
where describes the compliance, is the
diagonal mass matrix, and the constraint is
defined by the green strain tensor :

I n t e r a c t i v e S o f t - b o d y S i m u l at i o n f o r S u r g i c a l A p p l i c at i o n s
Nabil Boukadida, Sheldon Andrews, and Eric Paquette
É c o l e d e t e c h n o l o g i e s u p é r i e u r e

This is a presentation of our ongoing work for
physics-based simulation of soft bodies using
Extended Position Based Dynamics (XPBD). This
approach is stable and eff icient, and achieves
interactive framerates, even on mobile devices.
Strain constraints, which are inspired by the Finite
Element Method (FEM), are used to simulate the
physical behavior of deformable objects such
as muscle tissue and human organs. Anderson
acceleration is applied to the solver to boost
the convergence. A graph coloring technique
is also used to accelerate the convergence. This
approach runs in real t ime on the GPU.

Then, by solving the following linear least-squares:

Graph Coloring
The Jacobi solver al lows for a straightforward
parallel implementation. However, it suffers from
a low convergence rate. We use a graph coloring
method [4] to boost the convergence further (Fig.
1 and 2). During the initialization phase, a graph G
of constraints is constructed, where the nodes are
interconnected based on sets of shared particles. Next,
a detection of the set of cliques is applied and cliques
are seperated. Within each group, the constraints are
solved in parallel, whereas groups of colors are solved
sequentially in a Gauss-Seidel fashion.

We observe that although Anderson acceleration
improves convergence, it artificially increases the
stiffness of the material, regardless of the Young’s
modulus: it is stiffer as the number of iterations
is increased. We plan to address this limitation
by applying the acceleration on the Lagrangian
multipliers instead of positions. Another concern
is that, coupling the Anderson acceleration with
graph coloring, has resulted in some instabilities
during the simulation.

[1] Macklin, M. et al. 2016. XPBD: position-based
simulation of compliant constrained dynamics.
Proceedings of the 9th International Conference
on Motion in Games - MIG ’16, pp. 49–54.
[2] Wang, H. 2015. A chebyshev semi-iterative
approach for accelerating projective and position-
based dynamics. ACM Transactions on Graphics.
34(6), pp. 1–9.
[3] Peng, Y. et al. 2018. Anderson Acceleration for
Geometry Optimization and Physics Simulation.
ACM Transactions on Graphics. 37(4), pp. 1–14.
[4] Fratarcangeli, M. and Pellacini, F. 2015. Scalable
Partitioning for Parallel Position Based Dynamics.
Computer Graphics Forum. 34(2), pp. 405–413.

Figure 3: Simulation with and without acceleration
(40 iterations).

 Figure 2: Simulation with and without graph coloring
(40 iterations).

Figure 1: Convergence with and without graph coloring.

Figure 4: Convergence with numerical acceleration / Anderson
converging to PBD solution.

I n t r o d u c t i o n D i s c u s s i o n & F u t u r e Wo r k

R e f e r e n c e s

X P B D

N u m e r i c a l A c c e l e r a t i o n

Example videos: http://bit.do/eStKB

0 50 100 150 200 250 300
Iteration

Ground truth

0

5

10

15

20

To
ta

l S
tra

in

Anderson
Chebyshev
None
SOR = 1.400000

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

We use XPBD [1] for our simulation. Strain
constraints are applied on particle positions
which are projected in parallel in a Jacobi fashion
on the GPU by solving a linear system :

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

.

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

1
2 .

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

0 10 20 30 40

Iteration

15

20

25

30

35

To
ta

l S
tra

in

Graph Coloring
Jacobi

We explored some numerical acceleration methods
to reduce the number of iterations required to reach
convergence. Specif ically, the following methods
were evaluated:
	
	 1- Successive-Over-Relaxation (SOR)
This method consists of multiplying, at each iteration,
the displacement vector by a factor .
	
	 2 - Chebyshev acceleration
This method [2] uses Chebyshev polynomials to
minimize the current error of the iterate. By simply
weighting the current solution and the previous one,
it al lows for faster convergence.
	
	 3 - Anderson acceleration
Anderson acceleration [3] relies on the previous
solutions to estimate the next solution. It treats the
sequence produced by the solver as a f ixed point
iteration algorithm where the goal is to minimize
the residual function:

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

we obtain the coordinates of the new positions
within the aff ine subspace defined by the previous
iterates where the residual is minimum.

Unlike SOR and Chebyshev, Anderson acceleration
has remarkably improved the convergence of the
solver as shown in Fig. 3 and 4. It was established
that for the same number of iterations, the Anderson
acceleration was able to converge more quickly. In
fact, the Anderson method was able to achieve the
same convergence with less than 10% of the iterations
required without acceleration.

