
where    describes the compliance,    is the 
diagonal mass matrix, and the constraint  is 
defined by the green strain tensor :
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This is a presentation of our ongoing work for 
physics-based simulation of soft bodies using 
Extended Position Based Dynamics (XPBD). This 
approach is stable and eff icient,  and achieves 
interactive framerates,  even on mobile devices. 
Strain constraints, which are inspired by the Finite 
Element Method (FEM), are used to simulate the 
physical behavior of deformable objects such 
as muscle tissue and human organs. Anderson 
acceleration is applied to the solver to boost 
the convergence. A graph coloring technique 
is also used to accelerate the convergence. This 
approach runs in real t ime on the GPU.

Then, by solving the following linear least-squares:

Graph Coloring
The Jacobi solver al lows for a straightforward 
parallel implementation. However, it  suffers from 
a low convergence rate. We use a graph coloring 
method [4] to boost the convergence further (Fig. 
1 and 2).  During the initialization phase, a graph G 
of constraints is constructed, where the  nodes are 
interconnected based on sets of shared particles.  Next, 
a detection of the set of cliques is applied and cliques 
are seperated. Within each group, the constraints are 
solved in parallel,  whereas groups of colors are solved 
sequentially in a Gauss-Seidel fashion.

We observe that although Anderson acceleration 
improves convergence, it artificially increases the 
stiffness of the material, regardless of the Young’s 
modulus: it is stiffer as the number of iterations 
is increased. We plan to address  this limitation 
by applying the acceleration on the Lagrangian 
multipliers instead of positions. Another concern 
is that, coupling the Anderson acceleration with 
graph coloring, has resulted in some instabilities 
during the simulation.

[1] Macklin, M. et al. 2016. XPBD: position-based 
simulation of compliant constrained dynamics. 
Proceedings of the 9th International Conference 
on Motion in Games - MIG ’16, pp. 49–54. 
[2] Wang, H. 2015. A chebyshev semi-iterative 
approach for accelerating projective and position-
based dynamics. ACM Transactions on Graphics. 
34(6), pp. 1–9.
[3] Peng, Y. et al. 2018. Anderson Acceleration for 
Geometry Optimization and Physics Simulation. 
ACM Transactions on Graphics. 37(4), pp. 1–14.
[4] Fratarcangeli, M. and Pellacini, F. 2015. Scalable 
Partitioning for Parallel Position Based Dynamics. 
Computer Graphics Forum. 34(2), pp. 405–413.

Figure 3: Simulation with and without acceleration
(40 iterations).

 Figure 2: Simulation with and without graph coloring
(40 iterations).

Figure 1: Convergence with and without graph coloring.

Figure 4: Convergence with numerical acceleration / Anderson 
converging to PBD solution.
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We use XPBD [1] for our simulation. Strain 
constraints are applied on particle positions  
which are projected in parallel in a Jacobi fashion 
on the GPU by solving a linear system :
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We explored some numerical acceleration methods 
to reduce the number of iterations required to reach 
convergence. Specif ically,  the following methods 
were evaluated: 
	
	 1- Successive-Over-Relaxation (SOR)
This method consists of multiplying, at each iteration, 
the displacement vector     by a factor       .
	
	 2 - Chebyshev acceleration
This method [2] uses Chebyshev polynomials to 
minimize the current error of the iterate. By simply 
weighting the current solution and the previous one, 
it  al lows for faster convergence.
	
	 3 - Anderson acceleration
Anderson acceleration [3] relies on the previous  
solutions to estimate the next solution. It treats the 
sequence produced by the solver as a f ixed point 
iteration algorithm where the goal is to minimize 
the residual function:
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2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

𝒙𝒙

𝛁𝛁𝛁𝛁 𝒙𝒙 𝑴𝑴−𝟏𝟏𝛁𝛁𝛁𝛁 𝒙𝒙 𝑻𝑻 + ෥𝜶𝜶 ∆𝝀𝝀𝒊𝒊 = −𝑪𝑪 𝒙𝒙 − ෥𝜶𝜶𝝀𝝀𝒊𝒊 ,

෥𝜶𝜶
𝑴𝑴

𝑪𝑪

𝑪𝑪 𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒 = 𝜺𝜺 = 1
2 𝑭𝑭𝑻𝑻𝑭𝑭 − 𝑰𝑰 ,

∆𝒙𝒙

𝜶𝜶 > 1.

𝝎𝝎∗ = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
𝝎𝝎

𝑹𝑹𝒌𝒌 + ෍
𝒋𝒋=𝟏𝟏

𝒎𝒎

𝝎𝝎𝒋𝒋(𝑹𝑹𝒌𝒌−𝒋𝒋 − 𝑹𝑹𝒌𝒌)

𝒙𝒙
𝒎𝒎
𝑹𝑹.

𝑹𝑹 𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏

we obtain the coordinates of the new  positions       
within the aff ine subspace defined by the       previous 
iterates where the residual    is minimum.

Unlike SOR and Chebyshev, Anderson acceleration 
has remarkably improved the convergence of the 
solver as shown in Fig. 3 and 4. It was established 
that for the same number of iterations, the Anderson 
acceleration was able to converge more quickly. In 
fact,  the Anderson method was able to achieve the 
same convergence with less than 10% of the iterations 
required without acceleration.


