Joint planar parameterization of segmented parts and cage deformation for dense correspondence

Srinivasan Ramachandran1, Donya Ghafourzadeh1, Eric Paquette1, Tiberiu Popa2, Martin De Lasa3

1 - École de technologie supérieure
2 - University of Concordia
3 - Autodesk

Shape Modelling International - 2018
Surface mapping

High quality mappings between surface meshes
Why Surface Maps?

[Kim et al. 11]

[Symmetry Axis Curves]

[Liu et al. 12]

[Surface Correspondences]

[Ovsjanikov et al. 12]

[Zell et al. 13]

[Panozzo et al. 13]

[Aigerman et al. 15]

[Aigerman et al. 15]
Objective!

- **Input**
 - Two surface meshes S, T
 - Coarse set of corresponding landmarks
 - Closed paths connecting some of the landmarks

- **Output:** a map $f : S \rightarrow T$
 - High quality (Low distortion)
 - Maps semantic areas correctly
 - Bijective
Pipeline

1. Segmentation using closed paths
2. Planar parametrization of segmented parts
3. Cage deformation
4. Mapping extraction

\[f : S \rightarrow T \]
Pipeline – Segmentation using closed paths

1. Two types of landmarks
 - Exterior landmarks for closed paths
 - Interiors at important features
2. Cut along closed paths
3. Segment meshes to be homeomorphic to a disk
4. Match segmented parts based on transferred landmarks
Pipeline – Segmentation using closed paths

Valid and Invalid closed paths

Valid closed path

Invalid closed path types
Pipeline – Planar parametrization of segments

- Flatten selected mesh using ABF++
- Choose a mesh flattening with lower L_2 and L_∞
- Align boundary of the second mesh and flatten
Pipeline – Cage Deformation

- Boundary landmarks are aligned
- But internal landmarks are not aligned
- Construct cage using Delaunay on 2d landmarks on \bar{S}
- Transfer cage to \bar{T}
- Map vertices of \bar{S} and \bar{T} to a cage triangle
- Align the cages and move vertices of \bar{S}
Pipeline – Cage Deformation: Ambiguous cages

- Rarely landmarks cross an edge
- Creates overlapping cage triangles
- Apply Delaunay to overlapping its connected triangles
- Use the new cage triangulation for both \bar{S} and \bar{T}
Pipeline – Mapping

- \overline{S} and \overline{T} are both aligned with boundary and interiors
- We use KD-tree to establish mapping
- Mapping is between a vertex to a location
- Expressed as a barycentric location based on vertices and a triangle
Pipeline – Mapping

- \bar{S} and \bar{T} are both aligned with boundary and interiors
- We use KD-tree to establish mapping
- Mapping is between a vertex to a location
- Expressed as a barycentric location based on vertices and a triangle
- Transfer mapping to original S and T
Results And Evaluation

• Qualitative
 • Smoothness and distortion
 • Three type of techniques

• Quantitative
 • Measure bijectivity
 • Linking of related regions
Qualitative Evaluation

- Isopoints
- Grid texture
- Vertex coloring
Qualitative Evaluation – Isopoints

- Constructing isocurves
 - Calculate geodesic distances on source S
 - Color each isocurve differently
 - Transfer the isocurves using the mapping to the target T
- Helps with identifying
 - Areas with too much clutter
 - Missing isopoints at expected regions
 - Zig-zagging: Smoothness issues

Isopoints visualization
Qualitative Evaluation – Grid texture

• Constructing grid textures
 • Create UV map with grid texture on source \(S \)
 • Transfer UV map to \(\{v_t\} \)
• Helps with identifying
 • Magnitude of distortion in triangles
 • Semantic mismatches are explicitly visible

\(\{v_t\} \) – vertices of target \(T \)
Qualitative Evaluation – Vertex Coloring

- Constructing vertex coloring
 - Morph S to T as \bar{S}
 - For each $\{v_t\}$ find the location on \bar{S} as $\{\bar{v}_t\}$
 - Color $\{v_t\}$ based on $|| \{v_t\} - \{\bar{v}_t\}||$
- High displacements – higher errors

$\{v_t\}$ – vertices of target T
$\{\bar{v}_t\}$ – vertices of target with their mapped location on \bar{S}
Quantitative Evaluation: A numerical perspective

- A proposal for evaluation mapping numerically
- Finds semantic discrepancies
- Construction
 - Morph T to S as \overline{T}
 - Transfer isopoints $\{\text{iso}_s\}$ of S to \overline{T} as $\{\text{iso}_t\}$
 - Error calculation: $|| \{\text{iso}_s\} - \{\text{iso}_t\} ||$

$\{\text{iso}_s\}$ - isopoints on S
$\{\text{iso}_t\}$ - transferred isopoints from S to \overline{T}
Discussion

• Datasets
 • SCAPE
 • SHREC Watertight
 • Artists and MakeHuman generated

• Class-wise: A single source mapped to multiple targets

• Genus 0: one closed path

• Higher Genus: 4 closed paths
Discussion: Quadrupeds class
Discussion: Aircrafts class

S, T_1, T_2, T_3
Discussion: Insects class
Discussion: Fishes and Birds classes
Discussion: Coarse Humanoids class
Discussion: Busts class
Discussion: Detailed Humanoids class
Discussion: Pots class
Discussion: Different Genera
Discussion: Different Morphology
Conclusion – A Mapping Approach

- Sparse inputs for landmarks and closed paths
- Free of high distortions and handles small features
- Robust to different genera and isometries
Conclusion – Limitations And Future works

- Limitations
 - Input for closed paths can be taxing
 - Bijectivity depends on the flattening mechanism
 - Cage mesh can be flipped if landmark correspondences are flipped

- Future directions
 - Automatic landmarks and closed paths
 - Cage deformation optimized along with weights of the mesh