
CGI2016 manuscript No.
(will be inserted by the editor)

An Efficient Layered Simulation Workflow For Snow Imprints

François Dagenais · Jonathan Gagnon · Eric Paquette

Abstract This paper introduces a novel workflow to

generate snow imprints, and model the interaction of

snow with dynamic objects. We decoupled snow simula-

tion into three components: a base layer, snow particles,

and snow mist. The base layer consists of snow that has

not been in contact with a dynamic object yet, and is

stored as a level set. Snow particles model the interac-

tion between the snow and the dynamic objects. They

are added when the dynamic objects collide with the

base layer, and are animated using an adapted gran-

ular material simulation. The very thin and powdery

snow released by airborne snow particles is modeled by

the snow mist. This component is greatly influenced by

the surrounding air medium, thus it is animated using

a fluid simulation. This decomposition allows to focus

memory expensive and time-consuming computations

only where dynamic objects interact with the snow,
which is much more efficient than relying on a full-scale

simulation.

Keywords animation, fluid simulation, natural

phenomena, snow, imprints, footprints

1 Introduction

Snow is an important aspect that is ubiquitous in

movies with winter scenery. While modeling static snow

F. Dagenais1

francois.dagenais.2@ens.etsmtl.ca

J. Gagnon1,2

jonathangagnon@gmail.com

E. Paquette1

eric.paquette@etsmtl.ca

1Multimedia Lab, École de technologie supérieure, Montreal,
Canada
2Mokko Studio, Montreal, Canada

can be an easy task, simulating its interaction with

characters and dynamic objects requires much more

time and efforts in order to achieve a visually realis-

tic look.

Simulators available in current commercial software

and state of the art simulation methods for snow and

granular material [8,10,16,19,25] can simulate snow at

a limited scale. They require a large amount of simu-

lation data to generate realistic results even just at a

moderate scale, which results in a large memory con-

sumption and long computation times. Furthermore, in

larger scenes, a considerable amount of the memory and

computation will most likely involve snow that remains

unchanged throughout the simulation. Typical scenar-

ios, like character footsteps or sleigh tracks, interact

with a small subset of snow. In such cases where the
interactions with the snow are localized, height map

methods [17,18,24] limit their computations to areas

affected by the motion of dynamic objects. Relying on

a much more efficient simulation strategy, these meth-

ods significantly reduce the memory and computation

costs. However, they are limited to a simple deforma-

tion of a flat surface, thus they cannot model snow that

is projected in the air.

This paper introduces an efficient workflow to han-

dle the interaction between snow and dynamic objects

by subdividing the phenomenon into three separate

simulations (see Fig. 1). First, our base layer simu-

lation uses constructive solid geometry (CSG) opera-

tions on level set representations of the snow and the

dynamic objects to leave smooth imprints and deter-

mine locations where finer resolution simulations are

locally required. Then, a modified granular simulation

adds snow particles to model the behavior of snow that

gets pushed and tossed. Finally, a tailored fluid simula-

tion replicates the look and the behavior of the airborne

2 François Dagenais et al.

Base layer Snow particles Snow mist Final result

Fig. 1 Our decomposition into three components allows us to model efficiently the fine scale details of snow.

sparse snow mist driven by the surrounding air medium.

The contributions of this paper are:

– A decoupling of the behavior of the snow into three

components;

– An efficient simulation approach for each of the

three components;

– Adapted simulations taking into account the impact

of the air resistance for the snow particles and mist;

– A control over the transfer of snow from the base

layer to the snow particles and then to the snow

mist.

Given our cascade of simulation components, our ap-

proach provides early feedback of the look of the im-

prints and the movement of the snow particles. It han-

dles the snow interaction with simple or complex dy-

namic objects, it can cope with large scenes, and it pro-

vides good visual results. Furthermore, it significantly

decreases the memory consumption and the computa-

tion times by adding details only where they are re-

quired. Finally, it provides separate control over three

different components of the snow behavior.

2 Related Work

Early work on snow focused mostly on modeling its ac-

cumulation on the ground and objects. Some methods

analyzed the flow of snow [4,12] as it falls from the sky,

while others relied on geometric models [6,7] to gen-

erate the snow in a static scene. Some work even used

physical simulations to model the impact of wind [5,22]

and heat transfer [11]. Nevertheless, these methods fo-

cus mainly on the generation of a static geometry that

can grow over time, as snow accumulates. Thus, they do

not address the animation of snow that interacts with

dynamic objects.

It is quite common to consider snow as a granular

material, like sand. Sumner et al. [20] used a height

map to animate sand, mud, as well as snow. In their

method, the snow height map is updated when a col-

lision occurs with a dynamic object. Cells surrounding

the colliding cells are then updated to take into account

mass displacement and erosion. Particles are created at

the surface of the colliding objects to model snow that

adheres to these objects and then falls. As particles

fall back to the ground, volume is added to the corre-

sponding height map cells. This method was improved

by Onoue and Nishita [17], by allowing snow to lie on

top of objects through the use of a multivalued height

map. Zeng et al. [24] further improved the behavior by

considering the velocity of the dynamic objects when

computing the mass displacement. Pla-Castells et al.

[18] used cellular automata to compute the mass dis-

placement between height map cells in a more physi-

cally correct way. These approaches were designed for

real-time applications and are fast to compute, how-

ever, they are very limited in the variety of behaviors

they can reproduce. The height map behavior is limited

to a 2D simulation, and cannot model the dynamics of

airborne snow. While some of these methods [17,20] use

particles to depict airborne sand or snow, their dynam-

ics is very limited. Inter-particle interactions are not

considered, and particles do not interact with dynamic

objects after being emitted. Furthermore, the transfer

of mass from particles to height map cells will likely

produce temporal artifacts in the animation.

Fully physically-based simulations handling the in-

teraction between particles and dynamic objects enable

the complete range of snow dynamics. Bell et al. [2] used

the discrete element method (DEM) to simulate sand

using particles. The long computation times of their

method were shortened significantly in the work of Zhu

and Yang [25] by converting still particles hidden un-

der surface particles to a multivalued height map, and

only simulating the surface particles. Fluid simulation

approaches have also successfully been adapted to sim-

ulate granular materials. A variety of paradigms have

been used, such as Fluid Implicit Particle (FLIP) [16,

26] and Smoothed Particle Hydrodynamics (SPH) [1,8,

9]. Additionally, position based dynamics [13] have been

used by Macklin et al. [10] to simulate sand. While these

simulation paradigms enable a rich range of dynamic

behaviors, they do not model some of the characteris-

tics specific to snow, such as its compressibility and its

interaction with air.

An Efficient Layered Simulation Workflow For Snow Imprints 3

Instead of simulating any granular material, some

fully physically-based simulation methods specifically

address the simulation of snow. Takahashi and Fu-

jishiro [21] extended the SPH method to handle the

sintering of snow. Stomakhin et al. [19] used the Ma-

terial Point Method (MPM) to simulate wet and dense

snow. Their hybrid Eulerian/Lagrangian approach al-

lowed them to achieve a visually plausible simulation

for snow that exhibits both fluid and solid proper-

ties. Wong et al. [23] simulated snow using a DEM

simulation with cohesive forces. Similarily to Zhu and

Yang [25], they reduce computation times by only con-

sidering surface particles. While these simulation meth-

ods can model a wide range of snow behaviors, their

computation time and memory requirements become

unmanageable when considering larger scenes or when

requiring finer details. Thus, they generally scale poorly

in scenes that cover a large area. On the other hand, as

stated previously, methods based on multivalued height

maps are limited in the range of behaviors that they can

model, but are much faster and scale better to larger

scenes.

As multivalued height map methods, our approach

has low computation time and memory costs. Neverthe-

less, we rely on a level set instead of a grid, resulting

in more flexibility and precision for the dynamic ob-

ject interactions. The level set also allows us to achieve

a higher degree of realism by applying a 3D localised

noise where imprints appear in the snow. Addition-

ally, to allow for the wider range of behaviors of the

fully physically-based methods, our approach proposes

an adapted and localized granular simulation. Further-

more, the computation times of our simulation are low-

ered by computing its dynamics only where potential

interactions may occur. Finally, to reproduce the full

spectrum of snow behavior, our snow mist uses a mod-

ified fluid simulation modeling the interaction with the

surrounding air. Thus, our approach allows more vi-

sually complex results than multivalued height maps

methods, while requiring less memory and computation

times than a full particle simulation.

3 Overview

Our approach aims to simulate powdery snow, which

gets compressed under the weight of objects, such as

a character’s feet, and also exhibits complex behaviors

when it interacts with objects or becomes airborne. As

shown in Fig. 2, to achieve such a behavior we decom-

pose the physical process into three components: the

base layer (see Sec. 4), the snow particles (see Sec. 5),

and airborne snow mist (see Sec. 6). We use sepa-

rate simulation paradigms for each of the components;

When brought together, these three components pro-

vide a very efficient and easy to control snow imprint

workflow.

The first component, which we call the base layer,

is made of the snow that did not interact with the dy-

namic objects yet. Handling it is efficient, as it is pro-

cessed only when the objects collide with it. In such

event, the snow of the base layer is compressed by the

dynamic objects, and some of that snow is transferred

to the second component: the snow particles. Those

moving snow particles reproduce the complex behavior

of snow that interacts with the dynamic objects, other

snow particles, and the base layer. Driven by a parti-

cle simulation, they enable the accumulation of snow as

well as the projection of snow in the air. While these

snow particles mimic the behavior of snow clumps of

modest size, they fail to recreate the motion of tiny

airborne snow elements, whose behavior is strongly af-

fected by the supporting air medium. Hence, the air-

borne snow particles trigger the creation of the third

component: the snow mist. This last component relies

on an incompressible fluid simulation, and its behavior

relies on that of the surrounding air medium.

To maintain a realistic and efficient simulation, we

rely on a unidirectional coupling between the three

components; the base layer influences the snow parti-

cles, which in turn influence the snow mist. This brings

the advantage of providing early feedback: the base

layer simulation can be entirely computed before sim-

ulating the snow particles, which can in turn be com-

pletely fine tuned before generating the snow mist.

4 Base Layer

The initial snow layer can be designed in two ways: by

specifying a height on top of the objects and ground, or

by specifying the top surface of the snow. The base layer

is constructed from this designed snow shape. Then,

throughout the animation, the parts that collide with

the dynamic objects are removed to match the con-

tour of the volume swept by the objects. This volume

loss replicates the compression of the snow under ex-

ternal forces. To have a fast computation, we found

that applying CSG operations on a level set [14] pro-

vides the versatility needed to model realistic imprints

of the dynamic objects. This level set is updated, once

per frame, by compacting the regions swept by the dy-

namic objects. In order to do so, a second level set is

built using the dynamic objects, and is then subtracted

from the base layer. If no special treatment is done,

“dents” will be visible because of the discrete positions

in time. This problem can be seen in Fig. 3(a), where

a box is quickly moved through the base layer of snow.

4 François Dagenais et al.

1. Compressing base layer 2. Snow particles simula-

tion

3. Snow mist simulation

Fig. 2 Our approach consists of three different simulations, each related to a different component of our physically-based
process decomposition.

(a) 1 step (b) 50 steps (c) 1 step, 10 sam-

ples

Fig. 3 A moving box sweeping through the base layer. (a)
With only 1 step per frame, the full motion of the object is
not well captured. (b) Even with a large number of simulation
steps, small “dents” can be seen. (c) Our approach provides
smoother results with only 1 step and a few samples.

Performing multiple substeps can reduce this problem.

However, a large number of substeps is required for ani-

mations with fast moving objects (see Fig. 3(b)), which

greatly increases computational time. To overcome this

limitation, the dynamic objects’ geometry is sampled

at times t + n ∗ ∆tN , where n = 0, 1, 2, ..., N , and N is

the number of samples. These samples are individually

voxelized, and then combined into a single level set us-

ing a union operation (see Fig. 4(b)). In order to fill

the gap between the samples, a smoothing operation

is performed on the level set. Because this operation

generally shrinks the level set, a dilation is performed

before the smoothing operation to compensate for the

volume loss. Besides, this dilation operation also helps

to better connect the samples. The result of these op-

erations is a smooth level set spanning the whole an-

imation path (see Fig. 4(c)). This outlines an advan-

tage of our approach compared to methods relying on

height fields: both the base layer and the volume swept

by the dynamic objects share a unified representation

that makes it easy to compute operations such as CSG

union and subtraction as well as smoothing and dila-

tion. It should be noted that the number of samples

is much lower than the number of simulation substeps

needed to obtain similar results (see Fig. 3(b) and (c)),

thus making this approach much faster.

(a) (b)

(c) (d)

Fig. 4 Before being subtracted from the base layer, dynamic
objects undergo several operations. The original geometry (a)
is sampled multiple times throughout its motion (b). It is then
voxelized, before being dilated and smoothed (c). Finally, a
noise displacement is applied on its surface (d).

4.1 Imprint Refinement

In reality, snow imprints rarely have the exact shape

of their “source” object. Some snow is slightly pushed

during the impact, and some is taken off as the ob-

ject moves away. Moreover, snow does not react as a

completely homogeneous material and it often contains

small air pockets. Leaving a sharp and precise imprint

does not result in a realistic imprint. To improve the

realism of our approach, the dynamic objects’ level set

is updated with controllable irregularities before it is

subtracted from the base layer (see Fig. 4(d)). To do

so, we use a technique inspired by the level set surface

modeling operators of Museth et al. [14]. These opera-

tors deform a level set by advecting it with a velocity

field. This vector field is aligned with the gradient field

of the level set, which forces the surface to move along

its normal. In our approach, the length of the displace-

An Efficient Layered Simulation Workflow For Snow Imprints 5

ment is determined using a noise function:

v(x) =
∇φ(x)

‖∇φ(x)‖
·max(noise(x), 0).

To make sure the base layer will not enter the object,

negative displacements are prevented. The level set of

the objects is advected with the velocity field, resulting

in the final surface (Fig. 4(d)). Such noise has been

added to all of the examples shown in this paper, and

its parameters have been determined experimentally to

result in a reasonable size, considering the expected size

of the snow clumps. Fig. 5 shows the improved realism

of the base layer with such noise.

(a) Without noise

(b) With noise

Fig. 5 Comparison of the base layer rendered without
noise (a), and with noise (b).

5 Snow Particles

At this point, the base layer models the basic shape of

the imprints in the snow. However, it provides a very

limited interaction with the dynamics objects. To bet-

ter mimic the behavior of snow moved by these inter-

actions, snow particles are used. While these particles

interact with the base layer and the dynamic objects,

they also interact with each others. Thus, they can be

pushed, piled up, and even projected in the air, allow-

ing for a more complex behavior that complements the

imprints from the base layer.

Fig. 6 Snow particles sourcing. Snow compressed from the
base layer is computed using a CSG subtract operation, and
is then filled with snow particles.

5.1 Granular Simulation

We opted for a granular material simulation that relies

on position based dynamics [10,13] as it can efficiently

handle a lot of particles. Interactions between the snow

particles and the base layer are handled by consider-

ing the base layer as a rigid body in the simulation.

Furthermore, to the influence that gravity, collisions,

attractions, and friction have on particles, we added the

effect of air resistance:

v∗i = β∆tvi,

where vi is the particle’s velocity, v∗i is the modified
velocity, and β is the air resistance coefficient in the

range [0..1].

5.2 Particles Sourcing

As stated earlier, snow is not fully compressed when

it collides with dynamic objects. This is considered in

our approach by filling the volume of snow removed

from the base layer with an amount of snow particles

that is inversely proportional to the compression of the

snow (see Fig. 6). This volume is computed by sub-

tracting the base layer level set at time t + ∆t from

that of time t using a CSG subtraction operation. The

compression of the snow is controlled using a single pa-

rameter, the compression ratio, that varies between 0

(incompressible) and 1 (fully compressible). Given the

number of particles that can fit inside the removed vol-

ume, this number is diminished as the compression ra-

tio is increased. We consider that snow is initially at

6 François Dagenais et al.

rest, therefore the particles are initialized with a null

velocity. The whole particle sourcing operation is done

only once per frame before handling the snow particles

dynamics. Thus, snow particles are created at time t,

and then from time t to t + ∆t the dynamic objects

are animated while the particles are simulated. As the

granular simulation is computed, the dynamic objects

collide with the particles, letting the collision response

determine the behavior and the velocity of these new

particles.

5.3 Inactive Particles

In our approach, computation times and memory con-

sumption are considerably lowered by using a signed

distance field, i.e. the base layer, to depict snow that

remained still. This effectively lowers the number of

particles to process. Still, their number can greatly in-

crease as more particles are added from the interaction

between snow and dynamic objects. This can signifi-

cantly affect the computation times. Because most par-

ticles quickly come to rest and stay still, a lot of com-

putation time is wasted. To avoid such unnecessary cal-

culations, only particles near dynamic objects or near

moving particles are computed. To determine which

particles should be simulated, a level set is built from

the particles whose velocity is higher than a predefined

velocity threshold and from the dynamic objects. Then,

the distances of each particle to this level set is com-

puted. If this distance is further than a target distance

threshold, the particle is considered inactive. These in-

active particles are not processed during the particle

dynamics computations. It should be noted that they

are still rendered, and that they are used when com-

puting collision, attraction, and friction forces of active

particles. They can also be reactivated later when dy-

namic objects or moving particles get closer. In our ex-

amples, the list of inactive particles is updated twice per

frame to reduce the likelihood of fast moving dynamic

objects leaving the simulated particles region. Another

option would be to use a larger target distance thresh-

old, and to update the list only once per frame. However

this would include more particles that may not collide

with the objects.

6 Snow Mist

Fig. 7 shows the three types of behavior modeled by

our approach: the static base layer, moderate size snow

clumps projected in the air (our snow particles), and

the thin snow mist. Snow particles driven by the gran-

ular material simulation model pushed and projected

Fig. 7 In this photograph, snow mist is visible as tiny snow
particles are projected in the air. This public domain image
is provided by Adam Longnecker.

snow clumps quite well, but it would require a tremen-

dous amount of tiny particles and long computation

times to visually replicate the snow mist. Furthermore,

snow mist requires a special treatment, as its behav-

ior is highly affected by the surrounding air medium.

The density distribution resulting from the turbulent

motion typical of smoke simulations can be seen in the

snow mist of Fig. 7. We therefore use another simula-

tion paradigm to simulate snow mist in a more realistic

way. Additionally, we have significant computation time

gains by simulating this component separately from the

others.

6.1 Snow Mist Simulation

We use an Eulerian incompressible fluid simulation for

snow mist. Generally, in such simulation, gravity forces

are not considered since the whole simulation domain is

filled with gases of equivalent densities. However, since

snow mist is much denser than the surrounding air, we

apply gravity forces in the fluid simulation where the

density is greater than 0. However, we use a lower value

gmist = −2.0 m/s2 in our examples to account for air

friction.

6.2 Snow Mist Sourcing

Snow mist is sourced into the simulation from airborne

snow particles, once per frame. To do so, potential snow

particle candidates for sourcing are identified by test-

ing their velocity against a threshold, to determine par-

ticles with high velocity. This criterion has been in-

ferred from observations, and can be intuitively under-

stood: higher velocity results in more energy and tur-

bulence, which has a greater potential to break snow

clumps into snow mist. In our examples the threshold

value vmist = 2.0 m/s is used. Additionally, falling snow

particles, i.e. g ·v > 0, are ignored to prevent snow mist

An Efficient Layered Simulation Workflow For Snow Imprints 7

creation when particles fall due to gravity. Using the

candidate particles, a seed density field is filled from

the union of spheres at each particles’ center (radius is

twice that of the particles). To increase the realism at a

marginal computation cost, we also rely on the addition

of a limited amount of noise to this seed density field.

Similarly, a seed vector field is filled from the average

velocity of the neighbor particles, where seed density

has been added. Finally, both the seed density field

and the seed velocity field are added in the simulation.

Our observations showed that mass transfer be-

tween snow particles and the snow mist is limited. Fur-

thermore, as the snow mist constantly dissipates in the

mist simulation, the unaccounted mass gain is counter-

acted by this dissipation. Thus, mass transfer between

the snow particles and the snow mist is not taken into

account in our approach.

7 Rendering

Before being rendered, the base layer is tessellated,

making it easy to use with any surface shader. How-

ever, as it is quite common to render snow as a den-

sity volume [19], the base layer is rendered as a volume

with constant density. Similarly, particles are also ren-

dered as a density volume. This volume is built using

the union of spheres located at each particle’s center,

with each sphere having the same radius r as the par-

ticles. A smooth density falloff of length r/2 is added

around each sphere to make snow look softer, as the

density decreases at the snow boundaries. As for snow

mist, its density field is rendered as it is.

8 Implementation

Our approach has been integrated inside HoudiniTM.

We used OpenVDB [15] to store level sets and ap-

ply operations on them, e.g. CSG, dilation, smooth-

ing, and advection. The sparse representation used by

this library helps to lower memory consumption and

computation times considerably. The granular material

simulator of HoudiniTM, which employs position based

dynamics [10], was used to simulate snow particles. We

extended their simulator to use our air friction model

(see Sec. 5.1), instead of their force-based air friction.

The snow mist solver is an adapted version of the smoke

solver of HoudiniTM, to which our additional forces have

been added. The solver uses a dynamic grid whose di-

mensions are adjusted based on the distribution of den-

sity in the scene. This greatly improved performances

in our experiments. All our results were rendered using

Houdini MantraTM. Their uniform volume shader was

(a) rc = 0.0 (b) rc = 0.75

Fig. 8 Stanford bunny imprints. This scenario has been com-
puted with no compression, i.e. with the compression ratio
value rc = 0.0 (a), and a high compression ratio rc = 0.75 (b).

used for the base layer surface. Such a shader takes ad-

vantage of the assumption of a uniform density inside

the mesh surface, which makes it faster than render-

ing an arbitrary density volume. Snow mist and snow

particles density volumes are rendered using Houdini

MantraTM standard smoke shader Billowy Smoke. The

density of the snow particles volume is scaled by a fac-

tor of 100 at render time to match the snow opacity

from our observations.

By relying on state of the art commercial software,

our implementation demonstrates that the proposed

approach is easy to integrate into current production

pipeline tools. While we used HoudiniTM in our imple-

mentation, the same base simulation paradigms are im-

plemented in most popular commercial software. There-

fore, our approach is not limited to a specific software

vendor.

9 Results

We have tested our approach on a wide variety of

scenarios. The animations for the examples shown in

this paper are available in the accompanying video. In

Fig. 8, the Stanford bunny is translated down and up

in the snow creating an imprint. The contour of the

bunny is well captured in the base layer level set. Fur-

thermore, the noise applied on the base layer provides a

more natural look at a negligible computation expense.

This scenario has been computed with no compression

in Fig. 8(a), and with a high level of compression in

Fig. 8(b). Fewer particles are found in the imprints in

the latter case, resulting in a deeper hole. In Fig. 9, the

Stanford bunny pushes snow as it moves horizontally.

Snow is transferred from the base layer to snow parti-

8 François Dagenais et al.

(a) rc = 0.0

(b) rc = 0.75

Fig. 9 The Stanford bunny slides to the left, pushing snow
particles as it moves. This scenario was computed with no
compression (a), and with a high level of compression (b).

Fig. 10 A sleigh leaves tracks and pushes snow.

cles, and creates a pile of snow in front and beside of

the bunny’s path. These particles add the dynamics of

snow not modeled by the base layer. As can be seen

in Fig. 9(b), a smaller pile of snow is formed when us-

ing a higher compression ratio. Similarly, a sleigh leaves

tracks in the snow in Fig. 10. Snow pushed by the sleigh

shows a very high level of details. Our approach allows

such level of details, even with a large simulation do-

main, by adding snow particles only where details are

needed.

Our approach has also been validated with more

complex animations, closer to what is found in an ani-

mation movie. In Fig. 11, a human character walks in

the snow. As its feet move upward, snow particles are

projected in the air, along with some snow mist. A go-

rilla walks, spins, and rolls in the snow in Fig. 12. All

of its interactions with the snow are well captured by

our approach. As snow particles are projected in the

air, snow mist is automatically added to the fluid sim-

ulation, improving the realism, compared to methods

Fig. 11 A human character walking in the snow.

Fig. 12 A gorilla dances in the snow, leaving imprints as
well as projecting snow and snow mist in the air.

relying only on height maps or granular material simu-

lations.

The timings for all the examples shown in this pa-

per are available in Table 1. Most of the time is spent in

the snow particles simulation. The base layer is by far

the fastest step in our approach. Thus, in production, it

can be used to have an early feedback of the imprints in

the snow, which can be used to adjust the animations

quickly. We were able to lower considerably the compu-

tation time for the snow particles simulation by exclud-

ing inactive particles during computations (see Fig 13).

Without such optimization, the dancing gorilla exam-

ple required an average of 62.20s per frame to simulate

snow particles. With the optimization, it only required

an average of 39.25s per frame, a 1.58X speedup. All

of our simulations were computed on a 6 CPUs Intel

Core i7 with 56 GB of memory. The gorilla model was

obtained from the TOSCA [3] project, and animated in

Autodesk Maya R© using a provided example animation

setup.

Our approach considerably lowers memory con-

sumption and computation times by using a level set,

i.e. the base layer, to model snow that did not interact

with the dynamic objects yet. We compared the mem-

ory consumption and timings of our approach with a

particles-only simulation, where the whole snow vol-

ume was filled with particles, in the walking human

An Efficient Layered Simulation Workflow For Snow Imprints 9

Average time per frame (s)

Example
Base layer
cell size

Snow particle
radius

snow
particles

Snow mist
cell size

Base
Layer

Snow
particles

Snow
Mist

Total

Fig. 8(a) 0.005 0.00075 243,653 0.005 1.84 11.64 6.00 19.48
Fig. 8(b) 0.005 0.00075 60,759 0.005 1.84 4.36 5.09 11.29
Fig. 9(a) 0.005 0.00075 1,575,948 0.005 1.68 81.26 9.18 92.12
Fig. 9(b) 0.005 0.00075 396,272 0.005 1.73 15.90 6.18 23.81
Fig. 10 0.01 0.003 1,684,770 0.015 1.92 33.73 2.85 38.50
Fig. 11 0.0075 0.0025 879,062 0.01 3.15 11.30 6.65 21.10
Fig. 12 0.0075 0.0025 2,850,936 0.01 4.59 39.25 13.62 57.46

Table 1 Timings for all our examples.

Fig. 13 Only active snow particles (in red), in the areas
around dynamic objects and moving particles, are computed
in our examples. This considerably lowers computation times.

character example. Because of memory limitations, a

coarser resolution was used, setting the particles radius

to 2r. Even with the coarser resolution, the simulation

required 6.9 GB of memory. Using a finer resolution,

i.e. with the particles radius set to r, it would require

approximately eight times more memory (55 GB). In

contrast, the finer resolution simulation computed with
our approach fits within 3.5 GB of memory for the

base layer and the snow particles. As for the timings,

the coarse particles-only simulation required on average

273.1s per frame. Using our inactive particles optimiza-

tion, it could be lowered to 51.86s per frame. Still, even

with the eight times finer resolution, our approach re-

quired on average only 21.1s per frame, even including

the snow mist computation times.

Our approach has some limitations. The coupling

between the snow and the dynamic object is unidirec-

tional: the animated objects influence the snow, but the

snow has no influence on the objects. Physically-based

animation with locomotion controllers cannot be used

with our method as it does not model the contact from

the snow to the dynamic objects. Nevertheless, this is

quite an advantage for typical visual effect animations,

as it provides a perfect and predictable animation of

the dynamic objects or characters. Even though we can

capture a wide range of interactions, some cannot be

captured. For example, as our approach assumes that

snow remains static until it collides with an object, it is

possible to design animations creating sharp snow cliffs

and tunnels into which the surrounding base layer snow

will never fall.

10 Conclusion

In this paper, we introduced an efficient workflow that

handles the interaction of snow with dynamic objects.

We decomposed the snow into three components that

can be controlled individually. Firstly, the base layer

can be controlled to influence the imprints’ shape and

details, at a low computational cost. Secondly, the snow

particles control the complex dynamics of snow that

gets pushed and thrown in the air. Finally, the snow

mist provides control over the thinner airborne snow

that behaves according to its surrounding air medium.

Our approach lowers memory consumption and compu-

tation times by using the most expensive simulations

only where needed. Additionally, the surface represen-

tation of the base layer allows the use of the same shader

on the simulated snow as well as any background snow

that would be left out of the simulation for efficiency

reasons.

In the future, we would like to improve our model so

that the base layer snow is transformed to snow parti-

cles in other situations such as along sharp slopes or

when a dynamic object moves below the base layer

surface. Another avenue for future work would be

to improve the way compression is handled using a

physically-based model that could consider properties

such as air temperature, snow temperature, and snow

wetness. We would also like to create a model that

scales the drag forces according to the density of snow

particles to better mimic the friction of snow with the

air. Also, our approach could be modified to convert

back static snow particles to the base layer. We be-

lieve such improvement could lower the memory con-

sumption. However, care must be taken to avoid sud-

den jumps or flickering of the surface. A possible so-

lution would be to convert only hidden layers of par-

10 François Dagenais et al.

ticles, i.e. particles that are fully covered, similarly to

Zhu and Yang [25] and Wong et al. [23]. Nevertheless, it

should be noted that such modification would prevent

the user from running the entire base layer simulation

before simulating snow particles.

Acknowledgements

This work was funded by Mokko Studio, Mitacs,

Prompt, and École de technologie supérieure. We would

like to thank employees of Mokko Studio for their feed-

back throughout the project. We would also like to

thank SideFXTM for providing HoudiniTM licenses for

research. We would like to thank Bruno Roy as well for

the walk animation. Lastly, we thank the anonymous re-

viewers for their thoughtful comments and suggestions.

References

1. Alduán, I., Otaduy, M.A.: SPH granular flow with
friction and cohesion. In: Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, pp. 25–32 (2011)

2. Bell, N., Yu, Y., Mucha, P.J.: Particle-based simula-
tion of granular materials. In: Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, pp. 77–86 (2005)

3. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Ge-
ometry of Non-Rigid Shapes. Springer (2008)

4. Fearing, P.: Computer modelling of fallen snow. In: Proc.
of SIGGRAPH 2000, Annual Conference Series, pp. 37–
46 (2000)

5. Feldman, B.E., O’Brien, J.F.: Modeling the accumulation
of wind-driven snow. In: SIGGRAPH 2002 Conference
Abstracts and Applications, pp. 218–218. ACM (2002)

6. Festenberg, N.v., Gumhold, S.: A geometric algorithm
for snow distribution in virtual scenes. In: Eurographics
Workshop on Natural Phenomena, pp. 15–25 (2009)

7. Festenberg, N.v., Gumhold, S.: Diffusion-based snow
cover generation. Computer Graphics Forum 30(6),
1837–1849 (2011)

8. Ihmsen, M., Wahl, A., Teschner, M.: A lagrangian frame-
work for simulating granular material with high detail.
Computers & Graphics 37(7), 800–808 (2013)

9. Lenaerts, T., Dutré, P.: Mixing fluids and granular mate-
rials. Computer Graphics Forum 28(2), 213–218 (2009)

10. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Uni-
fied particle physics for real-time applications. ACM
Trans. Graph. 33(4), 153:1–153:12 (2014)

11. Maréchal, N., Guérin, E., Galin, E., Mérillou, S.,
Mérillou, N.: Heat transfer simulation for modeling real-
istic winter sceneries. Computer Graphics Forum 29(2),
449–458 (2010)

12. Moeslund, T.B., Madsen, C.B., Aagaard, M., Lerche, D.:
Modeling falling and accumulating snow. In: Vision,
Video and Graphics, vol. 2 (2005)

13. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Po-
sition based dynamics. Journal of Visual Communication
and Image Representation 18(2), 109–118 (2007)

14. Museth, K., Breen, D.E., Whitaker, R.T., Barr, A.H.:
Level set surface editing operators. ACM Trans. Graph.
21(3), 330–338 (2002)

15. Museth, K., Lait, J., Johanson, J., Budsberg, J., Hen-
derson, R., Alden, M., Cucka, P., Hill, D., Pearce, A.:
OpenVDB: an open-source data structure and toolkit for
high-resolution volumes. In: SIGGRAPH 2013 Courses,
p. 19. ACM (2013)

16. Narain, R., Golas, A., Lin, M.C.: Free-flowing granu-
lar materials with two-way solid coupling. ACM Trans.
Graph. 29(6), 173:1–173:10 (2010)

17. Onoue, K., Nishita, T.: An interactive deformation sys-
tem for granular material. Computer Graphics Forum
24(1), 51–60 (2005)

18. Pla-Castells, M., Garćıa-Fernández, I., Martinez-Dura,
R., et al.: Physically-based interactive sand simulation.
In: Eurographics 2008, Short Papers, pp. 21–24 (2008)

19. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle,
A.: A material point method for snow simulation. ACM
Trans. Graph. 32(4), 102 (2013)

20. Sumner, R.W., O’Brien, J.F., Hodgins, J.K.: Animating
sand, mud, and snow. Computer Graphics Forum 18(1),
17–26 (1999)

21. Takahashi, T., Fujishiro, I.: Particle-based simulation of
snow trampling taking sintering effect into account. In:
SIGGRAPH 2012 Posters, p. 7. ACM (2012)

22. Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing
simulation. The Visual Computer 22(5), 315–323 (2006)

23. Wong, S.K., Fu, I., et al.: Hybrid-based snow simulation
and snow rendering with shell textures. Computer Ani-
mation and Virtual Worlds 26(3-4), 413–421 (2015)

24. Zeng, Y.L., Tan, C.I., Tai, W.K., Yang, M.T., Chiang,
C.C., Chang, C.C.: A momentum-based deformation sys-
tem for granular material. Computer Animation and Vir-
tual Worlds 18(4-5), 289–300 (2007)

25. Zhu, B., Yang, X.: Animating sand as a surface flow.
Eurographics 2010, Short Papers (2010)

26. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM
Trans. Graph. 24(3), 965–972 (2005)

