Penumbra Deep Shadow Maps

Jean-Francois St-Amour, LIGUM — Université de Montreal
Eric Paquette, LESIA - ETS
Pierre Poulin, LIGUM — Université de Montreal

Motivation

Shadows are a Good Thing™
Softer is better

Very difficult to do for complex real-time
applications

Current methods are:

— Slow with high-quality

— Fast with lower quality

Plan

Previous Work
Introduction to PDSM
PDSM Construction
Rendering

Results

Conclusion

Previous Work

 « Real-time » methods

— Rendering precomputed soft shadows in real-time
« Multiple Shadow Maps [Brotman-Badler 84]
« Layered Attenuation Maps [Agrawala et al. 00]

— Rendering dynamically computed soft shadows
 PCF [Reeves et al. 87]
« Smoothies [Chan-Durand 03]
* Penumbra Maps [Wyman-Hansen 03]
 Penumbra Wedges [Assarsson — Akenine-Moller 03]

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Previous Work

* Two classes, two goals

— Real-time dynamic soft shadows
» Fast rendering
* Dynamic scenes
 Tradeoff in quality
and ultimately max scene complexity

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Previous Work

* Two classes, two goals

— Pre-computed soft shadows
» Real-time rendering
 Limited to static scenes
because of precomputation

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Introduction to PDSM

* We propose a method to bridge the gap

— High-quality precomputed soft shadows
« Shadows cast by static objects
* Real-time rendering using GPU

— Seamless integration of dynamic objects

* Objects inserted after shadow computation are
correctly shadowed

 Must however create their own shadows

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Introduction to PDSM

« How?
— Using Deep Shadows Maps [Lokovic-Veach 00]

 Attenuation value for all of 3D space covered by light
« Cumulative occlusion

attenuation
|

depth

— But with penumbra information

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Introduction to PDSM

 \What we need

— Construction of a DSM with penumbra
information

* Precomputation allows for a mix of software and
hardware computation

— Real-time rendering using the PDSM
« Efficient storage
« Rapid evaluation
* RT requires pure hardware computation

Previous Work — Intro — Construction — Rendering — Results — Conclusion

PDSM Construction

 What we want to do

— Take multiple sample views on the light
source and merge them
* Like the LAM algo, but not really
* Like the DSM algo, but not really

* We want to combine their respective goals
— Merge multiple shadow map info
— Store attenuation function for all of light's FOV

Previous Work — Intro — Construction — Rendering — Results — Conclusion

PDSM Construction

e Qverview

near plane far plane
1

AN
—1G
/

| 1
rcurrent PDSM ray~_in shadow™
1

Previous Work — Intro — Construction — Rendering — Results — Conclusion

PDSM Construction

Algorithm 1: PDSM construction.

1 Generate £ random sample points on the light source.
foreach sample point do

Compute a shadow map (SM).

// Merge the SM information to the PDSM.

foreach PDSM pixel do

Compute the associated 3D PDSM ray.

Project this PDSM ray in the SM.

foreach SM pixel traversed by the ray do
if visibility changed then

L | Insert an event into the PDSM.

Previous Work — Intro — Construction — Rendering — Results — Conclusion

PDSM Construction

* Scan-conversion into depth buffer to find visibility events

: mid-point selected SM pixels

projected PDSM ray
blocker

, . shadowed

, : shadowed

, . shadowed

, - shadowed

it

Previous Work — Intro — Construction — Rendering — Results — Conclusion

PDSM Construction

* Merging the information from one sample into the PDSM

fnonsunsiis

AN

0

0o sunoNis

[

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Compression

« Guaranteed upper-bound on error

attenuation

attenuation

.~

depth

* More aggressive compression also possible

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Rendering

* For each point to shade, we must evaluate the PDSM
function

Algorithm 2: Rendering.

1 foreach 3D point to shade do

/1 3D point(x,y, 2)worta — (T,Y, 2)PDSM
2 Project in the PDSM.

/M (x,y)ppsm — f()

Retrieve the appropriate attenuation function.

/I f((z)ppsm) — attenuation

Retrieve the attenuation value.

/l attenuation — pixel color

Modulate the shading by this attenuation.

Previous Work — Intro — Construction — Rendering — Results — Conclusion

GPU Storage

 Two textures: Index and Data texture

function address (x,y) function at (0,0)
function length function at (4,0)

-
L -
Ld -
s -
I #

index texture / / data texture

@ S (b)

7 1
4
/

16-bit depth <—|:|:-|—> 8-bit attenuation

cvent

Previous Work — Intro — Construction — Rendering — Results — Conclusion

GPU Storage

* Packing the Data texture
— One RGB32F texel contains 4 function points

R G B
a a
d, d, d, d, 1 :
a, a,
d; : 16-bit depth a;: 8-bit attenuation

Previous Work — Intro — Construction — Rendering — Results — Conclusion

GPU Evaluation

* Find the right PDSM function in the Index texture

— Using regular Projective texturing

function address (X.,y) function at (0,0)
function length function at (4,0)

-
” ”
td '
7’ ”
Il I

. / i
index texture / data texture

4

@ / /O

I

16-bit depth <—|:|:—|—> 8-bit attenuation

event

Previous Work — Intro — Construction — Rendering — Results — Conclusion

GPU Evaluation

« (Get the function points from the Data texture
— Incremental dependant texture lookups

function address (X,y) function at (0,0)
function length function at (4,0)

index texture / data texture .
: / ' attenuation
(a) (b)

/
y 4
1

,// ! 1

16-bit deptt <—:|:~'—> 8-bit attenuation

event

Previous Work — Intro — Construction — Rendering — Results — Conclusion

GPU Evaluation

« Advanced features require real dynamic branching at fragment level
— Early-out during evaluation
— Arbitrary function lengths

function address (X.,y) function at (0,0)
function length function at (4,0)

-
-
” ”
td '
7’ ”
Il I

. / i
index texture / data texture

@ / /O

I

16-bit depth <—|:|:—|—> 8-bit attenuation

event

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Results

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Conclusion

* Recap
— High-quality soft shadows for static objects
— Dynamic object insertion

— Real-time rendering using the GPU
« Efficient storage
« Rapid evaluation using the fragment processor

Previous Work — Intro — Construction — Rendering — Results — Conclusion

Conclusion

 Future Work

— Faster construction
* “Chunks” of PDSM rays
* Peeling approach

— Perceptual approach to compression
— Enhanced light sampling function
— PDSM approximation with very few samples

Previous Work — Intro — Construction — Rendering — Results — Conclusion

* Special thanks
— Luc Leblanc
— Philippe Beaudoin
— Andrew Woo
— NSERC

e Questions?

