The Simulation of Paint Cracking and Peeling

E. Paquette¹,², P. Poulin¹, G. Drettakis²

¹ Université de Montréal
² INRIA Sophia Antipolis

Realism

- Realistic / believable images
- e-commerce architecture
- Simulation (Physics, Mathematics)
- Precision (perception, measurement)
- Constraints (time, memory)
- Tradeoff (increased realism)

Aging

- Synthetic objects often look too perfect
- Deterioration
 - environment
 - everyday use
- Long term

Aging in Computer Graphics

- Important for realism
 - film
 - virtual reality
 - video games
 - design / prototyping
- Semi-automatic methods
- Control

Peeling

- Thin layer (paint)
- Cracks, peels

Outline

- Peeling
- Previous work
- Simulation
- Implementation
- Results
- Conclusion
Paint Properties

- **Elasticity**
 - can be stretched
- **Tensile stress**
 - force required to stretch
- **Tensile strength**
 - force required to tear
- **Adhesion strength**
 - force required to peel

Physical Phenomenon

- **Paint**
 - dries, shrinks, tensile stress
- **Deterioration**
 - moisture, uv, pollution
 - elasticity, strength, adhesion
- **Peeling**
 - cracks, loss of adhesion, peels

Method

- **Simplified model**
 - easy control
 - efficiency
- **Surface properties**
- **Cracks**
 - formation and propagation
- **Loss of adhesion**
- **Peeling**
Outline

• Peeling
 • Previous work
 • Simulation
 • Implementation
 • Results
 • Conclusion

Previous Work

• Fracture
 – [Norton1991] [Hirota2001]
 – [O’Brien1999] [Smith2000]
• Cracks
 – [Hirota1999] [Gobron2001]

Previous Work

Peeling

• [Wong1997]
 – tendency (peeling sources, 3D noise)
 – threshold (no simulation)
• [Gobron2001]
 – cellular automata
 – order in which parts detach

Previous Work

Peeling

• [Wong1997]
 – tendency (peeling sources, 3D noise)
 – threshold (no simulation)

Outline

• Peeling
 • Previous work
 • Simulation
 • Implementation
 • Results
 • Conclusion
Overview

- Top view:
 - Paint layer
 - Movement (strain)
 - Stress
 - Decrease of lateral stress

- Side view:
 - Paint layer
 - Movement (strain)
 - Stress
 - Decrease of tensile stress
 - Increase of shearing stress
 - Loss of adhesion
 - Peeling

Implementation

- Paint properties
 - 2D grid
 - Directional

- Cracks
 - Sequence of linear segments
 - Independent of the grid

Cracks Control

- Texture
 - Tensile strength
 - White = low

Creation

- Perpendicular to the maximum ratio
- Grid property:
 - Tensile stress
 - Tensile strength
- New crack

Propagation

- Perpendicular to the maximum ratio
- Grid property:
 - Tensile stress
 - Tensile strength
Relaxation
- Perpendicular to the crack
- Grid property
 - displacement induced by the relaxation

Adhesion
- Loss with respect to ratio
- Grid property
 - shearing stress
 - adhesion strength
- Adhesion loss distance

Peeling
- Curls perpendicular to the crack
- Local geometry
- Control: mesh resolution

Peeling Direction
- Crack path is "jaggy"
- Direction of peeling is more continuous

Peeling Direction
- Direction of peeling is even more continuous

Segment Fusion
- Level of detail
 - Fusion metrics
 - loss of adhesion
 - length
 - direction
- Detail information
- Crack propagation
- Detect with crack ID
- Join intersecting to intersected
- Compute relaxation
- Split the intersected crack
Outline

- Peeling
- Previous work
- Simulation
 - Implementation
- Results
- Conclusion

Simulation System

- Simulation system
 - crack formation & propagation
 - relaxation and adhesion
- Cracks information
 - path, widths
- Rendering

Maya Plugins

paint
base

color

Cracks
geometry

Outline

- Peeling
- Previous work
- Simulation
- Implementation
 - Results
- Conclusion

Results: Wall

photo
aged
2nd view

Results: Shutters

photo
aged
2nd view
Results: Garage Door

- Photo
- Aged
- 2nd view

Results: Video

- Propagation
 - Wall
 - Text (GI 2002)

Results: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Wall</th>
<th>Shutters</th>
<th>Garage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb crack segments</td>
<td>700</td>
<td>1500</td>
<td>2900</td>
</tr>
<tr>
<td>Simulation (400 MHz)</td>
<td>3 min</td>
<td>20 min</td>
<td>75 min</td>
</tr>
<tr>
<td>Rendering (16 x 400 MHz)</td>
<td>3 min</td>
<td>3 min</td>
<td>3 min</td>
</tr>
</tbody>
</table>

Outline

- Peeling
- Previous work
- Simulation
- Implementation
- Results
- **Conclusion**

Conclusion

- Control through textures
- Cracks and loss of adhesion
- Peeling
- Local geometry
- Segment fusion

Extensions

- Multi-layer
 - Paint over primer over base surface
- Multi-processing
 - One crack / processor
- Interaction with other effects
 - Example: rust
Questions?

- Thanks to
 - Alias|Wavefront
 - NSERC, FCAR, MRI-MEQ, FES-UdeM
 - Université de Montréal, INRIA, UFJ
 - M. Glisse, A. Reche, C. Puech