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Figure 1: High-resolution details are extracted based on the distance between an initial surface mesh and its coarse implicit
surface representation (a). We use the particles’ behavior and the topology of a coarse resolution simulation (b) to consistently
evolve an explicit surface mesh (d). The high-resolution details are lost if using only the implicit surface from the coarse set
of particles (c), but our explicit mesh surface approach preserves surface details (d), even with such a coarse resolution fluid
simulation. In (a), the surface is color-coded based on the distance from the implicit surface, where blue refers to the largest
inward distances, red refers to the largest outward distances, and green is at the isosurface. The coarse simulation (b) contains
only 20,456 particles.

Abstract
We propose a new explicit surface tracking approach for particle-based fluid simulations. Our goal is to advect and
update a highly detailed surface, while only computing a coarse simulation. Current explicit surface methods lose
surface details when projecting on the isosurface of an implicit function built from particles. Our approach uses a
detail-preserving projection, based on a signed distance field, to prevent the divergence of the explicit surface with-
out losing its initial details. Furthermore, we introduce a novel topology matching stage that corrects the topology
of the explicit surface based on the topology of an implicit function. To that end, we introduce an optimization
approach to update our explicit mesh signed distance field before remeshing. Our approach is successfully used
to preserve the surface details of melting and highly viscous objects, and shown to be stable by handling complex
cases involving multiple topological changes. Compared to the computation of a high-resolution simulation, using
our approach with a coarse fluid simulation significantly reduces the computation time and improves the quality
of the resulting surface.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation
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1. Introduction

Particles are commonly used in fluid simulation, particularly
with the rise in popularity of the FLIP method [ZB05] found
in commercial software (such as HoudiniTM, Maya R©, and
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RealflowTM). When simulating liquids and reconstructing
the surface from the particles, the irregular distribution of
particles, as well as the spherical nature of the implicit func-
tions typically used for reconstruction, make the resulting
surface prone to bumpiness. This is shown in Fig. 2, where
the Stanford Armadillo is reconstructed using different num-
bers of particles. As can be seen, a coarser simulation will
severely smooth the details; therefore, a large amount of par-
ticles is needed to accurately reconstruct the details of the
original mesh. Even in Fig. 2(d), where over four million
particles were used, some details around the eyes and the
teeth have been smoothed out. When melting objects using
a highly viscous simulation, it is important to retain the de-
tails of the original mesh, and this requires a large number
of particles. However, such a detailed simulation might be
unnecessary, considering the small amount of detail present
in the fluid movement. This makes the simulation and sur-
face reconstruction times unnecessarily longer, whereas the
objective is only to improve the reconstructed surface.

(a) Original mesh (b) 68,679 particles

(c) 549,485 particles (d) 4,395,521 particles

Figure 2: Comparison between the original surface and re-
constructions with varying resolutions. The surfaces were
generated using the method of Solenthaler et al. [SSP07].

Explicit surface tracking [WMFB11] helps solve this
problem by using an initial mesh and evolving it based on
the underlying simulation. Remeshing is done throughout
the process in order to preserve the coherence and the qual-
ity of the surface. However, explicit surface tracking is not
well suited for particle-based simulations since the explicit
mesh tends to diverge from the particles. While recent work
address this issue [YWTY12], they do not preserve surface
details very well. Since they rely on a projection onto a sur-
face constructed from the particles, the size of the explicit
surface’s details is still limited by the resolution of the un-
derlying simulation.

Our approach focuses on improving and extending ex-
plicit surface tracking approaches for particle-based fluids
in order to retain surface details while maintaining a be-
havior consistent with the simulation particles. It does so

by extracting high-resolution details based on the distance
between an initial surface mesh and a coarse implicit sur-
face representation built from the particles (see Fig. 1). This
distance is then preserved by our improved projection. Fur-
thermore, we introduce a novel topology matching operation
that preserves the consistency of the explicit surface with the
behavior of the particles. Altogether, this allows the tracking
of a detailed explicit mesh surface by using a coarser parti-
cle simulation. Moreover, the approach can be run entirely
as a post-simulation step, and it is independent of the simu-
lation approach, having been used with both FLIP and SPH
simulations. Our main contributions can be summarized as
follows:

• A new explicit mesh surface tracking technique for
particle-based simulations.

• A detail-preserving projection based on a signed distance
field.

• A novel topology matching approach that reconstructs a
section of a mesh voxelization based on the topology of a
reference signed distance field.

2. Related Work

A wide range of work was focused on tracking the surface
of liquid simulations. This section describes these papers ac-
cording to the quality of the surface, the amount of details of
the surface, and whether they apply to particle-based simu-
lations.

2.1. Implicit surface tracking

The most common fluid surfacing techniques build an im-
plicit representation of the surface encoded into a grid-like
structure. A triangle mesh is generated at each frame from
the implicit representation using a method such as marching
cubes [LC87].

A common way to represent the surface of a liquid with
an Eulerian simulation involves using a level set. Foster and
Fedkiw [FF01] introduced a level set method that uses par-
ticles, where both the level set and the particles are ad-
vected using the fluid velocity field. Particles are used to
correct the level set after each advection stage, thus reduc-
ing volume loss. Later, this method was improved by En-
right et al. [EMF02] with particles on both sides of the inter-
face, further improving volume preservation. Some papers
have adapted this method to support adaptive grids [LGF04]
and grids with finer resolutions than the underlying simula-
tion [KSK09], making it possible to create a more detailed
surface using a coarse simulation. Even though these meth-
ods rely on particles at the interface, the particles are not
used as surface representations.

While the previously mentioned methods provide a
smooth surface, surface tracking has to be performed as
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the simulation is computed. Particle-based simulations, how-
ever, do not impose such requirements, allowing a more flex-
ible workflow, where the surface can be parameterized and
built after the desired liquid behavior is obtained. Müller et
al. [MCG03] first extended the traditional blobbies to par-
ticle fluids by using the SPH framework to create a sur-
face from liquid particles. Even though the surface field is
smoothly interpolated between particles, the resulting sur-
face is prone to bumpiness. Later, Zhu and Bridson [ZB05]
developed a method based on the distance to the average po-
sition of particles within an influence radius. This method
provides a smoother surface, but is prone to generating er-
roneous volumes of fluids between splashes and in con-
cave regions. This problem was resolved by Solenthaler et
al. [SSP07] with the use of an attenuation factor in those
regions. Adams et al. [APKG07] also improved the tech-
nique of Zhu and Bridson by storing a signed distance field
at each particle’s position, which allowed the generation of
a smoother surface with irregular particle distribution and
with particles of varying radii. However, updating the sign
distance field makes it more computationally intensive than
previous approaches. Yu and Turk [YT13] used anisotropic
kernels to provide a smooth surface. Their method generates
a smooth surface while being faster than that of Adams et
al. [APKG07]. However, it involves longer computation
times than the method of Zhu and Bridson [ZB05], and suf-
fers from volume shrinkage because the particles’ positions
are smoothed. In their adaptive liquid simulation framework,
Ando et al. [ATW13] used the union of convex hulls built
from groups of three particles to generate a smoother sur-
face, at the expense of longer computation times. Other pa-
pers focus on first generating a lower quality surface, and
smoothing it afterward. The smoothing operation is either
done on the triangulated mesh [Wil08], or on the implicit
function [BGB11].

All these methods [APKG07, ATW13, BGB11, MCG03,
SSP07,Wil08,YT13,ZB05] generate a new surface from the
simulation particles for every frame of the animation. There-
fore, they depend on the resolution of the underlying simu-
lation to provide a detailed surface. As such, they are not
very accurate in preserving the features from the initial sur-
face used to generate the simulation particles. This can be
particularly problematic when a highly detailed surface is
needed, while a coarse simulation can effectively capture the
desired behavior. A good example would be the simulation
of a melting object, where the initial surface is a detailed
user-supplied mesh.

2.2. Explicit surface tracking

In order to preserve the details of the original surface, other
methods update an explicit mesh surface throughout the sim-
ulation. Brochu and Bridson [BB09] developed a frame-
work for tracking explicit surfaces where triangle collisions
are computed, and mesh surgery is performed directly on

the mesh triangles to handle splitting and merging of the
surface. Mesh improvement operations, such as edge col-
lapse and edge splitting, are also performed on the surface
to guarantee its quality. Their framework has successfully
been used to model the surface of liquids with thin fea-
tures [EB14], and has been extended to handle multima-
terial interfaces [DBG14]. Müller [Mül09] advects an ex-
plicit mesh using the velocity field of an Eulerian simula-
tion. The mesh is then voxelized and rebuilt entirely. The ex-
plicit mesh allows the identification of cells containing thin
sheets of liquid, which are then replicated during its recon-
struction, instead of splitting the fluid. However, other small-
scale surface details, such as ripples, are not preserved. Wo-
jtan et al. [WTGT09] developed a method where merging
and splitting regions are identified by comparing the mesh
with its voxelization. These regions are then remeshed lo-
cally from the voxelization. This effectively preserves fea-
tures of the explicit mesh in regions where no topologi-
cal changes have occurred. Furthermore, the quality of the
topology change detection and the remeshing is only depen-
dent on the voxelization grid resolution. Thus, the simula-
tion resolution can be coarser while preserving a detailed
surface. The same authors [WTGT10] improved this work
by maintaining sheets of liquids thinner than the grid reso-
lution. Although the grid resolution still affects the quality
of the surface, coarser grids can be used than with their pre-
vious work. These techniques have been used with Eulerian
fluid simulations [Mül09, WTGT09, WTGT10], as well as
with Lagrangian finite element methods (FEM) [WTGT09]
and the discontinuous Galerkin method [EB14]. In all cases,
the explicit mesh is used by the fluid simulation solver to
track the fluid’s interior.

Recently, Yu et al. [YWTY12] adapted the work of Woj-
tan et al. [WTGT09] for particle-based simulations. Because
particles, instead of the explicit mesh, are used by the solver
to track the fluid’s interior, a divergence is often seen be-
tween the explicit surface and the particles during mesh ad-
vection. To prevent this problem, the mesh is projected onto
an implicit surface representation every frame. While this
projection stage does not preserve surface details, this is
however not a problem in their case since their goal is to
use an already coarse mesh to track surface properties over
time. While we also project the mesh vertices on an isosur-
face of the particles’ implicit function, the projection of Yu et
al., based on the mesh vertices’ normal, is less precise than
ours, and does not preserve the explicit mesh surface details.

Explicit surface representations used with Eulerian or
FEM simulations have the advantage of being able to pre-
serve surface details without the need for a finer simulation
resolution, but the fluid simulation and explicit surface ad-
vection are interlinked, forcing the simultaneous calculation
of both. On the other hand, with particle-based simulations,
it is possible to rebuild a new surface using modified param-
eters without having to run the simulation all over. However,
to preserve the consistency of the explicit surface with the
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1. Advection 2. Detail-preserving
projection

3. Topology matching 4. Explicit surface
topology & meshing

Figure 3: Overview of our four-step approach.

simulation particles, current approaches project the explicit
surface onto a coarser surface built from the particles, which
then loses high-resolution surface details. The approach pro-
posed in this paper focuses on preserving these surface de-
tails, while enforcing the consistency of the explicit surface
with the simulation particles.

3. Overview

We introduce a new detail-preserving surface projection ap-
proach that extends the work of Yu et al. [YWTY12]. Using
this projection, combined with a novel topology matching
operation, changes in the topology of a coarse implicit sur-
face are reflected onto a detailed explicit mesh surface. The
global approach (see Fig. 3) consists of four main stages:

1. Advection [YWTY12] (Sec. 4)
2. New detail-preserving projection (Sec. 5)
3. New topology matching (Sec. 6)
4. Explicit surface topology & meshing [WTGT09] (Sec. 7)

During the first stage, the position of the explicit mesh ver-
tices is updated using the underlying simulation position
variation. Afterward, the explicit mesh is projected (stage 2)
using the fluid implicit function, while preserving the mesh
features. After the mesh has been advected and projected,
a voxelization of the explicit mesh is computed and modi-
fied to match the topological changes of the implicit surface
(stage 3). Finally, the modified mesh voxelization is used to
locally rebuild the explicit mesh surface (stage 4) based on
the topological changes (identified in stages 2 and 4).

3.1. Data structures

The approach presented in this paper maintains an explicit
mesh structure and three scalar grid data structures. The
three grid structures are the mesh voxelization Γ, the dis-
cretized implicit function φ, and the difference field ψ. A
grid cell can be accessed either with its 1D index (e.g., φi) in
memory, its 3D index (e.g., φi, j,k) in space, or a vector (e.g.,
φ(xi)) denoting a position in space. The grid resolutions are
based on r, the initial distance between simulation particles.

To preserve temporal coherence, the cell size is kept fixed,
and the location of cells is kept fixed along the x, y, and z
axes. To adapt to the changing fluid, only the extent of the
grids is updated at each frame to fully surround the explicit
mesh and the particles.

4. Explicit Mesh Advection

In order to advect the explicit mesh, the method of Yu et
al. [YWTY12] uses the particles’ velocities to update the
vertices’ positions at every timestep of the simulation. In this
paper, the advection is done only at each frame, and relies on
particle position updates. Using the position update instead
of the particle velocity allows the surface to be advected only
once per frame, instead of once per simulation timestep, thus
reducing the computational expense. Furthermore, this elim-
inates the need to store particle data after every timestep in
order to update the surface after the simulation is run. The
particle position update ∆p j is used as follows:

xt+∆t
i = xt

i +
∑ j ∆p jWi j

∑ j Wi j
,

where Wi j is the weighting function and xi is the vertex po-
sition. In the examples shown in this paper, the poly6 kernel
from Müller et al. [MCG03] is used. The influence radius is
set to 2r, where r it the initial distance between the simula-
tion particles. When a vertex has no neighbor within the in-
fluence radius, the radius is expanded until at least one parti-
cle is found. This guarantees that every vertex of the explicit
mesh is updated.

5. Detail-Preserving Projection

The advection stage described earlier is prone to small errors
that accumulate during the course of the simulation. This re-
sults in a surface that diverges slowly from the particles, and
in small bumps that tend to gradually appear at the surface of
the mesh (see Fig. 4(a)). Furthermore, two surfaces moving
toward each other do not always merge as they should. This
problem is depicted in Fig. 4(a), where the front paws of the
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(a) Without projection:
bumps and unhandled merges

(b) With projection

(c) Without projection: unre-
alistic stretching and volume
gain

(d) With projection

Figure 4: Examples without (left) and with (right) our detail-
preserving projection.

bunny did not merge with its chest, as would have been ex-
pected. This is also true with splitting (see Fig. 4(c)), and
results in visually unpleasant stretching and volume gain.
As in the work of Yu et al. [YWTY12], the explicit mesh is
projected onto the isosurface of an implicit function. While
Yu et al. projected along the vertex normals of the explicit
mesh, we project using the gradient of the implicit function,
which is a signed distance field. Projecting along this gradi-
ent is much more precise, as with our detailed surfaces, the
normal might not be in the direction of the shortest path to
the surface, and may not even cross the surface (see Fig. 5).
Moreover, it might cross the projection path of another ver-
tex, resulting in a surface with flipped triangles.

The projection is based solely on the signed distance field,
and details are preserved by maintaining the same distance
between a vertex of the explicit mesh and its projection for
each frame of the animation. This is done in two steps (see
Fig. 6):

1. Construction of the implicit function φ (Fig. 6(a) &
Sec. 5.1)

2. Projection of the explicit mesh (Fig. 6(b) & Sec. 5.2)

(a) Vertex’s normal (b) SDF

Figure 5: Projection using (a) the vertex’s normal vs. (b) a
signed distance field.

(a) Build SDF from
particles

(b) Project vertices

Figure 6: Detail-preserving projection steps. (a) First, a
signed distance field is built from the particles; (b) then, it
is used to project the vertices, while preserving the initial
distance δi to the surface.

5.1. Implicit function

We choose our implicit function φ to be a signed distance
field. This guarantees that, for any vertex’s position xi, the
gradient ∇φ(xi) will be in the direction of the nearest point
on the isosurface φ = 0. Furthermore, the distance between
that point and the mesh vertex is equal to φ(xi), which will
be used during projection. To construct φ, the signed dis-
tance values around the isosurface φ = 0 are first computed
from the particles. Then, the distance information of inter-
face cells is propagated further away by using the fast march-
ing method of Sethian [Set95].

The mesh vertices are relatively close to the implicit sur-
face, and computing the signed distance field is rather costly.
So, we only compute it locally, based on the previous maxi-
mal distance between the mesh and the implicit surface. We
thus use 1.25 times the previous maximal distance in our ex-
amples.

While several methods for surfacing particle fluids could
be used to compute the values around the isosurface φ = 0,
the method described by Solenthaler et al. [SSP07] is used
in this paper. In that method, an implicit function value is
computed at each grid vertex position xi using the average
position of the neighbor particles inside an influence radius.
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In order to prevent erroneous results between distant par-
ticles, a correction is also applied based on the maximum
eigenvalue of the average position gradient. In the examples
presented in this paper, an influence radius of 4r is used to
provide a smooth surface. The values computed using the
method of Solenthaler et al. correspond to a signed implicit
function, but do not form a signed distance field. Thus, they
are converted by first triangulating the isosurface, and then
setting the interface cells’ value φ(xi) using their distance to
the nearest triangle.

5.2. Projection

(a) First step (b) Second step

Figure 7: Our 2-step projection: (a) First, the projection x∗i
on the isosurface φ = 0 is computed; (b) then, the final pro-
jected position xproj

i is found by moving the vertex along the
projection line to match the distance δi.

As stated previously, the implicit function, which is a
signed distance field, and its gradient are used to project the
explicit mesh vertices, in contrast to the method of Yu et
al. [YWTY12], which used their normals. Furthermore, an
initial distance δi between a vertex and the isosurface φ = 0
should be maintained during the projection in order to pre-
serve surface details. This distance is computed at time t = 0
for all initial mesh vertices, and at creation time for vertices
created later during the animation. By definition, in a signed
distance field, the opposite of the gradient −∇φ(xi) points
in the direction of the closest point on the isosurface φ = 0.
Also, the value φ(xi) is equal to the distance from xi to that
point. Thus, the projection xproj

i of xi on the isosurface φ= δi
could be obtained using the following equation:

xproj
i = xi−

∇φ(xi)

‖∇φ(xi)‖
· (φ(xi)−δi) . (1)

However, our experiments showed that Eq. 1 often fails to
find a good solution when xi lies inside a cell containing a
local maximum or minimum of φ, because the grid interpola-
tion approximation systematically under- or over-estimates
the value of φ in these cells. To improve the precision in
such cases, the proposed approach uses a two-step projec-
tion, where the closest point on φ = 0 is first found (see
Fig. 7(a)), and then the vertex is moved along the projection
line to match the distance δi (see Fig. 7(b)). As the value
of φ can be unreliable, the projection on φ = 0 is found by

iteratively moving toward φ = 0:

x∗i = x∗i − ε · ∇φ(xi)

‖∇φ(xi)‖
·φ(xi),

where x∗i is initially set to xi. The coefficient ε represents the
fraction of the distance to travel toward φ = 0, so it should
have a value in the range (0,1], and is set to 0.35 in the ex-
amples shown in this paper. This operation is repeated until
φ(x∗i ) is lower than a predefined threshold (0.005∆xφ is used
in the examples shown in this paper, where ∆xφ is the cell
size of φ). During this stage, a cubic interpolation is used to
compute the value of φ(xi) in order to provide a better ap-
proximation of the surface curvature during the projection.
Afterward, the final projection position xproj

i is computed us-
ing the following equation:

xproj
i = x∗i +

xi−x∗i
‖xi−x∗i ‖

·δi.

After these two steps, the vertex should be correctly pro-
jected on the surface, while preserving its initial distance.

5.3. Topological changes detection for the implicit
function

In order to correctly remesh the explicit surface (Sec. 7), two
main types of topological changes need to be accounted for:
those in the implicit surface and those in the explicit surface.
Topological changes of the implicit surface are handled in
this section, while those of the explicit surface will be dealt
with in Sec. 7. The changes in the topology of the isosurface
φ = 0 that we want to detect here are those that cause the
surface to merge or split. Such changes result in a sudden
“jump” in the vertex position when the projection is applied,
allowing the detection of these topology changes with the
following threshold: ∣∣∣xi−xproj

i

∣∣∣> τ.

When a vertex exceeding this threshold is found, it is moved
back to its original position xi, and the cells (of the Γ grid)
containing the neighbor triangles of that vertex are flagged
for the topology matching (see Sec. 6) and the remeshing
(see Sec. 7) operations. In the examples shown in this paper,
τ = 0.5r.

This approach is different from the method used in the
work of Yu et al. [YWTY12]. In their case, vertices were de-
tected when the projection failed to find the isosurface φ = 0.
Our projection is guaranteed to find the nearest point on the
isosurface φ = 0, and as a result, it is necessary to use the
threshold-based detection outlined above.

6. Optimization-Based Topology Matching

The goal of the topology matching stage is to handle prob-
lems outlined in Fig. 8, where the surface should merge (see
Fig. 8(a)) or should disconnect (see Fig. 8(c)). These prob-
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(a) Without topology match-
ing: undetected merges

(b) With topology matching

(c) Without topology match-
ing: undetected splitting

(d) With topology matching

Figure 8: Topology matching is an important step of our
approach, as can be seen in the results without (left) and
with (right) this stage.

lems are caused by the divergence between the explicit and
the implicit surface topologies, as can be seen in Fig. 9.
Thus, it is crucial to intelligently adjust the explicit mesh
to reflect the topological changes from the implicit func-
tion, while preserving its details. This will be done with an
optimization that locally adjusts the topology, and globally
preserves details. The topology matching stage consists of
two steps. First, using the technique described by Wojtan et
al. [WTGT10], a signed distance field is built from the ex-
plicit mesh, and stored in the mesh voxelization grid Γ. Then,
an optimization is performed on the grid to locally adjust the
topology of Γ to mirror the topological changes of φ, which
have previously been identified during the projection (see
Sec. 5.3). Note that the optimization is performed only if
one or more cells have been flagged during projection. This
modified mesh voxelization grid will later be used to rebuild
the mesh locally (see Sec. 7).

During this operation, cells that are near the interface and
have not been flagged during projection are marked as fixed
cells. This flag indicates that these cells should not be mod-
ified by the topology matching stage. To be considered near
the interface, the cell’s distance from the surface should not
be greater than the diagonal length of a grid cell:

|Γi| ≤ h
√

3,

(a) Implicit surface (b) Explicit surface

Figure 9: Cutaway view showcasing the divergence between
(a) the implicit and (b) the explicit surface topologies, when
topology matching is not performed.

where h is the grid cell size. Afterward, all the other cells are
modified to match the topology of the implicit surface, and
to provide a smooth transition with the fixed cells.

The main idea behind the topology matching operation is
that, in non-fixed cells, the interface Γ= 0 should lie as much
as possible on the same isosurface of φ. Thus, the difference
between the value of Γ and φ in those cells should be similar
to that of their neighbors. This will ensure that the values for
those cells of Γ follow the implicit surface topology while
being consistent with the fixed cells. Let us define the scalar
field ψ as the difference between the explicit surface vox-
elization Γ and the implicit function φ:

ψ(x) = Γ(x)−φ(x). (2)

The objective is to minimize the variation of ψ(x) around the
neighborhood of x. This can be expressed as the minimiza-
tion of the Dirichlet energy function:

min
ψ

1
2

∫
‖∇ψ‖2dx,

which is equivalent to solving the following Poisson equa-
tion:

∇·∇ψ = 0. (3)

The topology matching operation works by solving Eq. 3 for
every non-fixed cell, as will be explained in the following
sections.

6.1. Topology matching solver

Solving Eq. 3 first requires discretizing the scalar field ψ in a
grid with the same dimensions, position and size as Γ. Thus,
each vertex of ψ corresponds to a vertex of Γ, with the same
position and indices. From that, Eq. 3 is reformulated using
the central difference:

6ψi, j,k−
(ψi−1, j,k +ψi+1, j,k+
ψi, j−1,k +ψi, j+1,k+
ψi, j,k−1 +ψi, j,k+1)

= 0. (4)

This equation is satisfied when ψi, j,k is equal to the aver-
age value of its neighbors, resulting in a smooth scalar field.
Thus, the value of ψ will be smoothly interpolated between
fixed cells. Putting the previous equation into matrix form
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gives: 
6 α21 · · · α1n

α21 6 · · · α2n
...

...
. . .

...
αn1 αn2 · · · 6




ψ0
ψ1
...

ψn

=


0
0
...
0

 ,

where

αi j =

{
−1 if j is a neighbor of i.

0 otherwise.

This is a simple linear system in the form Ax = b, where
A is a sparse symmetric positive definite matrix. Solving
that particular type of equation is a well-known problem,
and it can be carried out efficiently using a wide range of
solvers. We validated our approach with both a modified in-
complete Cholesky conjugate gradient level 0 (MICCG(0))
solver and a successive over-relaxation (SOR) solver. While
the MICCG(0) solver performed better with a larger num-
ber of cells, in most of our examples the speed of the SOR
solver was similar or better because of its lower time cost
per iteration. Furthermore, this solver does not require any
matrix construction, which therefore lowers its memory re-
quirement. Thus, a SOR solver was used in the examples
shown in this paper. This solver works by iteratively updat-
ing the value of each grid vertex ψi using the following equa-
tion:

ψ
l+1
i = (1−ω)ψl

j +
ω

αii

(
−∑

j<i
αi jψ

l+1
j −∑

j>i
αi jψ

l
j

)
. (5)

The relaxation factor ω is used to accelerate convergence,
and a value in the range of 0 < ω < 2 guarantees conver-
gence. Choosing its value carefully can increase the perfor-
mance of the solver. Fortunately, Yang and Gobbert [YG09]
showed that the optimal value ωopt for the 3D Poisson equa-
tion with Dirichlet boundary conditions can be computed us-
ing the following equation:

ωopt(N) =
2

1+ sin
(

π

N+1
) ,

where N is the dimension of the grid, assuming a N×N×N
grid. Since our grid does not necessarily have uniform di-
mensions, we use the maximum dimension along one axis.
This equation was used to compute the relaxation parameter
value in all the examples shown in this paper.

The solver is iterated until the maximum relative differ-
ence gets below a threshold:

max
i
‖ψl+1

i −ψ
l
i‖< β.

The threshold value β = 0.01h is used in all the examples
shown in this paper.

Algorithm 1 shows the complete topology matching stage.
During the first step of this stage, ψi is initialized for each
cell using the initial solution ψi = 0. Moreover, the fixed cells
of Γ are identified and the Dirichlet boundary conditions are

enforced for the cells in ψ (see Sec. 6.2). Note that since
the grid φ resolution is not necessarily the same as Γ, lin-
ear interpolation is used to compute the value of φ at each
grid vertex. Afterward, the successive over-relaxation itera-
tions are computed until convergence is reached. Finally, Γ

is updated using the new values of ψ.

Algorithm 1: Topology matching

1 Procedure TOPOLOGY_MATCHING
2 forall the cells i in Γ do
3 if (i is not flagged) AND (‖Γi‖ ≤ (h

√
3)) then

4 Set i as a fixed cell
5 ψi = Γi− interpolate(xi,φ)

6 else
7 ψi = 0
8 while (maxi ‖ψl+1

i −ψ
l
i‖> β) do

9 forall the non-fixed cells i do
10 Compute ψ

l+1
i using Eq. 5

11 forall the non-fixed cells i do
12 Γi = ψi + interpolate(xi,φ)

Note that the successive over-relaxation solver does not
require a temporary structure to store the previous values
of ψ

k. This is because ψ
k+1
i is computed using the previ-

ously updated value when the neighbor has already been pro-
cessed.

6.2. Boundary conditions

For grid cells lying on the boundaries, the missing neighbor
values are replaced by the cell value ψi, j,k in Eq. 4. It can
be seen that doing so only removes the contribution of those
neighbors while decrementing the coefficient of ψi, j,k. Thus,
the condition can be enforced by modifying the way αii is
computed:

αii = Ni,

where Ni is the number of neighbor cells of i.

In order to preserve the original surface inside the fixed
cells, Dirichlet boundary conditions are enforced. The values
ψi, j,k of those fixed cells are initialized using Eq. 2, and are
not modified by the solver.

7. Explicit Surface Topology & Meshing

The topology of the explicit mesh voxelization (Γ) and the
topology of the implicit function (φ) now match, and the
cells of Γ requiring remeshing based on changes in the im-
plicit surface topology are marked for reconstruction. We use
the method of Wojtan et al. [WTGT09] to mark the cells re-
quiring remeshing based on changes in the topology of the
explicit surface, and to reconstruct the mesh geometry in-
side marked cells. To summarize their method, the topolog-
ical changes of the explicit mesh surface are first detected
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(a) (b) (c) (d) (e) (f) (g)

Figure 10: We tested our approach on several scenarios, ranging from slow deformation to a large number of complex topolog-
ical changes.

(a) t = 0s (b) t = 5s (c) t = 10s (d) t = 15s (e) t = 20s

Figure 11: Melting of the Stanford bunny from the bottom using only 27,952 particles. Top: the implicit surface built from the
particles; bottom: our explicit surface.

by marking cells where multiple interpenetrations occur in
the explicit mesh. A “deep cell test” is then used to com-
pare the topology of the explicit mesh and its voxelization
Γ, in order to detect regions where merging and splitting oc-
curred. Afterward, the geometry in the marked cells is re-
moved from the explicit mesh, and then reconstructed using
the marching cube algorithm from Lorensen et al. [LC87].
In our implementation, the modified look-up table of Mon-
tani et al. [MSS94] is used to resolve ambiguous cases and
avoid producing cracks in the resulting geometry. Note that
the detection and the surface reconstruction are based on the
adjusted value of the explicit mesh voxelization Γ, ensur-
ing a smooth transition with the surrounding detailed explicit
mesh.

8. Robustness

As is typical in explicit mesh methods [BB09, WTGT09,
WTGT10, YWTY12], after the mesh is advected, edges that
are too small are collapsed and those that are too long are
split. Also, as in the method of Yu et al. [YWTY12], edges
are collapsed when the dihedral angle of the supporting tri-
angles is too large. These operations help maintain a good
mesh quality throughout the surface tracking process. As in
previous methods [BB09, WTGT10], the modified butterfly
subdivision scheme of Zorin et al. [ZSS96] is used to posi-
tion the new mesh vertices during splitting operations. Dur-
ing a collapse operation, if a vertex lies on a ridge or a corner,
its position is used, otherwise, the butterfly subdivision is
used instead, such as in Brochu and Bridson [BB09]. We re-
fer the reader to the course notes of Wojtan et al. [WMFB11]

on mesh-based surface tracking for a more detailed explana-
tion of how to preserve a good mesh quality.

The stitching mechanism of Wojtan et al. [WTGT10] is
used when connecting the newly created mesh with the old
one. This method better preserves the details in those regions
than that of Wojtan et al. [WTGT09], and is less prone to the
generation of a non-manifold geometry. Furthermore, as in
the work of Wojtan et al. [WTGT09], when a non-manifold
geometry is detected, the neighbor cells are marked and re-
constructed.

9. Results

We tested our approach on a range of scenarios, ranging
from a slowly melting object to severe deformations induced
by rigid obstacles tearing apart objects made of viscous ma-
terial. Several test scenarios can be found in the accompa-
nying video, and representative frames are shown in Fig. 10.
We first show that surface details are well preserved over
time for low deformation rates by slowly melting the Stan-
ford bunny from its base (see Fig. 11), and dropping a highly
viscous dragon on obstacles (see Fig. 1, Fig. 10(b), and the
video). The bunny and the dragon were simulated using only
27,952 particles and 20,456 particles, respectively, and yet
our approach preserved the original details of the mesh sur-
face throughout the simulation, while the implicit surface did
not.

We then show that the approach correctly handles merging
fluids by dropping viscous objects on top of one another. The
cutout views in Fig. 12 and in the video show that the topo-
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Figure 12: Viscous objects falling on top of one another at
time t = 4s (269,257 particles). Left: cutout view of the im-
plicit surface built from the particles; right: cutout view of
our explicit surface.

logical changes are correctly handled as the objects merge
together, ensuring that the topology of the explicit mesh sur-
face is consistent with that of the implicit surface. With our
approach, the finer details of the original mesh surface, such
as the horns of the gazelle and the armadillo’s shell, are well
preserved (see accompanying video). Similarly, we show
that our approach handles fluid splitting correctly by tearing
apart objects (see Fig. 13, Fig. 10(e), and the video). Surface
splitting is handled gracefully by our approach, consistent
with the implicit surface topology. Moreover, surface details
are well preserved in regions that have not been affected by
topological changes, such as the head of the gazelle.

Figure 13: Tearing apart an object at time t = 2s (21,362
particles). Left: the implicit surface built from the particles;
right: our explicit surface.

We show that the approach handles cases where multiple
and complex topological changes occur by simulating a non-
viscous liquid (see Fig. 14). Surface details, such as the face,
the teeth, and the shell of the armadillo, are preserved until
reconstruction occurs in those areas. Furthermore, the sur-
face is stable when multiple splittings and mergings occur at
once. Even the splashes are captured correctly, thanks to our
topology matching stage.

In Fig. 15, two liquid bunnies collided before falling into
a pool of liquid. Despite the complexity of the topologi-
cal changes, the resulting explicit mesh surface closely fol-
lows the implicit surface. Note that the complete sequence is
available in the accompanying video.

(a) t = 0.79s

(b) t = 2.25s

Figure 14: Non-viscous liquid Stanford armadillo (35,214
particles). Left: the implicit surface built from the particles.
Right: our explicit surface.

9.1. Comparison

We implemented the method of Yu et al. [YWTY12], and
compared it to our approach for the dragon example. As can
be seen in Fig. 16, their method fails to preserve surface de-
tails of the original mesh, because of the projection on an
implicit surface. Our approach successfully preserves such
surface details. In our experimentations, we also observed
that the projection of Yu et al. [YWTY12] is unstable, and
introduces flickering of the surface in regions with high cur-
vature if it is calculated only once per frame (see accompa-
nying video). In contrast, our projection proved to be stable
using only one step per frame, which allows us to handle
topological changes only once per frame.

9.2. Discussion

We compared the results using a coarser and finer resolution
for the explicit mesh voxelization Γ in Fig. 17 and in the
video. When the resolution is too coarse, finer details, such
as the horns of the gazelle, might be erroneously split. Fur-
thermore, the reconstruction might not be accurate enough,
which can result in loss of details, and in lumps floating
around the object. On the other hand, as can be seen in Ta-
ble 1, the computation times of the topology matching and
the explicit topology & meshing stages increase consider-
ably when a finer resolution is used. The examples shown
in this paper use ∆xΓ = 0.5r, except for the ones shown
in Fig. 17. Smaller details could be better preserved, even
with a coarser grid, by using the approach of Wojtan et
al. [WTGT10] to handle the explicit surface topological
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Figure 15: Splashes generated after two liquid bunnies col-
lided. Top: the implicit surface; bottom: our explicit mesh
surface.

Figure 16: Comparison between the technique of Yu et
al. [YWTY12] (left) and our approach (right). Our projec-
tion preserves the details of the initial explicit mesh surface.

changes. However, since that technique does not reconstruct
the surface directly from the voxelization, it would also re-
quire changing the way our topology matching stage works.
Similarly, we validated our scenarios with different reso-

lutions for the implicit function φ. We found that using a
coarser resolution, such as ∆xφ = r, resulted in small oscil-
lations of the implicit surface that where transferred to the

Topology matching Explicit topology & meshing
∆xΓ = 0.25r 155.79 s 36.91 s
∆xΓ = 0.5r 8.28 s 5.11 s
∆xΓ = 1.0r 0.53 s 1.90 s
∆xΓ = 2.0r 0.05 s 1.11 s

Table 1: Timing comparison for the gazelle scenario, with
different resolutions ∆xΓ.

Figure 17: Comparing our results with the resolution ∆xΓ = r
(left) and ∆xΓ = r/2 (right).

explicit surface during animation. Using a finer resolution
∆xφ = r/2 removed the oscillations.

The timings of all the examples are shown in Table 2, and
the relative time for each part of the approach is depicted in
Fig. 18. The most time-consuming parts of our approach are
the computation of the implicit surface [SSP07], the topol-
ogy matching stage, and the explicit topology & meshing, as
can be seen in Fig. 18. Furthermore, the ratio of the compu-
tation times for these parts is not always the same. As can
be seen in Table 2, the computation time of the implicit sur-
face is proportional to the number of particles, but it should
be noted that the number of particles does not affect the
computation times of the other parts. The timings of the ad-
vection, projection, and explicit topology & meshing stages
depend mostly on the number of triangles. Moreover, the
computation times of the explicit topology & meshing stage
are proportional to the amount of topological changes. The
topology matching stage also requires more time to compute
for scenarios where the surface is contained within a large
volume (splitting gazelle, falling objects, and gears). As the
number of cells increases, the matrix system becomes larger,
and the solver requires more iterations to convergence. How-
ever, the impact this stage has on the overall time is greatly
reduced as this operation is skipped when no early topologi-
cal changes are detected (see Sec. 5.3). This can be observed
in scenarios with few topological changes (bunny, falling ob-
jects, and viscous armadillo), where it was performed on less
than 50% of the total frames. We believe computation times
for this operation could be further reduced by limiting the
processing to cells within a threshold distance to the flagged
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Avg. time per frame (s)

Example Avg. #
particles

Avg. #
triangles Advect

Implicit function
Proj. Topology

matching

Explicit
topology

& meshing
Total[SSP07] SDF

Dragon (Fig. 1) 20,456 257,785 1.17 3.01 1.39 1.24 1.59 (58%) 3.16 11.55
Gears (Fig. 10(e)) 8,877 121,414 0.39 1.82 3.06 0.48 13.48 (83%) 5.55 24.77
Viscous armadillo (Fig. 10(g)) 35,195 85,274 0.41 5.34 3.43 0.32 4.13 (43%) 3.59 17.22
Melting bunny (Fig. 11) 27,952 66,862 0.30 3.98 0.92 0.24 0.00 ( 0%) 1.48 6.92
Falling objects (Fig. 12) 259,752 370,789 1.29 35.96 9.60 1.10 8.18 (38%) 7.27 63.40
Splitting gazelle (Fig. 13) 21,362 242,932 0.87 3.43 2.53 0.81 8.28 (83%) 5.11 21.03
Liquid armadillo (Fig. 14) 35,214 100,870 0.41 6.04 4.15 0.67 5.43 (94%) 4.51 21.20

Table 2: Timings for all examples. The per frame average computation times are for the explicit mesh advection (Sec. 4), the
implicit surface evaluation and triangulation using the method of Solenthaler et al. [SSP07] (Sec. 5.1), the signed distance field
calculation (voxelizing the implicit surface, and then performing the FMM [LC87]) (Sec. 5.1), the detail-preserving projection
(Sec. 5.2, and Sec. 5.3), the topology matching stage (Sec. 6), and the explicit topology & meshing stage (Sec. 7). Numbers in
parentheses correspond to the percentages of frames where the topology matching stage was executed.

cells. However, care must be taken not to choose a distance
that is too small, which might prevent distant volumes from
merging, and would result in holes on the surface.

Bunny

Falling
Objects

Dragon

Viscous
Armadillo

Liquid

Splitting
Gazelle

Gears

0%

20%

40%

60%

80%

100%

Advection

Projection

SDF

Explicit topology 
& meshing

SSP07

Topology match-
ing

Advection

SSP07

SDF

Projection

Topology match-
ing

Explicit topology 
& meshing

Figure 18: Timing percentages for all examples. The per
frame timing percentages are for the same stages as those
given in Table 2.

In our approach, all the computations are performed only
once per frame. This is different from the case of Yu et
al. [YWTY12], where the advection and the topological
changes were performed at every timestep of the simulation.
In their case, this is necessary since an accurate surface rep-
resentation is needed throughout the simulation in order to
compute accurate surface tension forces. Other papers based
on an Eulerian simulation [WTGT09, Mül09, WTGT10]
mention that they can handle topological changes only once
per frame; however, they still need to advect the surface at
every timestep since they need it to update the interior cells
of the simulation. Even though the advection stage is not
costly, this dependency makes it harder to recompute the
surface without re-running the simulation. Since we use a
particle-based simulation, no information from the surface is
needed during the simulation. Therefore, with our approach,

it is possible to generate the explicit mesh surface as a post-
process operation once the entire simulation has been com-
puted. This enables a more user-friendly workflow, in which
the user can obtain the desired behavior from the simulation,
and then separately generate and adjust the explicit mesh
surface without affecting the simulation.

All the simulations shown in this paper were generated
using Houdini’s FLIP fluid solver, except for the liquid Stan-
ford armadillo example (see Fig. 14), where an SPH simu-
lator was used [BT07]. Particles resampling was disabled in
the FLIP solver to prevent particles from being added or re-
moved near the surface, which results in minor flickering of
the implicit surface. Our approach could take advantage of
parallel computing; however, the timings shown in this paper
are for a sequential execution on a single core. The timings
information provided in this section are for a 3.2 GHz Intel
i7-3930K CPU with 32 GB of RAM. The images and videos
were rendered using Houdini’s Mantra.

9.3. Limitations

When large regions of the explicit mesh surface are recon-
structed, temporal discontinuities may occur. These discon-
tinuities may be in the form of a surface popping artifact
on some frames of the animation, and may be caused by a
coarse grid resolution (see Fig. 17 and the video), or by a
late detection of small topological changes on the implicit
surface. Nonetheless, in the first case, a smaller voxeliza-
tion grid cell size reduces this problem, at the cost of longer
computation times. As for the second case, the problem oc-
curs when a small topological change on the implicit surface
does not induce a vertex movement of the nearby mesh that
is large enough to be detected by the threshold described in
Sec. 5.3. The reconstruction is delayed until the threshold is
triggered, which forces the reconstruction of a larger region
of the explicit mesh. This problem generally occurs when
small holes are created in a thin volume of liquid. This can be

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



F. Dagenais et al. / Detail-Preserving Explicit Mesh Projection and Topology Matching for Particle-Based Fluids

seen in the viscous armadillo (see Fig. 10(g) and the video)
and in the colliding bunnies (see Fig. 15 and the video) sce-
narios, where holes in the implicit surface are not imme-
diately detected and handled, resulting in a delayed recon-
struction of a larger region of the mesh. This can be reduced
by using a smaller threshold τ when detecting topological
changes in the implicit function. However, choosing a value
that is too small might unnecessarily reconstruct portions of
the mesh where no topological changes of the implicit func-
tion occurred. Furthermore, changes in topology that occur
further from the explicit surface, such as the creation of bub-
bles and droplets, may not be detected by our criterion. How-
ever, these features are transferred to the mesh voxelization
Γ during the topology matching stage. Because this stage is
triggered only when a topological change is detected by the
criterion, in some cases it may require a few frames before
the change in topology is reflected on the explicit mesh. A
compromise is to perform the topology matching stage at
every frame, at the cost of longer computation times. The
problem of identifying topological changes of an implicit
surface is not new, and more robust approaches could be
used instead of our criterion. For instance, it can be shown
from Morse theory that changes in the topology of a pa-
rameterized implicit surface occur at the location of a crit-
ical point [Har98]. By tracking such events using interval
arithmetic, Stander and Hart [SH97] were able to identify
topological changes of an implicit surface. While such an
approach would add a significant overhead to our computa-
tion times, we believe it could allow the early detection of
holes, bubbles, and splashes. One could also use concepts
from digital topology to detect such changes. Using a level-
set evolution such as that of Han et al. [HXP03], which pre-
serves topology, our implicit surface could be morphed into
the explicit mesh voxelization while preserving its topology.
The conflicting regions between the two surfaces could then
be used to identify where their topologies differ. It should
be noted that such a technique would increase computation
times, and that developing a robust solution might not be
as trivial as expected. The evolution of the implicit surface
needs to be carefully directed, as multiple solutions can be
topologically equivalent at the global scale, but might not
reflect the same local topological changes.

While our approach works well with viscous fluids, some
limitations have however been observed with non-viscous
fluids. In the latter cases, it might be undesirable to pre-
serve all surface details. This can be seen in the liquid ar-
madillo (see Fig. 14 and the video) and splashing bunnies
(see Fig. 15 and the video) examples, where small wrin-
kles are preserved on the liquid surface as it comes to rest,
and small folds are sometimes preserved where two sur-
faces merge. A smoother surface is expected for such a non-
viscous liquid. Decreasing the distance δi between the ver-
tices and the isosurface should result in the expected behav-
ior, as the explicit surface would then take on the appearance
of the isosurface. A metric based on the viscosity and the

deformation undergone by the surface, e.g., the magnitude
of the pressure gradient, such as in the work of Goldade et
al. [GBW16], could be used to determine where and when
to adjust δi. Additionally, while our explicit surface can han-
dle the frequent remeshing caused by the multiple topolog-
ical changes that non-viscous liquids generally undergo, it
tends to lose details at points where topological changes of
the implicit surface occurred. This is caused by the topol-
ogy matching stage, which tries to replicate the shape of
the implicit surface in regions that are being reconstructed.
Nonetheless, our approach is still relevant for non-viscous
liquids, as the explicit mesh surface preserves its original
shape until it undergoes several topological changes, and can
also be used to track surface properties such as color or phys-
ical quantities, such as in the work of Yu et al. [YWTY12].

10. Conclusion

We presented a new detail-preserving projection, coupled
with a novel topology matching stage. Unlike previous meth-
ods, our approach preserves the original surface details, even
when the underlying simulation is very coarse. The approach
was successfully used with simulations of melting objects,
highly viscous objects, and even non-viscous liquids. It was
used with a FLIP and an SPH simulator, and could easily be
adapted to any particle-based simulator.

It would be interesting to extend the approach to preserve
thin sheets even when using a coarse grid resolution. We
would also like to extend the approach to better handle non-
viscous liquids in order to preserve the surface details and
smooth them out as the surface changes. Furthermore, this
approach could be extended to accurately track surface prop-
erties such as color or texture coordinates.
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