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Figure 1: Our 3D facial morphable model workflow. In an offline stage, we extract PCA eigenvectors and select the best ones. We
also select the best subset of anthropometric measurements. The relationship between the eigenvectors and measurements is
encoded in a mapping matrix. All of these are used in the online stage, where the mapper collects user-prescribed anthropometric
measurement values, and applies the mapping matrices to reconstruct the parts. The last step provides the edited face through a
smooth blending of the parts.

ABSTRACT

We propose an approach to construct realistic 3D facial morphable
models (3DMM) that allows an intuitive facial attribute editing
workflow. Current face modeling methods using 3DMM suffer from
a lack of local control. We thus create a 3DMM by combining
local part-based 3DMM for the eyes, nose, mouth, ears, and facial
mask regions. Our local PCA-based approach uses a novel method
to select the best eigenvectors from the local 3DMM to ensure
that the combined 3DMM is expressive, while allowing accurate
reconstruction. The editing controls we provide to the user are
intuitive as they are extracted from anthropometric measurements
found in the literature. Out of a large set of possible anthropometric
measurements, we filter those that have meaningful generative power
given the face data set. We bind the measurements to the part-based
3DMM through mapping matrices derived from our data set of
facial scans. Our part-based 3DMM is compact, yet accurate, and
compared to other 3DMM methods, it provides a new trade-off
between local and global control. We tested our approach on a data
set of 135 scans used to derive the 3DMM, plus 19 scans that served
for validation. The results show that our part-based 3DMM approach
has excellent generative properties and allows the user intuitive local
control.
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1 INTRODUCTION

The authoring of realistic 3D faces with intuitive controls is used in a
broad range of computer graphics applications, such as video games,
person identification, facial plastic surgery, and virtual reality. This
process is particularly time-consuming, given the intricate details
found in the eyes, nose, mouth, and ears. Consequently, it would
be convenient to use high-level controls, such as anthropometric
measurements, to edit human-like character heads.

Many methods use 3D morphable face models (3DMM) for ani-
mation (blend shapes), face capture, and face editing. Even though
face animation concerns are important, our work focuses on the
editing of facial meshes. 3DMMs are typically constructed by com-
puting a Principal Component Analysis (PCA) on a data set of scans
sharing the same mesh topology. New 3D faces are generated by
changing the relative weights of the individual eigenvectors. These
methods are popular due to the simplicity and efficiency of the ap-
proach, but suffer from two fundamental limitations: they impose
global control on the new generated meshes, making it impossible to
edit a localized region of the face, and the control mechanism is very
unintuitive. Some methods compute localized 3DMMs but those
focus on facial animation instead of face modeling. We compared
our approach to previous works relying on facial animation and saw
that their automatic localized basis construction works well for ani-
mation purposes (considering a data set composed of animations for
a single person), but performs worse than our approach for modeling
purposes (considering a data set made of neutral faces from different
persons).

We propose an approach to construct realistic 3DMMs. We in-
crease the controllability of our faces by segmenting them into
independent sub-regions and selecting the most dominant eigen-
vectors per part. Furthermore, we rely on facial anthropometric



measurements to derive useful controls to use in our 3DMM for
editing faces. We propose a measurement selection technique to
bind the essential measurements to the 3DMM eigenvectors. Our
approach allows the user to edit faces by adjusting the facial parts
using sliders controlling the values of anthropometric measurements.
The measurements are mapped to eigenvector weights, allowing us
to compute the individual parts matching the values selected by the
user. Finally, the reconstructed parts are seamlessly blended together
to generate the desired 3D face.

2 RELATED WORK

3D morphable models are powerful statistical models widely used in
many applications in Computer Vision and Computer Graphics. One
of the most well-known previous works in this regard is that by Blanz
and Vetter [3]. Their pioneer work proposes a model using PCA
from face scans. Although they propose a multi-segment model and
decompose a face into four parts to augment expressiveness, the PCA
decomposition is computed globally on the whole face. Other global
PCA methods have been proposed [1, 4, 5, 8, 17, 18]. A downside of
global PCA-based methods is that they exhibit global support: when
we adjust the eye, the nose may also undergo undesirable changes.
Another downside is a lack of intuitive user control for face editing.
While the eigenvectors are good at extracting the dominant modes
of variation of the data, they provide weak intuitive interpretation.

To address the former problem, local models have been proposed.
They segment the face into independent sub-regions and select the
most dominant eigenvectors per part. Tena et al. [26] propose a
method to create localized clustered PCA models for animation.
They select the location of the basis using spectral clustering on the
geodesic distance and a correlation of vertex displacement consider-
ing variations in the expressions. Their method requires a manual
step to adjust the boundaries of the segments, making it somewhat
similar to ours, where the parts are user-specified. Chi et al. [9]
adaptively segment the face model into soft regions based on user-
interaction and coherency coefficients. Afterwards, they estimate
the blending weights which satisfy the user constraints, as well as
the spatio-temporal properties of the face set. Here too, the required
user intervention renders the segmentation somewhat similar to our
user-provided segments. SPLOCS [19] propose the theory of sparse
matrix decompositions to produce localized deformation from an
animated mesh sequence. They use vertex displacements in the
Euclidean coordinates to select the basis in a greedy fashion. We
noticed that when considering variation in identity instead of vari-
ation in expression, the greedy selection leads to bases which are
far less local than those obtained from both our method and Tena
et al.’s [26]. These papers address facial animation instead of face
modeling and therefore assume large, yet localized deformations
caused by facial expressions, which are different from our context
where each face is globally significantly different from the others.

Like Tena et al. [26], Cao et al. [7] segment the face with the
same spectral clustering, followed by manual adjustment. While
their method focuses mostly on expression, they also provide some
identity modeling, as they rely on the FaceWarehouse [8] global
model, which they decompose using the segments defined by spectral
clustering. In their case, the goal is to adapt a 3DMM to a face from
a video feed, in real time. While their method works remarkably
well for the real-time “virtual makeup” application, it lags behind
ours in terms of providing a very detailed facial model, and it does
not support a face editing workflow.

Other papers supplement decomposition approaches with the
extraction of fine details, allowing to reconstruct a faithful facial
model [6, 13, 22]. The major problem with these approaches is
that they work for a specific person and do not provide editing
capabilities. The Phace [14] method allows the user to edit fat or
muscle maps in texture spaces on the face. While this provides
a physically-based adjustment, the control is implicit. The user

modifies the texture and then the system simulates muscles and fat
to get the result.

Wu et al. [27] propose an anatomically-constrained local defor-
mation model to improve the fidelity of monocular facial animation.
Their model uses 1000 overlapping parts, and then decouples the
rigid pose of the part from its non-rigid deformation. While this
approach works particularly well for reconstruction, the parts are too
small for editing semantic face parts such as the nose or the eyes.

Contrary to the methods described thus far, the Allen et al. [1]
and BodyTalk [25] methods greatly facilitate editing by mapping
intuitive features to modifications of global 3DMM eigenvector
weights. In particular, BodyTalk [25] relates transformations of the
meshes to keywords such as “fit” and “sturdy”. While the mapping
between the words and the deformations is not perfect, it still makes
it reasonably intuitive to edit the mesh of the body. One problem
with this method is that it provides words for bodies, not faces. A
second major problem is the inability to make local adjustments,
and adjustments that increase the length of the legs will result in
changes to other regions such as the torso and arms. In contrast, for
our approach, we aim at providing local control in the editing.

A downside of global PCA-based methods is that they exhibit
global support: adjusting parameters to change one part has un-
wanted effects on other unrelated parts. To address this problem, we
segment the face into independent sub-regions and provide a process
to select the best set of eigenvectors, given a target number of eigen-
vectors. Methods that segment the face in sub-regions target facial
animation instead of modeling. We will demonstrate that our ap-
proach is better-suited to the task of face editing than these methods.
Another problem with most of the previous related works is that they
do not allow facial model editing through the adjustment of objective
measurements. In contrast, our method relies on anthropometric
measurements used as controls for editing. Furthermore, we propose
a process to select the right set of anthropometric measurements for
each facial part.

3 OVERVIEW

In this paper, we introduce a pipeline for constructing a 3DMM.
We separate the face into regions and compute independent PCA
decomposition on each region. We then combine the per-region
3DMMs, paying particular attention to the selection of the most
dominant eigenvectors across the eigenvectors of the different re-
gions. While the eigenvectors are good at extracting the dominant
data variation modes, they provide weak intuitive interpretation.
We thus use anthropometric measurements to provide human un-
derstandable adjustments of the face. The reconstruction from the
measurements is done through a mapping from the measurements to
the weights that need to be applied to each eigenvector. From the set
of measurements we extracted from our survey of the literature, we
selected a subset which resulted in the least reconstruction error. An
overview of our approach can be found in Fig. 1.

The remainder of this paper is organized as follows: Sec. 4 de-
scribes how 3DMMs are constructed, including face decomposition
and selection of the most dominant eigenvectors. Afterwards, we
discuss how to reconstruct a face by smooth blending of different
facial parts (Sec. 5). In Sec. 6, the selection of the anthropometric
measurements, and the mapping between these measurements and
the PCA eigenvectors are discussed. We demonstrate the results in
Sec. 7, and discuss them in Sec. 8.

4 3D MORPHABLE FACE MODEL

We employ PCA on a data set of faces to construct our 3DMMs. All
faces are assumed to share a common mesh topology, with vertices
in semantic correspondence. We propose to segment the face into
different parts in order to focus the decomposition on a part-by-part
basis instead of computing the PCA decomposition on the whole
face. We compute the decomposition separately for the male and



female subsets. As shown in Fig. 1, we decompose the face into
five parts: eyes, nose, mouth, ears, and what we refer to as the
facial mask (which groups the remaining areas such as cheeks, jaws,
forehead, and chin). We further discuss this design choice in Sec. 8.2.
This face decomposition allows us to have eigenvectors for each part.
The geometry of the facial parts is represented with a shape-vector
Sd =

[
V1 . . .Vnv

]
∈ R3nv , where nv is the number of vertices of dth

facial part, d ∈
{

1, . . . ,5
}

, and Vi =
[
xiyizi

]
∈ R3 defines the x, y,

and z coordinates of the ith vertex. After applying PCA, each facial
part d is reconstructed as:

S′d = Sd +
ne

∑
j=1

Pjb j, (1)

where Sd is the mean shape of dth facial part, ne is its number of
eigenvectors, Pj is an eigenvector of size 3nv, b is a ne× 1 vector
containing the weights of the corresponding eigenvectors, and S′d is
the reconstruction, which will be an approximation when not using
all eigenvectors.

Our approach selects the smallest set of eigenvectors that still
reconstructs the shape accurately. We accomplish this by incremen-
tally adding the eigenvectors, in the order of their significance, to
the reconstruction until a certain accuracy is met. Even though we
rely on the eigenvalues to sort the eigenvectors for each part (largest
to smallest eigenvalue), we provide the user with a measurable error
(in mm), which is more precise than relying solely on eigenvalues
across different parts. We determine the best set of eigenvectors to
achieve a balance between the quality of the per-part reconstruction
and the whole face reconstruction. To evaluate the accuracy of our
selection, we construct the facial parts (Eq. 1) and blend them to-
gether (Sec. 5) to generate the whole face. Afterwards, we assess
the accuracy of the reconstruction by calculating the average of the
geometric error DGE between the ground truth and the blended face.
We first do a rigid alignment step (rotation and translation) between
the facial parts of the ground truth and the blended result. We then
record the average per-vertex Euclidean distance over all vertices
and per part:

DGEall(S
′) =

1
nall

5

∑
d=1

∑
V ′j∈S′d
Vj∈Sd

∣∣∣∣∣∣V j−
(

RdV
′
j +Td

)∣∣∣∣∣∣ (2)

DGEpart(S
′) =

1
5

5

∑
d=1

1
nd

∑
V ′j∈S′d
Vj∈Sd

∣∣∣∣∣∣V j−
(

RdV
′
j +Td

)∣∣∣∣∣∣ (3)

DGE(S′) =
DGEall(S

′)+DGEpart(S
′)

2
, (4)

where nall is the number of vertices of the face mesh, nd is the
number of vertices for part d, V j is on the ground truth and V ′j is the
corresponding point on the blended face. We compute averages over
all vertices and per part to ensure that parts with more vertices do not
end up using most of the eigenvector budget at the expense of parts
with fewer vertices. We do so for the entire data set and for a set of
19 validation faces that were not part of the training data set. We
compute the median data set error as well as the median validation
error, and we average the two in a global error. The process of
reconstructing the parts of validation faces is done by projecting
each part onto the corresponding eigenvector basis (followed by the
blending process).

At each step of our incremental eigenvector selection, we de-
cide which of the five parts will get a new eigenvector added to its
set. We compare the geometric errors resulting from each of the
five candidate eigenvectors, and we select a candidate eigenvector

Figure 2: Regions highlighted in green and blue contain the transition
and fixed zones, respectively.

which has a great impact on decreasing the error. When eigenvectors
from multiple parts result in similar decreases in error, instead of
systematically picking the eigenvector based on lowest error, we se-
lect by sampling from a discrete probability density function (PDF)
created from the respective decreases in error of the five candidate
eigenvectors. This PDF selection process creates a more even dis-
tribution of eigenvectors across the parts and maintains a low error.
As we iterate, the reconstruction error decreases. For the female and
male data set faces, the average reconstruction errors are 2.00 and
2.13 mm when considering zero eigenvectors. The errors decrease
to 0.75 and 0.74 mm after 80 iterations, and when considering all
eigenvectors the errors are 0 mm. We chose an error threshold of
1 mm which balances out the cost associated with considering too
many eigenvectors and the accuracy of the reconstruction. Table 1
shows the resulting eigenvector distribution after achieving our 1
mm reconstruction accuracy. We experimented with reconstructing
the female and male validation faces based on using our subset of
eigenvectors. The median reconstruction errors are 1.33 and 1.48
mm, respectively.

Table 1: Number of eigenvectors selected for each part

Facial part # Eigenvectors for # Eigenvectors for
female male

Facial mask 7 9
Eye 10 5
Nose 6 6
Mouth 9 10
Ear 14 16

5 FACE CONSTRUCTION THROUGH PARTS BLENDING

This step focuses on the problem of constructing a realistic new face
by blending the five segmented parts together. As opposed to meth-
ods such as those of Tena et al. [26] and Cao et al. [7], which handle
the transition between the parts by relying on the adjustment of a
single strip of vertices, we spread the transition across three strips
of vertices. In contrast to other methods that adjust the transition by
vertex averaging [7] or least-squares fitting [26], we use Laplacian
blending [24] of the parts and the transition, resulting in a smooth,
yet faithful global surface. The vertex positions are solved by an
energy minimization which reduces the surface curvature discontinu-
ities at the junction between the parts while maintaining the desired
surface curvature. To this end, we define a transition zone made
of quadrilateral strips around the parts. In our experiments, a band
of two quadrilaterals (three rings of green vertices in Fig. 2) pro-
vides good results. We interpolate the Laplacian L (the cotangent
weights) of the five facial parts weighted by βd , which has values
of βd = 1 inside the part, βd ∈ {0.75,0.5,0.25} going outward of
the part in the transition zone, and βd = 0 elsewhere. We normalize
these weights such that they sum to one for each vertex. These soft
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Figure 3: Graph showing the evolution of the Frobenius norm of the
rotation between two consecutive iterations (averaged across the
five rotations Rd). For each of the meshes 1 to 4, we begin with the
average parts and change the weight of one eigenvector per part.
Each eigenvector is selected randomly (from the first ten eigenvectors
if there are more than ten eigenvectors for the part). The new value
for the weight is also randomly selected within the range of −2 and
+2 times the standard deviation for this eigenvector.

(a) (b) (c)

Figure 4: (a) and (b) are the generated parts. As in Fig. 3, we modified
each average part by changing the weight of one eigenvector selected
randomly. The new value for the weight is also randomly selected. (c)
shows the result of blending the facial parts.

constraints allow some leeway in the transition zone. The boundary
conditions of our system are set to the ring of blue vertices in Fig. 2,
and we solve for the remaining vertices. To this end, we minimize
the following energy function:

E(V ′) = ∑
i∈inner

∣∣∣∣∣
∣∣∣∣∣TiL (V ′i )−

∑
5
d=1 βi,dRdL (Vi,d)

∑
5
b=1 βi,b

∣∣∣∣∣
∣∣∣∣∣
2

, (5)

where “inner” is the set of vertices of the five parts, excluding the
vertices of the boundary conditions; Ti is an appropriate transfor-
mation for vertex V ′i based on the eventual new configuration of
vertices Vi and Rd is the rotation of part d.

We solve Eq. 5 in a similar fashion to ARAP [23] by alternating
solving for the vertex position and rotation matrices until the change
is small. Fig. 3 shows that the rotation quickly converges as the
Frobenius norm of consecutive rotations is large only for the first
few iterations. Given our experiments, we decided to stop iterating
when the Frobenius norm fell below 0.01 or after 6 iterations. Fig. 4
shows an example of a blended face. In this case, the Frobenius
norm was below 0.01 after five iterations. Fig. 5, shows the evolution
of the geometric error DGE between the ground truth parts and their
blended counterparts for the example of Fig. 4. As can be seen, the
error quickly reaches a plateau as the rotation stabilizes.

6 SYNTHESIZING FACES FROM ANTHROPOMETRIC MEA-
SUREMENTS

PCA eigenvectors characterize the data variation space, but do not
provide a clear intuitive interpretation. In this paper, we focus mainly
on constructing linear regression models from data using a set of
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Figure 5: Graph comparing the average geometric error (in mm)
between the ground truth parts and their blended counterparts, for
different numbers of iterations.

Table 2: Anatomical terms and corresponding abbreviations of our
selected and discarded measurements.

Selected measurements
Anatomical term Abbrev Ref
Nasal Width÷Root Width NWRW [10]
Nasal Width÷Length of Bridge NWLB [10]
Nasal Width÷Width of Nostril NWWN [10]
Nasal Root Width÷Tip Protrusion NRTP [10]
Length of Nasal Bridge÷Tip Protrusion NBTP [10]
Nasal Width÷Tip Protrusion NWTP [10]
Nasal Root Width÷Length of Bridge NRLB [10]
Nasal Root Width÷Width of Nostril NRWN [10]
Length of Nasal Bridge÷Width of Nostril NBWN [10]
Width of Nose÷Tip Protrusion WNTP [10]
Philtrum Width PW [11]
Face Height FH [12]
Orbits Intercanthal Width OIW [12]
Orbits Fissure Length OFL [12]
Orbits Biocular Width OBW [12]
Nose Height NH [12]
Face Width FW [15]
Bitragion Width BW [15]
Ear Height EH [15]
Bigonial Breadth B [16]
Bizygomatic Breadth BB [16]
Facial Index F [21]
Nasal Index N [21]
Mouth-Face Width Index MFW [21]
Biocular Width-Total Face Height Index BWFH [21]
Lip Length LL [29]
Maximum Frontal Breadth Max FB [29]
Interpupillary Distance ID [29]
Nose Protrusion NP [29]
Nose Length NL [29]
Nose Breadth NB [29]

Discarded measurements
Anatomical term Abbrev Ref
Eye Fissure Index EF [21]
Minimum Frontal Breadth Min FB [29]

intuitive facial anthropometric measurements. Facial anthropomet-
ric measurements provide a quantitative description by means of
measurements taken between specific surface landmarks defined
with respect to anatomical features. We use the 33 parameters listed
in Table 2. Each measurement corresponds to either a Euclidean
distance or a ratio of Euclidean distances between surface positions,
as specified in each paper cited in Table 2. In this section, we pro-
pose a measurement selection technique which assesses the accuracy



of each measurement, resulting in the most relevant ones for each
facial part.

6.1 Mapping Method
We evaluate the measurements on the facial parts of the data set,
yielding fd,i =

[
fi1 . . . finm

]
for the dth facial part of scan Si consid-

ering nm measures. The measures for all of the scans are combined
into an nm×ns matrix, Fd =

[
f T
d,1 . . . f T

d,ns

]
, where ns is the number

of scans. We learn how to adjust the weights of the PCA eigenvectors
to reconstruct faces having specific characteristics corresponding
to the measures. We adopt the general method of Allen et al. [1].
However, while that method learns a global mapping that adjusts the
whole body, we will learn per-part local mappings. Furthermore, in
Sec. 6.2 we will derive a process to select the best measures out of
the set of all measures

[
fi1 . . . finm

]
, and will proceed independently

for each of the five parts.
We relate measures by learning a linear mapping to the PCA

weights. With the nm measures for the dth facial part, the mapping
will be represented as a (ne)× (nm +1) matrix, Md :

Md
[

fi1 . . . finm
1
]T

= b, (6)

where b is the corresponding eigenvector weight vector. Collecting
the measurements for the whole data set, the mapping matrix is
solved as:

Md = BdF+
d , (7)

where Bd is a (ne)× (ns +1) matrix containing the corresponding
eigenvector weights of the related facial part and F+

d is the pseudoin-
verse of Fd . As in Eq. 6, a row of 1s is appended to the measurement
matrix Fd for y-intercepts in the regression.

To construct a new facial part based on specific measurements,
we use b in Eq. 1, as follows:

S′d = Sd +Pb, (8)

where Sd is the mean shape of the dth facial part and P is the matrix
containing the eigenvectors. Moreover, we can define delta-feature
vectors of the form:

∆ fd =
[
∆ f1 . . .∆ fnm 0

]T
, (9)

where each ∆ f contains the user-prescribed differences in measure-
ment values. Afterwards, by adding ∆b = Md∆ fd to the related
eigenvector weights, it is possible to adjust the measure such as to
make a face slimmer or fatter.

6.2 Measurement Selection
We propose a novel technique for automatically detecting the most
effective and relevant anthropometric measurements. Some might
be redundant with respect to others, some might not make sense for
a specific part (e.g., the “Ear Height” might not be relevant for the
mouth), and some might even lead to mapping matrices that generate
worst results. During our investigations, we discovered that con-
sidering more anthropometric measurements does not necessarily
lead to a lower reconstruction average error. Fig. 6 illustrates that a
higher error occurs considering all the measurements in comparison
with our selected combination. In order to aggregate the error for the
given part, we reconstruct the face, relying only on the anthropomet-
ric measurements of the selected part, and then calculate the average
error, as in Sec. 4. Fig. 7 shows two odd-looking examples from
using all the measurements of the nose (a) and facial mask (b). We
thus evaluate the set of relevant measurements, separately for each
part. We begin with an empty set of selected measurements, and
we iteratively test which measurement we should add to the set by
evaluating the quality of the reconstructed faces when creating the
mapping matrix, considering the currently selected measurements
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Figure 6: Using all measurements leads to higher reconstruction
errors (mm) as compared to our set of selected measurements on the
data set and validation faces

(a) (b)

Figure 7: Using all the semantic measurements of the nose (a) and
facial mask (b) often leads to odd-looking parts when editing through
the adjustment of measurement values

together with the candidate measurement. We reconstruct a face
using the mapping matrix (Eq. 6, 8) based only on its measurement
values. The reconstructed face is considered as a prediction, and
thus we evaluate the prediction quality in a fashion very similar to
that used for eigenvector selection, by reconstructing all of the faces
found in the data set of facial scans, as well as the 19 validation
faces.

Each candidate measurement is used together with the current set
of selected measurements, and we compute the candidate mapping
matrix from this set of measurements. We use the mapping matrix
with the data set and validation faces, and reconstruct all of the
instances of the part under consideration (e.g., all of the mouths). We
then evaluate a geometric error, DGE , with the per-vertex distance
between each predicted instance and its corresponding ground truth
instance. The distance is calculated after a rigid alignment of the
predicted instance to the ground truth instance is performed. We can
thus ensure that we are evaluating the fidelity of the shape, and not
its pose. If one or a few faces result in a large error, this could lead
to the rejection of a measurement, which might still be beneficial
for the prediction of most faces. To avoid this, we also measure
the percentage DNI of faces for which an error improvement is
seen. We count the number of faces whose geometric errors have
been decreased by considering the candidate measurement. We then
normalize DGE and DNI to the [0,1] range and combine them into a
single reconstruction quality measure:

quality = normalize(DNI)+1−normalize(DGE). (10)

Considering the combined geometric error and percentage of im-
provement of all candidate measurements, we pick the one which
will be added to the set of selected measurements. We stop adding
measurements when we observe an increase of DGE and a value DNI
below 50%. We repeat this process for each part (eyes, nose, mouth,
etc.)

The selected anthropometric measurements are enumerated in Ta-
ble 3. The description of each measurement, as well as the reference
to the literature from which we obtained the measurement, are shown
in Table 2, where we also list the measurements we rejected (mea-
surements which were never selected for any of the segments).



Table 3: Combinations of anthropometric measurements

For female
Part Selected measures
Facial mask B, BB, BW, BWFH, FH, MaxFB, NBWN, NH,

NP, PW, WNTP
Eye B, BB, BW, BWFH, EH, F, FW, ID, LL, NB,

NBTP, NH, NRLB, NRTP, NWRW, NWWN,
OBW, OFL, OIW, PW

Nose EH, LL, N, NB, NBTP, NBWN, NH, NL, NP,
NWTP, NWWN, PW

Mouth BWFH, F, LL, MFW, NP, NRWN, NWTP, PW
Ear EH, FH, FW, MaxFB, NB, NBTP, NBWN,

NP, NRLB, NRTP, NWLB, NWTP, OBW, PW,
WNTP

For male
Facial mask BW, BWFH, F, FH, FW, MaxFB, NRWN,

OBW, OFL, PW
Eye B, BB, BW, F, FW, ID, N, NBTP, NBWN,

OBW, OFL, PW
Nose BB, FW, ID, LL, MaxFB, NB, NBWN, NH, NP,

NRLB, NRTP, NWLB, NWWN, OBW, OIW
Mouth B, BW, BWFH, F, LL, NBTP, NH, PW
Ear B, BB, BWFH, EH, FH, MaxFB, N, NRTP,

NWRW, OBW, OIW

6.3 Correlation Between Measurements
Defining the correlation between the measurements is important
for the adjustment of faces. Accordingly, if the user adjusts one
measurement, the system automatically calculates the adjustment
of the other measurements as well. This greatly helps to create
realistic faces by maintaining the correlation observed in the data
set. Similarly to Body Talk [25], we use Pearson’s correlation coeffi-
cient on F to evaluate the relationship between the anthropometric
measurements. Considering a facial part d, the Pearson’s correlation
coefficient Cor jk for measurements j and k is expressed as:

Cor jk =
∑

ns
i=1( fi j− f j)( fik− fk)√

∑
ns
i=1( fi j− f j)2

√
∑

ns
i=1( fik− fk)2

, (11)

where fi j, fik ∈ fd,i are measurements of scan Si, f j and fk are
the mean values of measurements j and k respectively, and ns is
the number of scans. The coefficient is a value between −1 and
1 that represents the correlation. When adjusting measurement k
by ∆ fk, we get the change in other measures as ∆ f j = Cor jk∆ fk.
Accordingly, we can evaluate the influence of one measurement on
the others, as well as the conditioning on one or more measurements,
and create the most likely ratings of the other measurements.

7 RESULTS

Compared to global 3DMM methods that compute one set of eigen-
vectors for the whole face, our 3DMM computes a set of eigenvec-
tors for each part. This is at the root of one of the advantages of
our approach: its ability to locally adjust faces. We compare our
approach to other methods that rely on local 3DMM. We created
mapping matrices (Eq. 7) for global 3DMMs, SPLOCS [19], clus-
tered PCA [26], as well as our part-based 3DMMs, and tested the
adjustment of measurements with these models. We used 46 eigen-
vectors for global 3DMM, SPLOCS, and our part-based 3DMM.
For clustered PCA, we first tested using 13 clusters, as is reported
in the paper, but found that this leads to a non-symmetrical result
(Fig. 8b). By checking other clusterings, we selected 12 clusters
(Fig. 8a). Because a clustered PCA does not allow for a different

(a) 12 clusters (b) 13 clusters

Figure 8: Automatic part identification of clustered PCA [26]. Note
how the automatic clustering leads to non-symmetrical clusters (left
eye with one cluster vs. right eye with two clusters) for 13 clusters
and required us to manually check which other clustering would be
usable.

number of eigenvectors for each cluster, and to avoid having too
few eigenvectors per part, we used 46 eigenvectors for each cluster
(selecting the 46 with the largest eigenvalues).

To compare our approach and the use of measurements with
other methods, we decided on a way to use our measurements with
SPLOCS and clustered PCA. We further demonstrate that with
SPLOCS and our approach, we can have more local measurement or
global measurement control. For our approach, Table 3 shows that
some measures influence more than one part. For example, the “Lip
Length” is found in the lists for both mouth and nose. When a mea-
surement is shared between different facial parts, our method allows
to decide to have more localized changes by adjusting the measure
for only one part, or to have more coherence across the parts by
adjusting all of the parts involved in the measurement. If comparing
with SPLOCS, we can also balance between local measurements
and global measurements. Each measurement is based on computa-
tions involving specific measurement vertices (such as the corner of
the mouth and the tip of the nose). To enforce locality, when con-
sidering a measurement, we check which SPLOCS “eigenvectors”
infer significant movement at the related measurement vertices. We
compute this by checking if the eigenvector displacement vector at a
measurement vertex is large enough as compared to the maximum
displacement vector of the eigenvector (we check if it is larger than
1% of the maximum displacement of all vertices of the eigenvector).
A SPLOCS eigenvector is considered for a measurement only if it
meets the criterion for one of the measurement vertices of a specific
measurement. To enforce more globality with SPLOCS, we use
the mapping matrices for all of the eigenvectors. Fig. 7 shows an
example of the globality and locality of the influence of adjusting
the “Lip Length”. It compares global PCA eigenvectors, local mea-
surement and global measurement SPLOCS, clustered PCA, and our
local measurement and global measurement approaches. The color
coding shows the per-vertex Euclidean distance. Note that the colors
do not represent errors, but rather, vertex movements. Thus, the goal
is to have warmer colors around the location where the editing is
intended, and colder colors in unrelated regions. Our method allows
having global measurement influenced by adjusting the measure for
both the nose and the mouth parts, as well as more localized changes
by adjusting only the mouth (Fig. 9c-9f). Contrary to our approach,
both global measurement and local measurement SPLOCS resulted
in similar deformations all over the face, while the expected result
was a modification focused around the mouth (Fig. 9b-9d).

We will now focus on local measurement editing. Fig. 10-12
show the adjustment of the same anthropometric measurement using
global 3DMM, local measurement SPLOCS, clustered PCA, and
our local measurement approach. In Fig. 10f-10g, we can see that
even though we wanted to adjust the “Nose Breadth”, the adjust-
ment using the global eigenvectors and local measurement SPLOCS
resulted in significant deformations all over the face, while clus-
tered PCA and our approach could focus the deformation around
the nose, as expected (Fig. 10h-10i). We can observe similar un-
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Figure 9: Comparison of the globality vs. locality of the adjustments
(editing by increasing the “Lip Length”): (a) global PCA eigenvectors,
(b) global measurement SPLOCS, (c) our global measurement ap-
proach, (d) local measurement SPLOCS, (e) clustered PCA, and (f)
our local measurement approach. The colors respectively represent
per-vertex Euclidean distance (blue = 0 mm, red = 8.5 mm). Note
how our local measurement and global measurement approaches
induce significant and local surface deformation to achieve the desired
editing. In comparison, global PCA and SPLOCS induce non-local
deformation, and clustered PCA induces much less deformation.

(a) (b) Global
PCA

(c) Local
SPLOCS

(d) Clustered (e) Ours local

(f) Global PCA (g) Local
SPLOCS

(h) Clustered (i) Ours local

Figure 10: “Nose Breadth” adjustment results: (a) nose of a female
from validation faces adjusted using (b) global PCA eigenvectors, (c)
SPLOCS, (d) clustered PCA, and (e) our approach. The color mapped
renderings (f)-(i) indicate respective per-vertex Euclidean distance
(blue = 0 mm, red = 5 mm).

wanted global deformations of the face in Fig. 11f-11g. Also note
that the automatic segmentation of clustered PCA does not provide
the desired deformation for some cases, such as in Fig. 11h-12h.
We consistently outperform clustered PCA in terms of local defor-
mation where expected. The results shown in Fig. 10-12 highlight
the difficulty of locally controlling the face deformation, and the
power of our approach in locally adjusting the face with respect to
the anthropometric measurements.

In the accompanying video, we show multiple edits on multi-
ple parts, starting from the average face, while Fig. 13 shows edits
starting from four real faces. We can see that our approach allows
capturing the essence of the anthropometric measurements, provid-
ing an easy-to-use workflow.

8 DISCUSSION

In this section, we discuss different aspects of our approach. We
present different comparisons highlighting the impact of the eigen-
vector and measurement selection. We then discuss the face segmen-
tation choice, and end by describing the procedure used to bring all
of our scans to a common face mesh.

(a) (b) Global
PCA

(c) Local
SPLOCS

(d) Clustered (e) Ours local

(f) Global
PCA

(g) Local
SPLOCS

(h) Clustered (i) Ours local

Figure 11: “Lip Length” increase results: (a) mouth of a male from val-
idation faces edited using (b) global PCA eigenvectors, (c) SPLOCS,
(d) clustered PCA, and (e) our approach. The color mapped render-
ings (f)-(i) indicate respective per-vertex Euclidean distance (blue = 0
mm, red = 8 mm).
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(f) Global
PCA
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Figure 12: “Bizygomatic Breadth” (the bizygomatic width of the face)
increase results: (a) a male from the validation faces edited using (b)
global PCA eigenvectors, (c) SPLOCS, (d) clustered PCA, and (e)
our approach. The color mapped renderings (f)-(i) indicate respective
per-vertex Euclidean distance (blue = 0 mm, red = 14 mm).

8.1 Measurements Error

To verify the robustness of our 3DMMs and of our set of selected
measurements, we reconstruct real faces, relying on their anthropo-
metric measurements to compute their eigenvector weights (Eq. 6).
We then get the face with our approach, including the blending
procedure (Sec. 5), and compute its resulting anthropometric mea-
surements. We compute the quality of the reconstruction through
the absolute value of the difference between the ground truth mea-
surement and the measurement from the reconstructed face. Since
measurements correspond either to a Euclidean distance or to a ra-
tio of Euclidean distances, we normalized all the measurements to
the [0%,100%] range. Fig. 14 shows that the average percentage
of error is low when using “our measurements”. This means that
both the selection of eigenvectors and the mapping matrix work
well. Furthermore, it shows that when using “all measurements” to



(a) -“Orbits Biocular Width” of eye (b) +“Nose Protrusion” of nose

(c) -“Philtrum Width” of mouth (d) +“Face Height” of facial mask

Figure 13: We generated random faces (left faces (a)-(d)) and edited
them by increasing (“+”) or decreasing (“-”) the value of some of the
indicated anthropometric measurements
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Figure 14: Using our subset of measurements on the data set and
validation faces leads to lower errors (percentage), as compared to
using “all measurements”

compute the mapping matrix (Eq. 7), we get larger average errors
as compared to ground truth measurements. When calculating the
error in Fig. 14 for “our measurements”, we calculate the average
error over our selected measurements only (Table 3). The error
shown in Fig. 14 for “all measurements” also considers only our
selected measurements (if the error across all of the measurements
is considered, the comparison is even more in favor of using our
selected measurements).

We evaluated how our approach compared to SPLOCS and clus-
tered PCA with respect to achieving measurement values prescribed
by edit operations. We created a set of 1,000 random edits on
135 face meshes. We took the resulting edited face mesh from our
approach, SPLOCS, as well as clustered PCA, and evaluate the dif-
ference between the measurement value prescribed by the editing
and the measurement value calculated from the edited mesh. Overall,
our approach is the one that performed the best, with the resulting
measurement being closest to the prescribed measurement. SPLOCS
was second and clustered PCA presented the greatest differences
(see Fig. 15).

Even though our approach is the one that is closest (on average) to
the prescribed measurements, there is a limitation due to the blending
of the synthesized parts. This blending sometimes affects the mesh
in a way that prevents it from achieving the exact prescribed effect
for the editing. Fig. 16 shows an example where the blending does
not maintain the “Nose Height” of the synthesized nose as it deforms
it through the blending process.
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%

Figure 15: Starting from one face, we adjust one of its measurements
to match the value of that measurement for another face. We then
compute the difference between the prescribed measurement value
and the measurement value calculated from the mesh. We do so for
1,000 such edits. Our approach leads to a smaller error (percentage),
as compared to the clustered PCA, and to slightly better results when
compared to local measurement SPLOCS.

(a) (b) (c)

Figure 16: (a) Average male head. Its “Nose Height” is 45.09 mm.
(b) A synthesized nose with its “Nose Height” edited to 70.11 mm.
(c) Result of blending the nose. While this is an extreme case, it still
reflects the fact that the approach is not always able to achieve the
prescribed measurement (the value decreased to 58.53 mm for this
example).

8.2 Face Decomposition
Our face segmentation was motivated by several facial animation
artists with whom we worked, and who strongly prefer having con-
trol over the face patches in order to make sure they match the
morphology of the face and muscle locations. This type of control
is impossible to achieve with an automatic method, which is typi-
cally agnostic to the underlying anatomical structure. It is important
to note that this manual way of selecting the regions is no more
cumbersome than the current state-of-the-art methods. The state-of-
the-art method of Tena et al. [26] requires a post-processing step to
fix occasional artifacts in the segmentation method. Furthermore,
as illustrated in Fig. 8b, segmentation boundaries can occasionally
occur across important semantic regions such as the eyes, leading to
complications further down the pipeline.

8.3 Data Set
The quality of the input mesh data set is crucial for the reconstruction
of good 3D face models. As do many existing methods, we assume
that the meshes share a common mesh topology. Mapping raw 3D
scans to a common base mesh is typically done using a surface
mapping method [2, 20, 28]. We established this correspondence
with the commercial solution, R3DS WRAP. We plan to release a
subset of our data set for other researchers.

9 CONCLUSION

In this paper, we designed a new local 3DMM used for face editing.
We demonstrated the difficulty of locally editing the face with global
3DMMs; we thus segmented the face into five parts and combined
the 3DMMs for each part into a single 3DMM by selecting the best

https://www.russian3dscanner.com/


eigenvectors through prediction error measurements. We then pro-
posed the use of established anthropometric measurements as a basis
for face editing. We mapped the anthropometric measurements to the
3DMM through a mapping matrix. We proposed a process to select
the best set of anthropometric measurements, leading to improved re-
construction accuracy and the removal of conflicting measurements.
From a list of 33 anthropometric measurements we surveyed from
the literature, we identified 31 which lead to an improvement of the
reconstruction and rejected 2 as they decreased the quality of the
reconstruction. Note that the anthropometric measurement selec-
tion process would apply as well even if using a different 3DMM
from the one proposed in this paper, as well as when considering
a different set of anthropometric measurements. We demonstrated
this by applying our set of measurements to both SPLOCS [19]
and clustered PCA [26]. This also demonstrated that our approach
produces results superior to those of established methods proposing
automatic segmentation and different ways to construct the eigenvec-
tor basis. We also presented different bits of experimental evidence
to demonstrate the superiority of our approach, especially in terms
of local control, as compared to the typical global 3DMM.

A limitation of our approach lies in the mapping matrices, which
assume a linear relationship between anthropometric measurements
and the eigenvector weights. An interesting avenue for future work
would be to apply machine learning to identify non-linear mappings.
Also, our measurements are based on distances between points on
the surface. Future work could consider measurements based on the
curvature over the face, such as measurements specifying the angle
formed at the tip of the chin.

Although anthropometric measurements generate plausible facial
geometric variations, they do not consider fine-scale or coarse-scale
features. Regarding the fine-scale details, our approach does not
model realistic variations of wrinkles, and that could be an interest-
ing direction for future research. Regarding coarse-scale features, we
could reconstruct a skull based on the anthropometric measurements,
and then generate the facial mask based on an energy minimization
of the skin thickness considering the skull and the measurements.
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