Joint planar parameterization of segmented parts and cage deformation for dense correspondence

Srinivasan Ramachandran¹, Donya Ghafourzadeh¹, Eric Paquette¹, Tiberiu Popa², Martin De Lasa³

École de technologie supérieure
2 - University of Concodia
3 - Autodesk

Shape Modelling International - 2018

Surface mapping

High quality mappings between surface meshes

Source Target

Why Surface Maps?

[Ovsjanikov et al. 12]

[Zell et al. 13]

[Panozzo et al. 13]

[Aigerman et al. 15]

[Aigerman et al. 15]

Objective!

• Input

- Two surface meshes S, T
- Coarse set of corresponding landmarks
- Closed paths connecting some of the landmarks
- Output: a map $f: S \to T$
 - High quality (Low distortion)
 - Maps semantic areas correctly
 - Bijective

Pipeline

- 1. Segmentation using closed paths
- 2. Planar parametrization of segmented parts

 \bar{S}

 \overline{S}

- 3. Cage deformation
- 4. Mapping extraction

 $f:S\to T$

Pipeline – Segmentation using closed paths

- 1. Two types of landmarks
 - Exterior landmarks for closed paths
 - Interiors at important features
- 2. Cut along closed paths
- Segment meshes to be homeomorphic to a disk
- Match segmented parts based on transferred landmarks

Pipeline – Segmentation using closed paths

Valid and Invalid closed paths

Pipeline – Planar parametrization of segments

- Flatten selected mesh using ABF++
- * Choose a mesh flattening with lower $\rm L_{2}$ and $\rm L_{\infty}$
- Align boundary of the second mesh and flatten

Pipeline – Cage Deformation

- Boundary landmarks are aligned
- But internal landmarks are not aligned
- Construct cage using Delaunay on 2d landmarks on S
- Transfer cage to T
- Map vertices of \overline{S} and \overline{T} to a cage triangle
- Align the cages and move vertices of \overline{S}

Pipeline – Cage Deformation: Ambiguous cages

- Rarely landmarks cross an edge
- Creates overlapping cage triangles
- Apply Delaunay to overlapping its connected triangles
- Use the new cage triangulation for both \overline{S} and \overline{T}

Ambiguous cages

Resolved cages

Pipeline – Mapping

- S and T are both aligned with boundary and interiors
- We use KD-tree to establish mapping
- Mapping is between a vertex to a location
- Expressed as a barycentric location based on vertices and a triangle

Pipeline – Mapping

- S and T are both aligned with boundary and interiors
- We use KD-tree to establish mapping
- Mapping is between a vertex to a location
- Expressed as a barycentric location based on vertices and a triangle
- Transfer mapping to original S and T

Results And Evaluation

- Qualitative
 - Smoothness and distortion
 - Three type of techniques
- Quantitative
 - Measure bijectivity
 - Linking of related regions

Qualitative Evaluation

- Isopoints
- Grid texture
- Vertex coloring

Isopoints

Grid textures

Vertex coloring

Qualitative Evaluation – Isopoints

- Constructing isocurves
 - Calculate geodesic distances on source S
 - Color each isocurve differently
 - Transfer the isocurves using the mapping to the target T
- Helps with identifying
 - Areas with too much clutter
 - Missing isopoints at expected regions
 - Zig-zagging: Smoothness issues

Isopoints visualization

Qualitative Evaluation – Grid texture

- Constructing grid textures
 - Create UV map with grid texture on source S
 - Transfer UV map to $\{v_t\}$
- Helps with identifying
 - Magnitude of distortion in triangles
 - Semantic mismatches are explicitly visible

Grid textures

$\{v_t\}$ – vertices of target **T**

Qualitative Evaluation – Vertex Coloring

- Constructing vertex coloring
 - Morph **S** to **T** as \overline{S}
 - For each $\{v_t\}$ find the location on \overline{S} as $\{\overline{v}_t\}$
 - Color $\{v_t\}$ based on $|| \{v_t\} \{\overline{v}_t\}||$
- High displacements higher errors

Vertex coloring

 $\{v_t^{}\}$ – vertices of target \bm{T} $\{\overline{v}_t^{}\}$ – vertices of target with their mapped location on $\overline{\bm{S}}$

Quantitative Evaluation : A numerical perspective

- A proposal for evaluation mapping numerically
- Finds semantic discrepancies
- Construction
 - Morph T to S as T
 - Transfer isopoints {iso_s} of **S** to \overline{T} as { \overline{Iso}_t }
 - Error calculation: $|| \{ \{ iso_s \} \overline{iso}_t \} ||$

{iso_s} - isopoints on **S** { \overline{iso}_t } - transferred isopoints from **S** to \overline{T}

Discussion

- Datasets
 - SCAPE
 - SHREC Watertight
 - Artists and MakeHuman generated
- Class-wise: A single source mapped to multiple targets
- Genus 0: one closed path
- Higher Genus: 4 closed paths

Discussion: Quadrupeds class

Discussion: Aircrafts class

Discussion: Insects class

Discussion: Fishes and Birds classes

Discussion: Coarse Humanoids class

Discussion: Busts class

S

 T_1

 T_2

 T_3

Discussion: Detailed Humanoids class

Discussion: Pots class

Discussion: Different Generas

Discussion: Different Morphology

Conclusion – A Mapping Approach

- Sparse inputs for landmarks and closed paths
- Free of high distortions and handles small features
- Robust to different genera and isometries

Conclusion – Limitations And Future works

- Limitations
 - Input for closed paths can be taxing
 - Bijectivity depends on the flattening mechanism
 - Cage mesh can be flipped if landmark correspondences are flipped

- Future directions
 - Automatic landmarks and closed paths
 - Cage deformation optimized along with weights of the mesh