a state-of-the-art interpolation method [Thuerey
2017] applied on the corresponding SDF (top in purple).

Our motivation in applying displacements directly to the parti-
cles is to better reflect the small-scale deformations while not being
strictly bounded to the resolution of an underlying grid. An Eulerian
deformation is quite successful in detecting smooth large-scale mo-
tions, but its inherent regularization prevents it from matching fine
surface details at the cost of additional correction steps. Inspired
by the method proposed by Thuerey [2017], we use a 4D optical
solve to interpolate between input scenarios using the same initial
conditions, but at different resolutions (low and high resolutions).

4.1 Up-Resing Optical Solve
Inter-Resolution Optical Flow. We employ an approach similar

to the work of Thuerey [2017], that we briefly summarize in the
following, as we propose a slightly altered form of it for learning
purposes. Although our goal is also to compute a deformation field,
we adapt Thuerey’s method to interpolate a low-resolution input
into one at a higher resolution, using the same initial conditions for
both inputs. The generated deformation field is used in combination
with the particles of each simulation (i.e., low- and high-resolution)
as input features of the training set for our neural network (FFNet).
Given a pair of corresponding surfaces (i.e., generated SDF 𝚽

from the input particles) using two distinct simulation resolutions
(i.e., number of particles and grid resolution), the optical flow solve
is expressed as a weighted sum of the energy terms to be minimized
to compute the deformation field 𝒖:

min
𝒖

𝐸𝑑 (𝒖) + 𝛽𝑆𝐸smooth (𝒖) + 𝛽𝑇 𝐸Tikhonov (𝒖), (1)

where the first term corresponds to the information related to the
SDF (i.e., occupancy proportion values). The second and third terms

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:5

are respectively the smoothness and Tikhonov regularizers. The
smoothness term 𝐸smooth penalizes non-smooth solutions, and the
Tikhonov term penalizes vectors with large magnitudes. The dis-
cretized minimization of Eq. 1 yields a system of linear equations
𝑨UpOF𝒖 = 𝒃 where the first term 𝑨UpOF corresponds to the dis-
cretized energy terms given by:

𝑨UpOF = ∇𝚽ℎ
𝑇∇𝚽ℎ + 𝛽𝑆

∑
𝑗

L𝑗 + 𝛽𝑇 I, (2)

and where the terms are respectively the discrete spatial gradient
squared, the smoothness (using the discrete Laplacian L), and the
Tikhonov regularizers. Finally, we express the right-hand side b of
the linear system as [∇𝚽ℎ]𝑇 𝚽𝛿 where 𝚽𝛿 is the finite difference
between the input surfaces 𝚽ℎ and 𝚽𝑙 . Solving the linear system
for 𝒖 gives us the up-res deformation field 𝒖up. Up to this point, our
approach differs only from that of Thuerey [2017] by its preparation
and application to the input data as we use it between simulation
pairs of varying resolutions (see Algo. 2 for further details).

(a) UpFlOF (𝑿𝑙) (b) UpFlOF (𝑿𝑙 , 𝑑𝑖) (c) Reference

(d) Close-up views

Fig. 4. Comparing the deformation precision of 𝒖up when applied to a
low-resolution surface using our key-event alignment term (b).

Key-Event Alignment. As we focus on the differences between
variable resolution inputs, we propose an additional and novel key-
event alignment term directly within the optical flow solve to con-
strain the solution according to specific surface topological changes.
The motivation is to align the deformations between inputs simu-
lated at different resolutions to capture and match certain key events

in time. To do so, we define a soft constraint expressed as a penalty
termD detecting cells (using the grid of the SDF 𝚽) with topological
changes. Since our method is already applying the optical solve on
the SDF, we decided to use the complex cell tests [Wojtan et al. 2009]
to determine which cells are too complex to be represented with
piecewise linear isosurfaces [Varadhan et al. 2004]. Each cell com-
plexity 𝑐𝑖 (0 or 1) in D is weighted using a proportional coefficient
𝑑𝒙𝑖→𝒙𝑘 based on its 4D Euclidean distance to the closest key surface
point 𝒙𝑘 :

𝑑𝑖 =
1

𝑑𝒙𝑖→𝒙𝑘
𝑐𝑖 , (3)

where 𝒙𝑘 is the closest key surface point computed using the same
feature point extraction method as used with point cloud registra-
tion. The feature points are selected using the local mean curvature
approximation 𝜇 and compared to the domain distribution. We keep
the feature points above a certain threshold with respect to their
distribution 𝜇 + 𝛼𝜌 . The coefficient 𝛼 is used to control the number
of feature surface points preserved. The Euclidean distance 𝑑𝒙𝑖→𝒙𝑘
is computed using the first step of the Iterative Closest Point (ICP)
algorithm which is used to determine the closest 4D key surface
point 𝒙𝑘 for each surface point at position 𝒙𝑖 (Fig. 5). Using the
proportional coefficient 𝑑𝑖 , we can then rewrite Eq. 2 as follows:

𝑨UpOF = ∇𝚽𝑇
ℎ
∇𝚽ℎ + 𝛽𝑆

∑
𝑗

L𝑗 + 𝛽𝑇 I + D. (4)

As shown in Fig. 4, small-scale artifacts arise when trying to
interpolate between two liquids having major differences bounded
by their resolution. By aligning the deformations 𝒖up using key-
event feature surface points, we improve the fidelity (i.e., as close
as possible to the high-resolution ground truth) of deformation on
the low-resolution input.

The motivation behind using the proportional coefficient 𝑑𝑖 with
complex cells is to influence the deformation solution 𝒖up according
to key cells (i.e., cells containing key points) defining a correspon-
dence between two simulations. However, the discretization of a
simulation may produce significant differences that can make it
difficult to determine a match. Knowing that generating a match
between these key events in some scenarios would be challeng-
ing, we opted for a soft constraint even though the solution would
sometimes be partially satisfied (as opposed to enforcing a hard
constraint on Eq. 4).

4.2 Dataset and Data Augmentation
Our dataset is composed of pairs of simulated Fluid Implicit Particle
(FLIP) liquids using initial conditions from a parameter matrix 𝚯.
We would like to note that nothing in our particle-based method is
limited to FLIP, but FLIP and Narrow Band FLIP are commonly used
and efficient, which facilitated the generation of our datasets. As
previously stated, each pair is composed of two simulated liquids:
one at a low resolution and the other at a higher resolution. We
adjusted the liquid resolution by changing the particle spacing (i.e.,
particle density per cell) and the underlying grid resolution. For all
of the presented examples, we used a particle separation (𝑝𝑠) of 0.02
and 0.005, and a grid scaling factor (i.e., used to compute the cell
size with the particle spacing) (𝑔𝑠) of 2.0 and 1.2, respectively for
low- and high-resolution liquid samples. We define a pair of sample

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:6 • Roy, B. et al.

Fig. 5. As highlighted in this illustration, the key-event constraint term allows matching surface points between (right image) low- and (left image) high-
resolution liquid surfaces. The complex cells are marked with a red background (middle image); the feature surface points are identified and connected using
red points and lines.

Algorithm 1: Pseudo-code for generating and augmenting our training
dataset.

Input :

ost: obstacle shape type(6 different shapes)
xo: obstacle position(xo ∈ R3)
xem: emitter position(xem ∈ R3)
cd: container dimensions(cd ∈ R3)


= 𝚯

𝑃 = ∅
for ∀𝚯𝑖 ∈ 𝚯 do /* for each parameter set 𝚯𝑖 */

𝑿𝑙 = simulate(𝚯𝑖 , 𝑝𝑠 = 0.02, 𝑔𝑠 = 2.0) /* FLIP solver */
𝑿ℎ = simulate(𝚯𝑖 , 𝑝𝑠 = 0.005, 𝑔𝑠 = 1.2) /* FLIP solver */
𝑃 ∪ {𝑿𝑙 ,𝑿ℎ }

end
𝑃∗ = 𝑃

for ∀𝑃𝑖 ∈ 𝑃 do /* for each pair of simulated liquids 𝑃𝑖 */
𝑃 𝑗 = randomize({𝑃 𝑗 | 𝑗 ≠ 𝑖, 𝑗 ∈ 0 ≤ 𝑗 ≤ |𝑃 | })
{𝑿𝑙 ,𝑿ℎ }𝑖 , {𝑿𝑙 ,𝑿ℎ }𝑗 = 𝑃𝑖 , 𝑃 𝑗

𝑿 ∗
𝑙
= UpFlOF({𝑿𝑙 }𝑖 , {𝑿𝑙 }𝑗 ,𝚽({𝑿𝑙 }𝑖),𝚽({𝑿𝑙 }𝑗), 𝛼FlOF = 0.5)

𝑿 ∗
ℎ
= UpFlOF({𝑿ℎ }𝑖 , {𝑿ℎ }𝑗 ,𝚽({𝑿ℎ }𝑖),𝚽({𝑿ℎ }𝑗), 𝛼FlOF = 0.5)

𝑃∗ ∪ {𝑿 ∗
𝑙
,𝑿 ∗

ℎ
}

end

liquids as 𝑃𝑖 = {𝑿𝑙 ,𝑿ℎ}𝑖 where each sample 𝑿𝑖 , regardless of its
resolution, is expressed as a set of particle coordinates 𝒙 .
The simulated liquids are generated using selected initial condi-

tions taken from a matrix (as shown in Algo. 1). We refer to each
of these initial parameters using a subscript to our parameter ma-
trix 𝚯 ∈ R𝑛×𝑚 where 𝑛 is the number of parameters, and 𝑚 the
number of initial values for each parameter (e.g., obstacle shape
type ost, obstacle position xo, emitter position xem, container di-
mensions cd). As an example, the notation 𝚯xem would be for an
emitter position of a sample simulation. The resolution parameters,
particle spacing 𝑝𝑠 , and grid scale 𝑔𝑠 are not included in the ma-
trix because they are fixed for all pairs of simulated liquids. For our
dataset purpose, the emitter velocity is computed with respect to the
emitter position in order to be oriented toward an existing obstacle
and/or container. The types of shapes 𝑜st can be either used as static

boundaries or as a liquid initial shape. We present in Appendix C a
small subset of generated samples for the training set.

Data Augmentation. As shown in the second half of Algo. 1,
we use data augmentation on the simulated liquids to artificially
grow the number of samples within our dataset. In this regard, we
use the original FlOF algorithm as proposed by Thuerey [2017] to
interpolate liquids between precomputed initial conditions. We first
randomly select each simulation pair 𝑃𝑖 with a pair 𝑃 𝑗 (where 𝑖 ≠ 𝑗)
to generate a new pair of liquids. Then, we extract for each pair
their associated particle coordinates 𝑿 as inputs to the interpola-
tion method. The interpolated liquid is obtained by computing a
bidirectional optical flow 𝒖𝜔 applied on the surface 𝚽(𝑿). We use
𝛼FlOF = 0.5 to generate an in-between simulation for each interpo-
lated liquid (see the UpFlOF method in Algo. 2).
Even though the resulting liquids generated by interpolation

are inevitably not physically accurate, they still provide significant
additional data points allowing us to improve the generalization rate
when it comes to predicting complex high-resolution behaviors.

5 SCENE FLOW LEARNING FOR LAGRANGIAN
DEFORMATION ON PARTICLES

In this section, we will further detail the network architecture of
our proposed approach (§ 5.1) and our neighborhood-based loss
function for particle-based liquids (§ 5.2).

5.1 Network Architecture
As previously mentioned in § 3, our proposed learning architec-
ture (Fig. 6), which we call FFNet, is an adaptation of the FlowNet3D
method [Liu et al. 2019] in order to successfully capture the inherent
and latent liquid properties. By giving additional cues of the un-
derlying liquids, our learning approach converges faster to a more
precise displacement solution.
Inspired by FlowNet3D, our network architecture is divided into

three main modules: multi-resolution input features, flow embed-
ding, and flow refinement. We will describe how we adapted each
module in the following.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:7

Multi-Resolution Input Features. In this first part of our learn-
ing pipeline, we use the local neighborhoods to estimate the convo-
lution operators, as proposed with the PointNet++ architecture [Qi
et al. 2017b]. Since a traditional convolution does not work with
unstructured data points such as a particle set, using a downsam-
pling approach based on the neighborhood provides a suitable way
to encode these local features.
As shown in Fig. 7, a convolution layer downsamples an in-

put liquid with 𝑁 particles into 𝑛 neighborhoods. Each particle
𝑝𝑖 = {𝒙𝑖 ,𝒇 𝑖 }, where 𝒙𝑖 is the R3 coordinates of particle 𝑖 and 𝒇 𝑖 its
associated local features generated at each layer of our network.
Using the SPH neighborhood computation [Becker and Teschner
2007], we consider the contributions of each particle 𝑝𝑖 in its neigh-
borhood using weighted averages. As opposed to computing each
weighted average at the position of a particle, we compute the con-
tributions at the center of each downsampled neighborhood 𝑛 𝑗 . The
weighted local features 𝒇 ∗𝑖 for a downsampled neighborhood are
then computed as follows:

𝒇 ∗𝑖 (𝒙) = 𝒇 𝑖 |𝒙 − 𝒙̄𝑛 𝑗
|, (5)

where 𝒙 is the center coordinates of neighborhood 𝑛 𝑗 , and 𝒙̄𝑛 𝑗
is

the weighted average of the coordinates of particles in that neigh-
borhood:

𝒙̄𝑛 𝑗
=

∑
𝑖∈𝑛 𝑗

𝑤𝑖𝒙𝑖 . (6)

The weights for each neighborhood 𝑛 𝑗 are computed using the same
smooth kernel function introduced by Zhu and Bridson [2005]:

𝑤𝑖 (𝑥) =
𝑘 (|𝒙 − 𝒙𝑖 |𝑅−1)∑
𝑗 𝑘 (|𝒙 − 𝒙 𝑗 |𝑅−1)

, (7)

where 𝑘 (𝑠) = max(0, (1 − 𝑠2)3) for a smooth transition between
neighbor contributions, and the neighborhood radius 𝑅 is equal to
twice the particle separation used to generate the input simulation.
We express the weighted features as the importance level of each
local feature during the convolution phases.

Input:

Low-res.
Particles

High-res.
Particles

Output:

Particle
Displacements

Nl

3
3

3

3 3 3

64

64

128 512

Nh

3

Flow
Embeddings

Multi-resolution Input
Features

Down Conv.

Skip Connections

Aggr. Up Conv.

Down Conv.

Down Conv.

Flow
Re�nement

ω

Nl
8

N
8

N
128

Nh
8

+ .

Fig. 6. The proposed network architecture. Given a pair of input liquid sim-
ulations, the particle deformation network focuses on encoding the particle
displacement between low- and high-resolution particle-based simulations
guided by the outputs from the UpFlOF approach. The dimensions at each
convolution layer is expressed as a portion of the input resolution (𝑁 : num-
ber of upsampled particles from the input) by 3 (number of components of
the input feature). The number of local features grows as we progress down
in the downsampling convolutions (e.g., 32, 64, 128, and so on).

Fig. 7. At each iteration for our network, a correspondence map is gener-
ated between the input pairs of multi-resolution simulations 𝑿𝑙 and 𝑿ℎ

consisting of respectively 𝑁𝑙 and 𝑁ℎ particles. These 𝑛 correspondences are
expressed as representative neighborhood for each level of convolution.

We have noticed throughout experiments that using the weighted
average to estimate the local features for each downsampled neigh-
borhood 𝑛 𝑗 improved the recall when predicting large-scale flows.
Finally, we use an element-wise max pooling operatorMAX on a
nonlinear approximation using a multi-layer perceptron (MLP) on
the weighted 𝒇 ∗𝑖 (𝑥) as follows:

𝒇 ∗𝑛 𝑗
= MAX
{𝑖 | ∥𝒙𝑖−𝒙′𝑛𝑗

∥≤𝑅 }
{ℎ(𝒇 ∗𝑖 , 𝒙𝑖 − 𝒙

′
𝑛 𝑗
)}, (8)

where ℎ is the nonlinear MLP function, 𝒙 ′𝑛 𝑗
is the center coordinate

of the neighborhood 𝑛 𝑗 , and 𝑅 the same radius as used in Eq. 7.

Fluid Flow Embedding. Once the weighted local features are
computed for an input pair (i.e., for both low and high resolutions),
the two local features 𝑓 ∗𝑛 𝑗

and 𝑔∗𝑛 𝑗
, respectively generated from

the low-resolution input 𝑿𝑙 and the high-resolution input 𝑿ℎ , are
combined before applying convolution to training samples.
Similarly to creating the multi-resolution input features, we use

the same number of neighborhoods to describe each particle-based
input liquid pair, even if they are discretized differently. That way,
our network can define the flow embeddings using the same neigh-
borhood center coordinates 𝒙𝑛 𝑗

for a simulation pair alongside the
weighted local features and the original particle coordinates. Again,
we use the same weighted function𝑤𝑖 (𝑥) as input to the nonlinear
MLP function ℎ to aggregate each neighbor contribution prior to
being max pooled. We express each particle embedding as follows:

𝑒𝑖 = MAX
{𝑖 | ∥𝒙𝑖−𝒙′𝑗 ∥≤𝑅 }

{ℎ(𝒇 ∗𝑛 𝑗
⊕ 𝒈∗𝑛 𝑗

, {𝒙𝑙 }𝑖 − {𝒙ℎ}𝑖)}, (9)

where 𝒇 ∗𝑛 𝑗
aggregates the input features of the downsampled neigh-

borhood 𝑛 𝑗 from the low-resolution particle-based liquid, and 𝒈∗𝑛 𝑗

the input features of the downsampled neighborhood 𝑛 𝑗 from the
high-resolution one. We perform a few additional convolutions to
spatially smooth out the corresponding features with respect to
each particle of each neighborhood.

Flow Refinement. Finally, as the last step of the network, we
focus the learning on propagating the embedded features 𝑒𝑖 from
the downsampled neighborhood 𝑛 𝑗 to the original low-resolution

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:8 • Roy, B. et al.

Fig. 8. Example of a cascade of downsampling convolution operations applied on a high-resolution particle-based liquid.

input particles 𝑁𝑙 . We use upsampling convolution operations to
learn how to project weighted features back to the input particle
coordinates. We have noticed throughout experiments that propa-
gating the weighted features from the embedding layer improved
the ability of the network to recover nonlinear features specific to
fluids, such as vorticity.
We show the precision of our refinement step on downsampled

features (Fig. 8) as opposed to solely using a symmetric MLP func-
tion on these. A last and dense regression layer is used after the
upsampling convolutions to project back the scene flow prediction
in R3 (i.e., without using an activation function). Also note that as
shown in Fig. 6, we use skip connections between downsampling
and upsampling layers to infer multi-scale feature learning.

5.2 Deformation-Aware Loss Function
As explained previously, we are using pairs of particle-based simula-
tions as input samples. Our training loss on these samples is evolving
throughout epochs to capture the differences in displacements be-
tween simulations using the same initial condition parameters, but
at different discretizations. We express our loss function as 𝐿1 met-
rics to encode absolute differences between the low-resolution and
high-resolution samples:

Lup =
1
𝑛 𝑗

𝑛 𝑗∑
𝑖

∥𝝎𝑖 − 𝝎∗𝑖 ∥1 + 𝜆𝑛 𝑗
∥𝝎←𝑖 − 𝝎𝑖 ∥1, (10)

where 𝝎𝑖 is the predicted displacement and 𝝎∗
𝑖
is the ground truth.

Interestingly, the cycle-consistency regularization term ∥𝝎←
𝑖
−𝝎𝑖 ∥1

(in Eq. 10) acts as a penalization constraint to enforce the bidirection-
ality of the resulting scene flow for displacements. In other words,
this term enforces that the forward flow and the backflow flow (i.e.,
displacement between the predicted particle coordinates and the
displaced one𝝎←

𝑖
using𝝎∗

𝑖
) closely match each other. Also, we have

noticed empirically that adding an adaptive weight 𝜆𝑛 𝑗
to adjust

the neighborhood 𝑛 𝑗 contributions (as opposed to using 𝜆 = 1 for
every neighborhood) has improved significantly the convergence
rate throughout iterations. We compute 𝜆𝑛 𝑗

using the normalized
magnitude of the deformation initially computed with the UpFlOF
algorithm (Algo. 2). From our analysis comparing different training
experiments, we have observed that using such an adaptive weight
was allowing emphasis on encoding features where the main dif-
ferences between discretized simulations were occurring within
neighborhoods. Throughout the experiments, we also observed that

the proposed adaptive weight improved (in some of the results pre-
sented) the reconstruction of small complex details, as we were able
to train through more iterations without overfitting the resulting
generalization model.

6 DEFORMATION INFERENCE AND REFINEMENT
In the following sections, we dive into the final steps of applying
the predicted displacements onto the input particle-based liquid.
First, we apply the displacements taking into account the existing
velocities of the input particles. Then, a refinement step is performed
to reduce the displacement noise generated by the inference.

6.1 Applying the Displacement on Particles
In this section, we explain the steps performed by our approach to
combine the input velocity with the predicted Lagrangian displace-
ments ¤𝝎. Firstly, we upsample the input narrow band 𝑿 of depth 𝑑𝑏
to ensure that the density of the upsampled particle set 𝑿 ′ is high
enough to capture the small-scale deformations generated by our
resulting deformation field. Once the predicted displacements are
generated, we transfer them to a velocity field 𝒖𝜔 .

The cell size of 𝒖𝜔 is adjusted with respect to the number of parti-
cles per cell to prevent undesirable gaps in the liquid during motion,
as suggest by Zhu and Bridson [2005]. We resample the velocity
field in a MAC grid 𝒖MAC that will then be updated by extrapola-
tion within a distance 𝑑MAC outside the SDF 𝚽

′
𝑙
in order to fully

cover the simulation domain of the upsampled input particles 𝑿 ′.
Using the updated 𝒖MAC, we can now update our displacements to
compensate for the actual input motion. That way, our approach
can infer Lagrangian displacement regardless of the input motion.
The MAC grid 𝒖 ′MAC is weighted according to the magnitudes of
the resampled velocity field 𝒖̂𝜔 and added to the current velocity
field 𝒖̂𝜔 . Finally, we advect the particles in a grid (as with FLIP)
using 𝒖̂ ′𝜔 on the upsampled particles 𝑿 ′ at each time step. Although
our approach requires switching back and forth between Eulerian
and Lagrangian deformations, we have empirically noticed that our
model learns better to preserve fine details on the surface, as op-
posed to learning to deform these solely in an Eulerian manner. An
overview summarizing these steps is presented with Algo. 2 (with
isInference() equal to true).

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:9

Algorithm 2: UpFlOF - Pseudo-code for inferred semi-Lagrangian ad-
vection and data augmentation.

Input :

𝑿 : set of particles
𝒖MAC: low-res. MAC velocity grid
𝑑MAC: extrapolation distance (2 cells)
𝑑𝑏 : depth of narrow band (2-3 cells)
𝑟ℎ : grid resolution larger than the input

𝚽𝑙 = computeSDF(𝑿)
𝑿 ′ = resampleNarrowBand(𝑿 , 𝑑𝑏)
if isInference() then /* for predicting displacements */

¤𝝎 = predict(𝑿) /* see Fig. 6 */
𝒖𝜔 = transferToGrid(¤𝝎)
𝚽
′
𝑙
= 𝚽𝑙

else /* for data augmentation */
𝚽
′
𝑙
= upscaleInterpolate(𝚽𝑙 , 𝑟ℎ)

𝒖𝜔 = FlOF(𝚽′
𝑙
,𝚽ℎ, 𝛼FlOF = 1) /* see Algo. 1 in [Thuerey 2017] */

end
𝒖̂𝜔 = resampleOFtoMAC(𝒖𝜔 , 𝒖MAC)
𝒖MAC = extrapolate(𝒖MAC,𝚽

′
𝑙
, 𝑑MAC)

𝒖′MAC = ∥𝒖̂𝜔 ∥𝒖MAC
𝒖̂′𝜔 = 𝒖̂𝜔 + 𝒖′MAC /* inject input motion */
𝑿 advect = advectInGrid(𝑿 ′, 𝒖̂′𝜔 , 𝑡) /* 𝑡 = 𝑡 + △𝑡 */

6.2 Upsampling and Reducing Surface Noise
We have noticed during our experiments that surface noise was in-
troduced at the inference step when compared to the ground truth.
In order to validate the source of this noise, we have investigated on
the resulting deformations before combining them with the input
motion (i.e., exclusively based on ¤𝝎). Similar to regression methods
with point clouds (such as used with scene flow), this regression
noise was appearing in the downsampling operations during the
learning phase. As suggested by Liu et al. [2019], performing mul-
tiple passes of inference on randomized resampled samples using
average predictions improved the results, but at the cost of losing
some of the small-scale liquid behavior mostly perceptible during
motion.
Since our goal is to focus the deformation close to the surface,

performing a regression on the whole particle-based fluid seemed
like an inadequate solution. As a matter of fact, the resulting noise
came mostly from particles emerging from deep below the surface.
We then determined that a resampling approach as used in Narrow
Band FLIP [Ferstl et al. 2016] would be more suitable to convey
where to resample in order to prevent displacing particles deep
in the liquid (as opposed to randomly resampling). We ended up
performing multiple passes of inference using varying depths 𝑑
defining the particle band thickness.
As shown in Fig. 9, we came up with a fair tradeoff throughout

several experiments. For our purpose, this tradeoff is purely qual-
itative and might differ for other types of simulations. An error
(between the displacement and the ground truth) smaller than 0.1
is barely noticeable (especially in motion). Also, as exposed in Fig. 9
(rightmost image generated after 12 iterations), performing more
than 6 inference iterations is diluting the high-resolution features
and ultimately converging back to the low-resolution input (i.e.,

Fig. 9. We compare the influence of varying upsampling distances 𝑑 over
the surface noise (expressed as an error on the vertical axis) generated
throughout the inference iterations. The images corresponding to the evolv-
ing level of noise (i.e., from iteration 1 to 12) of the green curve is presented
on the top of the chart.

fading out the displacements). The final displacement obtained is
then averaged over all the iterations.

7 RESULTS
In the following, we discuss the training experiments and expose de-
tails of the corresponding datasets. We also demonstrate on multiple
examples the capabilities of our approach to increase the apparent
resolution using solely coarse particle-based simulations as input.
We refer the reader to the supplemental video for the corresponding
animations.

7.1 Training and Inference
Datasets and Augmentation. The simulations in our dataset

have been generated using the Bifröst® fluid solver for Maya®. The
simulations for both resolutions are computed using varying param-
eters as exposed in Algo. 1. We have divided the datasets into three
categories referred to as Colliding, Shape, and Container (see Table 1
for further details). These datasets are covering several simple and
specific simulation cases to improve inference generalization. The
Colliding dataset contains simulations in which an emission source
hits a single collision shape (see Fig. 18 in Appendix C). The Shape
dataset contains simulations in which a single liquid volume (ini-
tialized with different shapes) falls into an empty container. The
Container dataset contains simulations in which an emission source
pours into a liquid container. For all these datasets, we define the
breadth of simulation scenarios used for training by enumerating
all combinations from a fixed set of obstacle shapes 𝑜st, obstacle
positions 𝒙o, position of emission sources 𝒙em, and dimensions of
container cd. The shapes were determined to cover different shapes
including sharp edges (cube), curved faces (sphere), and a mixture
of both (cylinder).

In order to artificially grow each of these datasets for training, we
interpolate each simulation pair using Thuerey’s method [Thuerey
2017] on shape’s SDF, shape position, and emission position. On
both Colliding and Shape datasets, we interpolated with weight
𝛼FlOF = 0.5, giving us an augmentation factor of ×2. We used more
interpolation weights on the Container dataset since it originally
consisted of fewer simulations. Each simulation pair of the Con-
tainer dataset was interpolated at 𝛼FlOF ∈ {0.25, 0.50, 0.75} giving
us an augmentation factor of ×8. Finally, we used a data split of

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:10 • Roy, B. et al.

Dataset Simul. res. (low/high) Aug. # simul.
particles Veloc. grid factor pairs

Colliding 0.30M/2.4M 963/1923 ×2 432
Shape 0.15M/1.5M 963/1923 ×2 432
Container 0.40M/3.2M 1283/2563 ×8 432

Table 1. Datasets of simulation pairs used as training and validation sets.
We also present the augmentation factor (Aug. factor) used to grow our
datasets prior to training.

90%:10% respectively for training and validation sets. The test set
was composed of new and significantly different simulation setups
as enumerated in Table 2. We also provide a breakdown of the
evaluation times of the presented examples in Appendix B.

Performance Analysis. We have tested our approach on a vari-
ety of simulation setups to validate its robustness when generalizing
within unknown initial conditions. As shown in Table 2, we tested
our learning model on input simulations of a fairly coarse reso-
lution. The simulation time to generate the coarse simulation in
Maya® is presented because that simulation data is used as input to
our network for inference. As previously mentioned, since we are
mostly interested in surface details, we opted for the Narrow Band
FLIP method to generate the particle-based liquids used for both
training and testing inference. The computation times presented
are expressed in seconds and computed at each frame of simula-
tion and inference. The computation times of our FFNet network at
inference are also presented. An interesting aspect when looking
at these is that they are only slightly influenced by the input com-
plexity. Another benefit of using the neighborhood convolutions to
downsample multi-resolution particle-based simulations is that the
evaluation times at inference turns out almost constant and decou-
pled from the input resolution as we progress down the convolution
layers.

Example # part. Grid Sim. FFNet
res. eval.

Pouring: Fig. 1 500k 1283 0.724 0.071
Collision: Fig. 5 320k 963 0.542 0.061
Cylinder : Fig. 4 290k 963 0.497 0.055
Stirring: Fig. 12 250k 1283 0.482 0.058
Multi-stage: Fig. 13 1100k 1923 1.249 0.112
Multi-streams: Fig. 17 900k 1923 1.045 0.098

Table 2. Statistics for the presented examples generated using our up-resing
neural network FFNet. The discretization details (i.e., number of particles and
velocity grid resolution) are shown for each example and the computation
times per frame are expressed in seconds.

The training was performed for 300 epochs on 1296 pairs of simu-
lations, taking an hour on average for each epoch computed on two
nodes of four NVIDIA® GeForce® RTX 2080 Ti. For each pair of
simulations, we used on average a window of 50 consecutive frames
in order to capture most of the interactions of interest for learning. A

longer temporal window may lead to a less accurate feature match-
ing.We used a rather small batch size of 8 samples per iteration since
our multi-resolution samples generate a significant memory foot-
print on the GPU. We used the ADAM optimizer [Kingma and Ba
2015] with an initial learning rate of 10−4 decaying at an exponential
rate of 5% after each series of 50k iterations.

The FFNet architecture is composed of three downsampling con-
volution layers (detailed in Fig. 8), one embedding layer, and three
upsampling convolution layers. An aggregation operation is per-
formed after the first downsampling convolution layer to combine
both input resolutions. Lastly, a linear flow regression layer is added
at the end of the learning pipeline to output predicted particle dis-
placements in R3. Table 4 in Appendix A shows the specifications of
each MLP layer. We also use skip connections at each convolution
level to concatenate the outputted local features between downsam-
pling and upsampling layers. Finally, the MLP functionℎ is activated
by rectified linear units (ReLU) preceded by batch normalizations
for both downsampling and upsampling convolution layers. The
training and evaluation steps have been performed using the Tensor-
Flow library. For performance reasons, the inference part has been
implemented using the TensorFlow C++ API within the Autodesk
Bifröst Graph®.
We chose a few baselines to compare the efficiency of our ap-

proach at the evaluation stage. In fairness and validity, we con-
strained the comparison to exclusively point-based learning meth-
ods. The evaluation metrics selected to compare the validity of these
methods with respect to ours in the application context are the
estimated position error (EPE) and the accuracy of the predicted
displacement (Flow accuracy) when compared to ground truth. The
EPE is evaluated as the average 𝐿2 distance between the predicted
and the ground-truth displacement vectors. Since the number of
particles of the ground truth may differ from the up-resed one gener-
ated with our approach (i.e., upsampled 𝑿∗

𝑙
of the 𝑿𝑙 coarse input),

we use the closest particle to match each particle of the reference
particle-based liquid. The flow accuracy measures the proportion of
predicted displacements (using a small error margin 𝜖 = 0.001 with
respect to the scene scale) that are below a certain threshold (we
used 0.1).

Method EPE Flow Conv.
accuracy time

PointNet [Qi et al. 2017a] 0.45 26.11% 14.4
PointNet++ [Qi et al. 2017b] 0.44 29.84% 13.6
FlowNet3D [Liu et al. 2019] 0.37 52.27% 10.3
FFNet (ours) 0.23 63.71% 8.1

Table 3. Flow estimation results on the Colliding dataset.

As highlighted in Table 3, our approach performs much better for
the up-resing task on particle-based simulations when compared
with the selected baselines. In addition to providing better results,
our network converges much faster as shown in Fig. 10. The conver-
gence times are expressed in hours per epoch. Moreover, we have
noticed that with our approach, up to 40% of the EPE is due to static
regions. These regions can show significant differences in volume

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:11

when varying the simulation discretization parameters (i.e., particle
spacing 𝑝𝑠 and grid resolution 𝑔𝑠). When we manually exclude these
regions (as suggested in § 7.2), the EPE reduces significantly.

Fig. 10. Comparing training losses on the Container dataset measured with
our approach and a few point-based learning baselines. In order to lighten
the chart, the validation loss (noisy orange curve) is showed only for our
approach (black curve).

Fig. 10 shows training losses evolving over iterations on several
point-based learningmethods. As shown, our approach offers amore
steady error reduction over iterations as opposed to the presented
baselines. In other words, our approach requires fewer iterations to
mimic the high-resolution details with good accuracy. Fig. 10 also
highlights the generalization capabilities on a much more complex
example (Fig. 17). As expected, we also have observed that similar
examples from the training set take less time to converge to a decent
level of detail (as compared to the corresponding reference). We
observed a clear up-resing displacement after around 200 epochs as
shown in Fig. 11. We noticed small differences in the precision of
displacements in the range of 240 to 300 epochs (i.e., depending on
the complexity of the input simulation), so for our purpose, training
past that iteration threshold will unlikely bring significant value.

Fig. 11. Convergence plot of our Lup loss for the Stirring example from
Fig. 12. We show the loss error (𝑌 -axis) evolving throughout the training
epochs (𝑋 -axis).

7.2 Evaluation and Discussion
Up-Resing Coarse Input. In the presented results, we provide

as input to our network the particle positions and a displacement
field obtained between the current frame and the next one. We
use these displacements to act as deformation preconditioners to
our network (i.e., hint on spatial and temporal deformations). More
importantly, using these preconditioners as deformations prevents
us from computing an actual deformation field 𝒖up (i.e., using the
UpFlOF algorithm) which would defy the objective of this approach
by requiring a high-resolution input. The generated displacement by
our network is then combined with the velocity of the coarse input
to account for the coarse motion of the liquid since displacements
are computed locally and with respect to their neighborhood.

(a) Coarse input (b) Ours (c) Reference

Fig. 12. Comparison of our result (b) generated with FFNet using a low-
resolution input (a) with the corresponding high-resolution reference (c).

For convenience, we initially decided whether to process selected
regions or the whole volume of liquid. The reason is that generat-
ing up-resing details on static volumes of liquid introduces noise
due to the regression operations on downsampled neighborhoods.
Therefore, in some of our examples, we initially flagged regions
(and contained particles) that might be of interest to provide com-
pelling details often absent in coarse simulations. However, in some
cases, it was simpler to predict displacements for the whole simula-
tion domain and then smooth out selected regions of the generated
surface.
Lastly, it was observed that droplets and highly diffuse volumes

of liquid are not faithfully generated by our displacement network.
One solution could be to flag diffuse particles as proposed by Um
et al. [2018]. For example, as exposed in the close-up insets of

Fig. 12, our approach generates convincing
splashing details while mostly remaining
attached to the main volume of liquid. On
the other hand, our network successfully re-
produced eddies surrounding the moving
obstacle that stirs the liquid. However, as
compared with the high-resolution refer-
ence (Fig. 12c), we were unable to recreate

the small droplets detached from the splashing portions of the liq-
uid. Nevertheless, these missing droplets can easily be procedurally
added (as shown with the red particles in the inlet figure) on top of
our displaced particles (e.g., using existing tools such as Maya® to
create whitewater details). We have noticed that more static details
such as smooth swirls are not fully reproduces by our approach. In
these cases, the differences between low- and high-resolution liq-
uids are subtle, and therefore, are underrepresented by our method
of selecting samples whose window captures only specific liquid-
liquid or solid-liquid behaviors (e.g., such as collisions, splashes, and

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:12 • Roy, B. et al.

(a) Coarse input (b) Ours (c) Reference

Fig. 13. Comparison of our result (b) generated with FFNet using a low-
resolution input (a) with the corresponding high-resolution reference (c).

so on). We provide an example to highlight this limitation in the
supplemental video.

Fig. 1 is also a good example where adding spray and foam parti-
cles would improve the end results generated by our approach as it
clearly lacks droplets compared to the high-resolution reference. On
a related note, we have noticed that sparse neighborhoods require
more iterations during training to converge and to reconstruct these
small-scale details. In other words, these diffuse regions contribute
less throughout iterations and would require more epochs during
training with our network.

Generalization on More Complex Inputs. We have also tested
the generalization capabilities of the proposed approach on more
complex examples to evaluate how well it performs on unknown
simulation setups. As exposed in § 7.1, our dataset is composed of
solely single sources of disturbance either on static liquid or static
obstacles. In Fig. 17, we compare our results with the ground truth
on a three-streams example pouring into a single container. There
are a few interesting features to observe in that figure. First, the
small-scale details noticeable in the reference were successfully
reproduced around the streams and at the impact points in the static
liquid container. As previously mentioned, although our approach
does not capture the diffuse particles very well (e.g., droplets), we
can still observe a few detached chunks of liquid at the stream
impacts.

Another interesting aspect observed in our results is the ability to
reproduce the energy level of the simulations at higher resolutions.
As noticeable in Fig. 17, the energy loss caused by a coarse discretiza-
tion (Fig. 17a) is partially restored in appearance when up-resed
using our approach (Fig. 17c). The arced streamlines in our result
(Fig. 17c) closely reproduce those of the high-resolution reference
(Fig. 17b). It is also apparent in Fig. 13 that the static container is
significantly more agitated in our result than it is in the coarse input
simulation. At each level of that cascading stream, our approach
was able to infer dynamic and turbulent behavior within impacted
regions. In the lower container (i.e., the one with the cylinder ob-
stacle), we have noticed that our result (Fig. 13b) was showing a
slightly different but plausible turbulence behavior (Fig. 13c).

Improved Alignment. The alignment term (Eq. 4) is used to im-
prove the precision of the deformation between resolutions. In order

Fig. 14. Comparing the evolution between our inferred liquid (top) and the
high-resolution reference (bottom).

to fully reproduce high-resolution details on coarse liquids, the de-
formations applied with the inferred displacements of our network
must be aligned in space and time to capture the small differences
between the simulation resolutions. As an example, the impacts on
the sphere shown in Fig. 1 present noticeable differences between
the coarse and the high-resolution liquids. Our goal with that align-
ment in this particular example would be to ensure that we are
able to capture the detailed splashing impacts of the reference and
infer this on the coarser liquid. With the exception of the detached
droplets, we show in Fig. 14 that our approach (top row in green)
does a fairly good job at reproducing similar fine details around the
impact crown as compared to the reference (bottom row in blue).

(a) Without key-event alignment (b) With D

Fig. 15. Comparing before and after applying the proposed key-event align-
ment term on the teaser example (Fig. 1).

The benefit of using key-event alignment is illustrated in Fig. 15,
where we compare the deformations applied with and without the
alignment term D. We can observe that the green liquid fits better
to the fine splashes of the reference (semi-transparent in blue) in
comparison to the red liquid which presents the deformations before
the correction on the alignment. The red liquid is missing most of
the small-scale details of the main volume of liquid; this is due to a
misalignment of the deformation field mapping the high-resolution
to the low-resolution input.

Upsampling for Inference. The upsampling process of an in-
put liquid prior to inference is a crucial step to fully appreciate the
details generated by our approach. By analogy, this step is compara-
ble to the need to have enough material to model fine details on a

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:13

(a) 𝑑 = 𝑅 (b) 𝑑 = 0.75𝑅 (c) 𝑑 = 0.5𝑅 (d) 𝑑 = 0.25𝑅

Fig. 16. We show the influence of upsampling the particle band prior to the inference step. As shown in this figure, we qualitatively evaluated the results by
varying the resampling radius of the narrow band.

physical object. In our context, the material is discretized as parti-
cles. Applying our approach directly to a coarse liquid (i.e., without
oversampling) would result in an extremely diffuse liquid. In fact,
modeling so much detail through our inferred displacements only
on a coarse liquid would simply spread the particles sparingly. In ad-
dition, an insufficient particle density may cause unwanted artefacts
on the surface of the up-resed liquid. Furthermore, it is important to
note that the input resolution at inference determines the displace-
ment resolution of our network’s output. In other words, the input
resolution constrains the resolution of the inferred displacement.
Nevertheless, the neighborhoods used by our convolution operators
enable us to decouple our network from the input resolution while
reproducing appealing details. Results shown in Figs. 13 and 17 are
concrete examples of cases in which the upsampling of the input
simulation made it possible to faithfully reproduce several apparent
characteristics in the associated reference.

In Fig. 16, we show the influence of different distances 𝑑 over the
precision of the inferred displacements. As shown in that figure,
the smaller the sampling radius, the higher the level of detail of the
applied displacements. We have used 𝑑 = 0.5𝑅 (i.e., equal to the
input particle separation radius) in most of the examples presented
to limit the size of the input liquid to our network and because
using a larger distance did not have a noticeable difference in the
final result. Lastly, similarly to the work of Liu et al. [2019], we
also perform multiple passes of inference (usually 3-6 passes) using
different upsampling distances of the surface band to reduce the
inference noise and to prevent particles from emerging following
the application of the displacements.

8 CONCLUSION AND FUTURE WORK
We have presented an approach leveraging deep learning to increase
the apparent resolution of a coarse particle-based liquid. In addition,
we have proposed a framework using a state-of-the-art interpola-
tion method to generate and augment a dataset of particle-based
simulations for machine learning purpose. Our approach can in-
fer plausible and complex details on the surface of low-resolution
liquids, as illustrated in the examples in this paper and animated
sequences in the accompanying video.

Looking toward the future, we believe that using a stacked net-
work could improve our results with highly diffuse liquids and thin
sheets. Our work could be combined with a spray particle classi-
fication network, such as proposed by Um et al. [2018], to update
an adaptive neighborhood within the convolution layers. Finally,
we think that it would also be interesting to investigate volumetric
learning methods targeting up-resing applications like this one but
for smoke simulations.

ACKNOWLEDGMENTS
This work was supported and funded by Mitacs Accelerate, Mitacs
Globalink, the Université de Montréal, and the École de Technologie
Supérieure (ÉTS). We would also like to give a special thanks to
Nils Thuerey for his insightful advice, comments, and discussions
surrounding this project during the research internship at the Tech-
nical University of Munich (TUM) at the very beginning of this
project. Finally, We would like to thank Autodesk Inc. for providing
resources to carry out this project in the end.

REFERENCES
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power diagrams and sparse paged grids for high resolution adaptive liquids.
ACM Trans. on Graphics (TOG) 36, 4, Article 140 (2017), 12 pages.

Kfir Aberman, Peizh Uo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or,
and Baoquan Chen. 2020. Skeleton-aware networks for deep motion retargeting.
ACM Trans. on Graphics (TOG) 39, 4, Article 62 (2020), 14 pages.

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J Guibas. 2007. Adaptively
sampled particle fluids. ACM Trans. on Graphics (TOG) 26, 3, Article 48 (2007),
8 pages.

Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. Preserving fluid sheets with
adaptively sampled anisotropic particles. IEEE Trans. on Visualization and Computer
Graphics 18, 8 (2012), 1202–1214.

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations
on tetrahedral meshes. ACM Trans. on Graphics (TOG) 32, 4, Article 103 (2013),
10 pages.

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface
flows. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA).
209–217.

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans. on Graphics (TOG) 36, 4, Article 98 (2017), 12 pages.

Nuttapong Chentanez, Matthias Müller, and Tae-Yong Kim. 2015. Coupling 3D Eulerian,
heightfield and particle methods for interactive simulation of large scale liquid
phenomena. IEEE Trans. on Visualization and Computer Graphics 21, 10 (2015),
1116–1128.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:14 • Roy, B. et al.

(a) Coarse input (b) Reference

(c) Ours

Fig. 17. Example highlighting the generalization capacities of our network
in an unknown simulation setup.

Mengyu Chu and Nils Thuerey. 2017. Data-driven synthesis of smoke flows with
CNN-based feature descriptors. ACM Trans. on Graphics (TOG) 36, 4, Article 69
(2017), 14 pages.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A Efros, and Adrien Bousseau.
2018. 3D sketching using multi-view deep volumetric prediction. Proc. ACM on
Computer Graphics and Interactive Techniques 1, 1, Article 21 (2018), 22 pages.

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.
2016. Narrow band FLIP for liquid simulations. Computer Graphics Forum 35, 2
(2016), 225–232.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis
using convolutional neural networks. In Proc. International Conference on Neural
Information Processing Systems. 262–270.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. 2019. Deep fluids: A generative network for parameterized
fluid simulations. Computer Graphics Forum 38, 2 (2019), 59–70.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for
liquid surfaces. ACM Trans. on Graphics (TOG) 32, 2, Article 15 (2013), 13 pages.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven fluid simulations using regression forests. ACM Trans. on Graphics
(TOG) 34, 6, Article 199 (2015), 9 pages.

Xingyu Liu, Charles R Qi, and Leonidas J Guibas. 2019. Flownet3d: Learning scene flow
in 3D point clouds. In Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 529–537.

Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, and Derek
Nowrouzezahrai. 2015. Surface turbulence for particle-based liquid simulations.
ACM Trans. on Graphics (TOG) 34, 6, Article 202 (2015), 10 pages.

Lukas Prantl, Boris Bonev, and Nils Thuerey. 2018. Generating liquid simulations
with deformation-aware neural networks. In International Conference on Learning
Representations.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3D classification and segmentation. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition. 77–85.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In Proc. International
Conference on Neural Information Processing Systems. 5105–5114.

Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid smoothed particle hy-
drodynamics. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA). 33–42.

Bruno Roy, Eric Paquette, and Pierre Poulin. 2020. Particle upsampling as a flexible
post-processing approach to increase details in animations of splashing liquids.
Computers & Graphics 88 (2020), 57–69.

Bruno Roy and Pierre Poulin. 2018. A hybrid Eulerian-DFSPH scheme for efficient
surface band liquid simulation. Computers & Graphics 77 (2018), 194–204.

Takahiro Sato, Christopher Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando.
2018. Extended narrow band FLIP for liquid simulations. Computer Graphics Forum
37, 2 (2018), 169–177.

Barbara Solenthaler and Markus Gross. 2011. Two-scale particle simulation. ACM
Trans. on Graphics (TOG) 30, 4, Article 81 (2011), 8 pages.

Nils Thuerey. 2017. Interpolations of smoke and liquid simulations. ACM Trans. on
Graphics (TOG) 36, 1, Article 3 (2017), 16 pages.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.
Accelerating Eulerian fluid simulation with convolutional networks. In International
Conference on Machine Learning. PMLR, 3424–3433.

Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. 2017.
Self-supervised learning of motion capture. In Proc. International Conference on
Neural Information Processing Systems. 5242–5252.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2018. Liquid splash modeling with neural
networks. Computer Graphics Forum 37, 8 (2018), 171–182.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. 2019. La-
grangian fluid simulation with continuous convolutions. In International Conference
on Learning Representations.

Gokul Varadhan, Shankar Krishnan, TVN Sriram, and Dinesh Manocha. 2004. Topology
preserving surface extraction using adaptive subdivision. In Proc. Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing (SGP). 235–244.

Tuanfeng Y Wang, Hao Su, Qixing Huang, Jingwei Huang, Leonidas J Guibas, and
Niloy J Mitra. 2016. Unsupervised texture transfer from images to model collections.
ACM Trans. on Graphics (TOG) 35, 6, Article 177 (2016), 13 pages.

Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Prisacariu, and Min Chen. 2020.
FlowNet3D++: Geometric losses for deep scene flow estimation. In Proc. IEEE/CVF
Winter Conference on Applications of Computer Vision. 91–98.

MaximilianWerhahn, You Xie, Mengyu Chu, and Nils Thuerey. 2019. A multi-pass GAN
for fluid flow super-resolution. Proc. ACM on Computer Graphics and Interactive
Techniques 2, 2, Article 10 (2019), 21 pages.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. 2019. Latent space physics: Towards
learning the temporal evolution of fluid flow. Computer Graphics Forum 38, 2 (2019),
71–82.

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite continuous
adaptivity for incompressible SPH. ACM Trans. on Graphics (TOG) 36, 4, Article 102
(2017), 10 pages.

ReneWinchenbach and Andreas Kolb. 2021. Optimized refinement for spatially adaptive
SPH. ACM Trans. on Graphics (TOG) 40, 1, Article 8 (2021), 15 pages.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that
split and merge. ACM Trans. on Graphics (TOG) 28, 3, Article 76 (2009), 10 pages.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. on Graphics
(TOG) 37, 4, Article 95 (2018), 15 pages.

Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven projection method in
fluid simulation. Computer Animation and Virtual Worlds 27, 3-4 (2016), 415–424.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. on
Graphics (TOG) 24, 3 (2005), 965–972.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids • Submission to SCA’21: # 31:15

A NETWORK ARCHITECTURE LAYER SPECIFICATIONS
We provide more details on the specifications of the layers compos-
ing our FFNet network. The neighborhood radius 𝑅 is expressed
as a multiplication factor of the input particle separation 𝑝𝑠 . On
the other hand, the sample rate is expressed as a proportion of the
sample points kept from one layer to another. These proportions
were obtained during several experiments aiming for the best visual-
performance tradeoff at evaluation. The 𝑁 × 3 displacement vectors
are the result of the last linear regression layer. Lastly, we expose
the number of nodes as width for each layer.

Layer 𝑹
Sample Widthrate

Down. Conv. 2 · 𝑝𝑠 0.5× {32,32,64}
Down. Conv. + Agr. 4 · 𝑝𝑠 0.25× {64+64,64+64,128+128}
Down. Conv. 8 · 𝑝𝑠 0.125× {256,256,512}
Embedding 8 · 𝑝𝑠 – {256,256,512}
Up. Conv. 8 · 𝑝𝑠 2× {128,128,256}
Up. Conv. 4 · 𝑝𝑠 4× {128,128,256}
Up. Conv. 2 · 𝑝𝑠 2× {128,128,128}
Linear – – 3

Table 4. Specifications of the MLP layers used in our network architecture.

B EVALUATION TIMES BREAKDOWN
The evaluation steps were performed on an NVIDIA RTX® A6000
with 48 GB of GDDR6 memory. For each example in Table 2, we
present a breakdown of the computation times (in seconds) under
FFNet eval. as shown in Table 5.

Example Ref.
FFNet eval.

Part. Network UpFlOF Speed-upUpsampl. Predict. Advect.

Fig. 1 6.9 0.012 0.043 0.016 16×
Fig. 5 5.2 0.010 0.038 0.013 15×
Fig. 4 4.9 0.009 0.034 0.012 13×
Fig. 12 4.8 0.009 0.036 0.013 17×
Fig. 13 11.1 0.020 0.067 0.025 19×
Fig. 17 10.3 0.017 0.059 0.023 17×

Table 5. Breakdown of the evaluation times to generate our results using
the prediction displacements of our network FFNet. Note that we include
the upsampling and advection steps in the evaluation times.

The FFNet eval. step includes the particle upsampling, the dis-
placement predictions by our network, and the advection using the
UpFlOF advection scheme. Each step has been implemented using
CUDA capabilities to offer interactive computation times. Both up-
sampling and advection steps are really fast to compute. Predicting
displacements takes most of the FFNet evaluation time since this
step requires reading the pre-trained model. The reference column
shows the computation times per iteration of the high-resolution
ground truth (composed of 5M to 20M particles). Our approach
provides speed-ups between 13× and 19× faster than the references.

C MULTI-RESOLUTION DATASETS
Each simulation sample used to generate our datasets is composed
of a pair of liquids (each pair using the same initial conditions): a
coarse low resolution and a detailed high resolution.

(a) Small subset

(b) Multi-resolution simulation pair

Fig. 18. (a) A small subset of simulation pairs from our multi-resolution
Colliding dataset used to train the proposed FFNet model. (b) One expanded
pair to better display similarities and differences.

In Fig. 18, we present a small subset of our datasets (a). A sample
pair is presented in a close-up view (b) to better highlight the subtle
differences between in the input resolutions.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

Submission to SCA’21: # 31:16 • Roy, B. et al.

D NOTATION
We provide here a table to clarify the notation used in this paper.
Generally speaking, bold uppercases are used for matrices, bold
lowercases for vectors, and italics for single values. A dotted field is
actually for one particle of that field.

Symbol Description

𝚽 Signed Distance Function
𝒖 Deformation field (Thuerey’s)
𝒖𝜔 Predicted velocity field
¤𝒖 Velocity of a particle

𝒖up Deformation field for up-resing
𝐸𝑑 SDF energy term
𝛽𝑆 Smoothness coefficient

𝐸smooth Smoothness regularizer
𝛽𝑇 Tikhonov coefficient

𝐸Tikhonov Tikhonov regularizer
𝑨UpOF Discretized energy term
𝑑𝒙𝑖→𝒙𝑘 4D Euclidean proportional coefficient

𝒙𝑘 Closest key surface point
𝒙𝑖 Surface point
𝑃 Pair of multi-resolution simulations
𝚯 Matrix of initial conditions
𝑿𝑙 Low-resolution particle set
𝑿ℎ High-resolution particle set
𝑿 ′ Upsampled particle set
𝑓 Local feature generated
𝑓 ∗ Weighted local feature
𝑛 𝑗 Neighborhood 𝑗

𝑝𝑖 Particle 𝑖
𝒙̄ Weighted average of the coordinates
𝑤 Weight
𝑘 Kernel function
Lup Loss function
𝝎 Predicted displacement
𝝎∗ Ground truth displacement
¤𝝎 Displacement of a particle

𝜆𝑛 𝑗
Adaptive weight

𝑑𝑏 depth of narrow band
𝑑MAC Extrapolation distance
𝛼FlOF Interpolation weight

Table 6. Notation and associated meaning for our terms.

ACM Trans. Graph., Vol. 1, No. 1, Article Submission to SCA’21: # 31. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Inter-Resolution Liquid Interpolation
	4.1 Up-Resing Optical Solve
	4.2 Dataset and Data Augmentation

	5 Scene Flow Learning for Lagrangian Deformation on Particles
	5.1 Network Architecture
	5.2 Deformation-Aware Loss Function

	6 Deformation Inference and Refinement
	6.1 Applying the Displacement on Particles
	6.2 Upsampling and Reducing Surface Noise

	7 Results
	7.1 Training and Inference
	7.2 Evaluation and Discussion

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Network Architecture Layer Specifications
	B Evaluation Times Breakdown
	C Multi-resolution Datasets
	D Notation

