
Penumbra Deep Shadow Maps

Jean-Francois St-Amour, LIGUM – Université de Montreal
Eric Paquette, LESIA - ETS

Pierre Poulin, LIGUM – Université de Montreal

Motivation

• Shadows are a Good Thing™
• Softer is better
• Very difficult to do for complex real-time

applications
• Current methods are:

– Slow with high-quality
– Fast with lower quality

Plan

• Previous Work
• Introduction to PDSM
• PDSM Construction
• Rendering
• Results
• Conclusion

Previous Work

• « Real-time » methods
– Rendering precomputed soft shadows in real-time

• Multiple Shadow Maps [Brotman-Badler 84]
• Layered Attenuation Maps [Agrawala et al. 00]

– Rendering dynamically computed soft shadows
• PCF [Reeves et al. 87]
• Smoothies [Chan-Durand 03]
• Penumbra Maps [Wyman-Hansen 03]
• Penumbra Wedges [Assarsson – Akenine-Moller 03]

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Previous Work

• Two classes, two goals
– Real-time dynamic soft shadows

• Fast rendering
• Dynamic scenes
• Tradeoff in quality

and ultimately max scene complexity

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Previous Work

• Two classes, two goals
– Pre-computed soft shadows

• Real-time rendering
• Limited to static scenes

because of precomputation

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Introduction to PDSM

• We propose a method to bridge the gap
– High-quality precomputed soft shadows

• Shadows cast by static objects
• Real-time rendering using GPU

– Seamless integration of dynamic objects
• Objects inserted after shadow computation are

correctly shadowed
• Must however create their own shadows

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Introduction to PDSM
• How?

– Using Deep Shadows Maps [Lokovic-Veach 00]
• Attenuation value for all of 3D space covered by light
• Cumulative occlusion

Previous Work – Intro – Construction – Rendering – Results – Conclusion

– But with penumbra information

Introduction to PDSM

• What we need
– Construction of a DSM with penumbra

information
• Precomputation allows for a mix of software and

hardware computation
– Real-time rendering using the PDSM

• Efficient storage
• Rapid evaluation
• RT requires pure hardware computation

Previous Work – Intro – Construction – Rendering – Results – Conclusion

PDSM Construction

• What we want to do
– Take multiple sample views on the light

source and merge them
• Like the LAM algo, but not really
• Like the DSM algo, but not really

• We want to combine their respective goals
– Merge multiple shadow map info
– Store attenuation function for all of light’s FOV

Previous Work – Intro – Construction – Rendering – Results – Conclusion

PDSM Construction
• Overview

Previous Work – Intro – Construction – Rendering – Results – Conclusion

PDSM Construction

Previous Work – Intro – Construction – Rendering – Results – Conclusion

PDSM Construction
• Scan-conversion into depth buffer to find visibility events

Previous Work – Intro – Construction – Rendering – Results – Conclusion

PDSM Construction
• Merging the information from one sample into the PDSM

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Compression

• Guaranteed upper-bound on error

Previous Work – Intro – Construction – Rendering – Results – Conclusion

• More aggressive compression also possible

Rendering
• For each point to shade, we must evaluate the PDSM

function

Previous Work – Intro – Construction – Rendering – Results – Conclusion

GPU Storage

• Two textures: Index and Data texture

Previous Work – Intro – Construction – Rendering – Results – Conclusion

GPU Storage

• Packing the Data texture
– One RGB32F texel contains 4 function points

di : 16-bit depth ai: 8-bit attenuation

d1 d2 d3 d4

a1 a2

a3 a4

R G B

Previous Work – Intro – Construction – Rendering – Results – Conclusion

GPU Evaluation
• Find the right PDSM function in the Index texture

– Using regular Projective texturing

Previous Work – Intro – Construction – Rendering – Results – Conclusion

GPU Evaluation
• Get the function points from the Data texture

– Incremental dependant texture lookups

Previous Work – Intro – Construction – Rendering – Results – Conclusion

GPU Evaluation
• Advanced features require real dynamic branching at fragment level

– Early-out during evaluation
– Arbitrary function lengths

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Results

• Video

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Conclusion

• Recap
– High-quality soft shadows for static objects
– Dynamic object insertion
– Real-time rendering using the GPU

• Efficient storage
• Rapid evaluation using the fragment processor

Previous Work – Intro – Construction – Rendering – Results – Conclusion

Conclusion

• Future Work
– Faster construction

• “Chunks” of PDSM rays
• Peeling approach

– Perceptual approach to compression
– Enhanced light sampling function
– PDSM approximation with very few samples

Previous Work – Intro – Construction – Rendering – Results – Conclusion

• Special thanks
– Luc Leblanc
– Philippe Beaudoin
– Andrew Woo
– NSERC

• Questions?

