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Abstract

In this paper, we tackle the challenge of three-dimensional estimation of
expressive, animatable, and textured human avatars from a single frontal
image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body
model, we adjust the model parameters to faithfully reflect the shape and
pose of the individual, relying on the mesh generated by a Pixel-aligned Im-
plicit Function (PIFu) model. To robustly infer the SMPL parameters, we
deploy a multi-step optimization process. Initially, we recover the position
of 2D joints using an existing pose estimation tool. Subsequently, we utilize
the 3D PIFu mesh together with the 2D pose to estimate the 3D position
of joints. In the subsequent step, we adapt the body’s parametric model to
the 3D joints through rigid alignment, optimizing for global translation and
rotation. This step provides a robust initialization for further refinement
of shape and pose parameters. The next step involves optimizing the pose
and the first component of the SMPL shape parameters while imposing con-
straints to enhance model robustness. We then refine the SMPL model pose
and shape parameters by adding two new registration loss terms to the opti-
mization cost function: a point-to-surface distance and a Chamfer distance.
Finally, we introduce a refinement process utilizing a deformation vector field
applied to the SMPL mesh, enabling more faithful modeling of tight to loose
clothing geometry. As most other works, we optimize based on images of
people wearing shoes, resulting in artifacts in the toes region of SMPL. We
thus introduce a new shoe-like mesh topology which greatly improves the
quality of the reconstructed feet. A notable advantage of our approach is the
ability to generate detailed avatars with fewer vertices compared to previous



research, enhancing computational efficiency while maintaining high fidelity.
We also demonstrate how to gain even more details, while maintaining the
advantages of SMPL. To complete our model, we design a texture extraction
and completion approach. Our entirely automated approach was evaluated
against recognized benchmarks, X-Avatar and PeopleSnapshot, showcasing
competitive performance against state-of-the-art methods. This approach
contributes to advancing 3D modeling techniques, particularly in the realms
of interactive applications, animation, and video games. We will make our
code and our improved SMPL mesh topology available to the community:
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar.

Keywords: Human avatar, Reconstruction, SMPL-X, Optimization, 3D
modeling, Parametric model, Animation, Textures, Computer vision

1. Introduction

Photo-realistic avatars has the potential to revolutionize fields ranging
from XR to healthcare, and most notably the entertainment industry, by
greatly enhancing the user experience while interacting with virtual humans.
Despite significant recent advancements, the task of crafting realistic human
avatars still presents significant challenges. Traditional methods [1, 2] rely
on extensive input data such as multiple views, video sequences or depth in-
formation, underscoring the need for more efficient and accessible techniques.
Progress in the field of 3D human modeling, while notable, encounters ma-
jor challenges, particularly in faithfully reproducing the human morphology.
The complexity of this task is exacerbated when modeling from a single
image, a constraint that offers a promising path towards more accessible
and practical applications. Deep learning-based methods [3, 4] for predict-
ing parametric body models produce compact and animatable surfaces, but
face difficulties in accurately capturing details such as clothing nuances and
textures, essential aspects for creating realistic avatars. The Pixel-aligned
Implicit Function (PIFu) based methods [5, 6, 7, 8] mark a significant ad-
vancement and are capable of reconstructing a 3D model with high resolution
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from a single image. However, these methods encounter difficulties in gen-
erating a compact mesh that accurately reconstructs all body parts, such as
the hands and the head. Due to their representation by small pixel regions
in the image space, recreating these parts proves particularly complex. This
difficulty is exacerbated by the use of the marching-cubes algorithm to gen-
erate a mesh. Furthermore, the outputs of the PIFu-based methods are not
directly animatable, their meshes are not compact, and they lack focusing in
hard to represent areas (face, hands, and feet). The ICON method [8] stands
out for its use of a parametric human model. It optimizes the parameters
to adjust to the rendering of the silhouette and normals. However, although
directly animatable, this method can remove the fine details of the mesh
due to the used parametric body mesh normals, which tend to be smooth,
and lacks specific clothing details. The PHORHUM method [5], focusing on
predicting the illumination to reconstruct albedo colors, encounters limits in
color fidelity, thus diverging from realism. Moreover, PHORHUM, trained
on perspective images, does not perform well across a wide range of camera
configurations. The method of Mallek et al. [9] reconstructs an animatable
SMPL-X avatar with a good texture, but its optimization of the feet region
introduces visible and annoying artifacts. Moreover, the geometric details
of the clothing are limited by the lower resolution of the SMPL-X mesh. In
conclusion, while body shape modeling methods exist, they might not be
as effective in texture reconstruction or animation. Combining these three
aspects — modeling, animation, and texture reconstruction — from a single
image remains a major challenge.

Our proposal offers a unique approach to generating a compact, ani-
matable, expressive, and textured 3D avatar from a single frontal image in
A-Pose, building upon the method of Mallek et al. [9]. Figure 1 represents
our 3D human body reconstruction pipeline, which relies on the Pixel-aligned
Implicit Function for high-resolution 3D Human Digitization (PIFuHD) [7]
as well as on OpenPose [10] to initialize the shape and pose of the avatar.
We extract the 3D pose based on the 2D pose, and then fit the Skinned
Multi-Person Linear eXpressive (SMPL-X) [11] model to the target PIFuHD
mesh. Compared to the PIFuHD mesh, SMPL-X is easy to animate and has
a compact mesh. Conversely, the SMPL-X model does not allow to model
the specific shape details found in the PIFuHD mesh. To overcome this, we
then add a deformation vector field to the mesh and optimize it to model
geometric details, such as the clothing geometry. This approach allows us to
combine the detailed PIFuHD mesh with the compactness and ease of anima-



Figure 1: Illustration of our single-image reconstruction approach. From left to right: In-
put RGB image, SMPL-X after fitting, SMPL-X+D, rendered avatar, and avatar rendered
in multiple poses.

tion provided by the SMPL-X model. We also demonstrate how to further
increase the fine details while preserving the advantages of SMPL-X. Next,
we extract the texture and complete it using color interpolation and an image
inpainting method. Our approach aims to offer a faithful representation of
a wide range of human morphologies while facilitating the animation of the
obtained avatar, thus widening its application potential in various contexts.
Our main scientific and theoretical contributions are:

1. The introduction of a deformation vector field to model the details
from the PIFuHD mesh onto the compact and easy to animate SMPL-
X model,;

2. A multi-step optimization process to adjust the SMPL-X model to fit
humans wearing tight to loose clothing;

3. The design of an easily animatable new SMPL-X mesh topology, ap-
propriate for images of people wearing shoes;

4. A novel approach for the generation and completion of textures resolv-
ing silhouette and back of the head artifacts.

With these contributions, our approach ensures realistic, fast, and stable
animation of clothed avatars directly in off-the-shelf animation software.

2. Related Work

This section explores three elements of research regarding the reconstruc-
tion of 3D human ,body. We begin by exploring parametric models, then
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proceed to discuss 3D reconstruction, and conclude by analyzing texture ex-
traction and completion methods.

2.1. Parametric Body Model

Two primary strategies stand out in 3D human body modeling. The first
one is based on the kinematic skeleton, emphasizing an articulated struc-
ture that primarily focuses on joint movement without capturing body shape
details. The skeleton model is widely utilized in 2D human pose estima-
tion [10, 12, 13]. It conceptualizes the human skeleton as a hierarchical tree
structure, incorporating articulated joints. The second strategy utilizes para-
metric models [11, 14, 15], allowing for separate optimization of body shape
and posture. The Skinned Multi-Person Linear (SMPL) model [15] utilizes
a base shape and linear deformations to capture a variety of human shapes
and poses. Its popularity in both industry and academia is attributed to
its flexibility and its ability to seamlessly animate the avatar in off-the-shelf
animation software. SMPL-X [11] represents a significant evolution of the
SMPL model, incorporating fully articulated hands and an expressive face,
while still providing a compact mesh.

2.2. 3D Reconstruction of the Human Body

Significant advancements have been made in the field of avatar creation.
Some methods utilize multiple images [2, 16, 17|, video sequences [18, 19, 20],
or depth information [21, 22, 23, 24]. While these methods are interesting
when having access to more sophisticated capture setup, our research con-
centrates on the challenge of reconstructing avatars from a single image.
Reconstructing 3D avatars from a single image typically revolves around two
distinct strategies. The first strategy relies on the use of a parametric body
model. A parametric model approximates the shape of the human body to
be reconstructed and is characterized by a small set of parameters. These
parameters define the shape and pose of the body. The estimation of a para-
metric model can be achieved through an optimization process of its param-
eters [1, 2,9, 11, 25, 26]. Most of the related work optimizes SMPL-X based
on images of people wearing shoes or socks. For instance, the DINAR [27]
method, as well as the PeopleSnapshot [1] and X-Avatar [28] datasets, con-
sist of only people wearing shoes or socks. In other papers (PIFu [6], PI-
FuHD [7], ICON [8], and PHORHUM [5]) and datasets (Renderpeople [29]
and THuman [30]), the proportion of images corresponding to barefoot peo-
ple is small (less than 3 %). While improving the reconstruction of feet for
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barefoot images is another interesting problem, we propose to improve the
reconstruction for images of people wearing shoes and socks. With its de-
tailed toes, the SMPL-X model cannot properly fit a shoe shape. Through
their deformation vector, Mallek et al. [9] deform the toes toward the shape
of shoes, but given the mesh topology of the toes, their optimization pro-
cess often generates artifacts in the feet and toes region. Alternatively, the
parametric model’s parameters can be directly regressed via a Deep Neural
Network (DNN) model [3, 4, 31, 32]. DNN-based methods have recently
shown promising results in reconstructing human meshes from a single im-
age. These methods directly map raw pixels to model parameters, allowing
for the production of parametric models in a feed-forward manner through
neural networks.

The second strategy estimates morphology details in the form of an im-
plicit function representation [5, 6, 7, 8, 33]. The primary objective of these
PIFu-based methods lies in obtaining an abundance of details, encompass-
ing hair, and clothing. PaMIR [34] uses a DNN-based method to generate
an implicit field with features extracted from the input image. ECON [35]
generates front and back normals from the input image, which are passed
to a DNN-based method to reconstruct the front and back meshes which
are then aligned and completed. HumanRef [36], SiTH [37], TeCH [38] and
DiffHuman [39] generate front and back normals from the input image, and
use DNN-based methods to generate a distance field from which a mesh is
later extracted. A significant drawback of the methods presented in this
paragraph lies in the inaccurate modeling of small geometric details such
as hands and face. These methods often produce lower-quality results in
the hands and face areas due to the limited number of pixels compared to
their complexity, resulting in inaccuracies or distortions. Another concern
with these methods is the mesh, which contains many more triangles than a
parametric body mesh. Additionally, it is difficult to animate the mesh, and
the animation often needs to resort to advanced DNN techniques [40]. Fur-
thermore, the distribution and shape of the triangles provides lower quality
animations compared to parametric body meshes.

2.3. Texture Extraction and Completion

Recent advancements in texture extraction and completion for 3D human
body reconstruction from single images have shown promising developments.
The Pose with Style method [41] leverages DensePose [42] to map the image



space to the UV space of SMPL textures. It also enables the automatic syn-
thesis of missing texture parts. While effective, this method struggles with
preserving subject face details and accurately reproducing hands and clothing
textures. DINAR [27] introduced a method combining neural textures with
the SMPL-X body model. DINAR achieved good quality and easily animat-
able avatars. It uses a diffusion model that enables realistic reconstruction of
the texture in occluded regions, such as the back of a person from a frontal
view. However, despite the realism of people wearing tight clothing, chal-
lenges arise from defects in the SMPL-X mesh generated by SMPLify-X [11],
essential for texture extraction. These defects, particularly noticeable in
clothing regions, stem from the limitation of the SMPL-X model, designed
solely for modeling human bodies and not clothing. To get rid of the concerns
related to the SMPL-X model, some methods [6, 34] extract a fine-detailed
mesh from the input image before generating the textures. Nevertheless,
these methods produce blurry and low quality textures. Another group of
methods [33, 36, 37, 38, 39] uses diffusion models to generate the textures,
but does not use the SMPL-X model, thus resolving some of the concerns
faced by DINAR. While the resulting textures are interesting, the avatar is
hard to animate with off-the-shelf software.

In conclusion, the SMPL-X parametric body model has several advan-
tages (easy to optimize, compact mesh, and animatable). Methods which
reconstruct avatars with the SMPL-X body representation often lack details
such as clothing, some struggle in reconstructing proper shoe-like feet ge-
ometry, and many of them do not reconstruct the texture for the avatar.
PIFu-based methods provide fine details, but are hard to animate, do not
provide easy to use texture maps, and struggle to reconstruct fine details
such as those found in the hands and the face. Finally, texture extraction
and completion methods often struggle with hands and clothing. Building
upon the work of Mallek et al. [9], we propose a new approach to cope with
all of the problems at once: recreating an easily animatable avatar, from a
single image of human wearing tight or loose clothing. Our avatars benefit
from fine details, good representation of the face, hands, and feet, a compact
mesh, and textures.

3. Proposed Methodology

Our methodology (See Figure 2), designed as a multi-step pipeline, aims
for detailed, animatable 3D reconstruction of a human subject from a single



frontal image. Our pipeline begins with the extraction of the target mesh,
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Figure 2: Illustration of the reconstruction and texturing of the SMPL-X+D mesh from a
single image, along with rendering results in various poses and viewpoints.

utilizing PIFuHD [7], coupled with the acquisition of 2D pose estimations
via OpenPose [10]. We then compute three-dimensional joints. We optimize
a global alignment of the SMPL-X model [11], optimizing its translation
and rotation parameters, and then further refine the model’s pose and shape
parameters. We introduce a deformation vector adjustment to overcome
SMPL-X’s clothing modeling limitations, followed by a specialized algorithm
for texture extraction and completion based on the PIFuHD mesh colors.
Finally, we can render the textured SMPL-X+D mesh in various poses and
camera angles.

3.1. Mesh Definitions

Meshes are denoted by M, defined as a set {V, F'}, where V represents
the vertices and F represents the triangular faces. The SMPL-X model takes
as input a translation 7~ € R3, a global rotation G € R3, pose parameters for
the body and hands 6 = {6, 0} € {R?*3 R30*3} shape parameters for the
body 5 € R3P as well as facial expression parameters 1) € R'. This mesh
has a fixed topology with a constant number of vertices and faces:

MsnipLx(T,G, 0, 8,9) = {Vampr.x, Fsmprx} C R Nmx3, (1)

where n; = 10475 is the number of vertices and m; = 20908 is the number of
faces. The PIFuHD mesh exhibits a variable topology, adapting its number



of vertices no and faces ms to the level of detail captured from the input
image:
MPIFuHD - {VPIF‘uHD, FPIFuHD} - RHQXS,NmQXB'. (2>

3.2. Pose Estimation

Utilizing OpenPose [10], we extract 2D skeletal data, represented as blue
points in Figure 3, which correspond to joints within the image. We project

foreground

Figure 3: Orthographic projection and 3D pose estimation approach. The back shows the
Mpiryap mesh, while the foreground shows the orthographic projection, M;, of this mesh
onto the XY plane. The blue points illustrate the 2D joint estimates obtained through
OpenPose. The red points correspond to these blue points lifted to the front and back
surfaces of the Mpip,up mesh. While the joints for the hands are processed in the same
way, they are not shown here because the density of points was not appropriate for the
visualization.

the PIFuHD mesh onto the image plane to generate the projected mesh
vertices M, = {(z,y,0) | (v,y,2) € Vprraup}. The 2D joints and projected
vertices are now in the same reference frame. We select £ = 20 points
from M), closest to each OpenPose-detected joint J;, employing a K-means
algorithm to split the corresponding vertices from Mpr.pp into two distinct
sets, F; and B;, laying respectively onto the front and back surfaces of the
3D mesh. We then average the centroids of these sets for each joint, thus
achieving the 3D joint estimation Jiaet(2). For facial keypoints, a similar
technique is adopted, but this time, only the center point of the front set
is used to lift each keypoint to 3D. Note that this simple process is not
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overly sensitive to the precision of the 2D pose estimation algorithm and
allow us to obtain a robust initialization to the 3D location of joints without
requiring complex constraints normally used in 3D lifting of 2D poses [43].
Furthermore, our approach can take advantage of future pose detectors, as
long as they are compatible with the SMPL-X joints.

3.8. Multi-Step Registration Approach

Our methodology emphasizes a sequential optimization for the SMPL-X
model parameters, further refined by a deformation vector applied to the
resultant Mgypr.x mesh, aiming for convergence with the target Mpruup
mesh. This process involves minimizing specific cost functions at successive
stages.

Our pose optimization concentrates on body 6, and hand 6, joint param-
eters. The joints of the jaw and eyes in the SMPL-X model are not adjusted
due to their minimal impact on the avatar’s overall appearance. The opti-
mization is carried out within a differentiable framework, relying on a cost
function derived from the output mesh Msyprx(7,G, 0, 8,1) and the joint
positions Jsvpr.x(7,G, 0, 5,1), where T and G represent global translation
and rotation, respectively, and 0, [, and v denote pose, shape, and facial
expression parameters.

3.3.1. Pose Optimization

In the initial stage, we set the SMPL-X model parameters G, 3, and v to
zero, and establish a neutral “A” pose for #. The initial translation 7 = Tj
is estimated from the difference in the bounding box centers of Mpir.up and
Mgsyprx. Note that PIFuHD and SMPL-X are by default of similar sizes,
corresponding to human proportions, allowing for their alignment without
the need for scaling. Subsequently, we refine subsets of our parameters trough
a sequence of optimization stages, each using specific optimization criteria.
We begin by refining 7 and G, aiming to minimize a joint discrepancy cost
function:

argmin (Lioints) (3)
T,6

where Ljoints measures the squared Ly norm of the difference between the
SMPL-X joints and Jiaget (¢) joints extracted from Mpipymp.

Next, we address potential local minima leading to non-human poses by
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introducing a soft constraint on hand, idx;, and body, idx,, joints:

L= ) (max(0,a—06;)+max(0,0; — b))+ >  oxllbull3,  (4)

i€idxp, keidxy

where a = —0.8 rad, and b = 0.5 rad (values are not symmetric because of
the SMPL-X hand rest pose) and a4, are weighting coefficients:

10 if ke {2,5,8,9,10,11,12,13,14
ak:{ if k € {2.5,8,9,10, b -

1 Otherwise

The range of values for k corresponds to selected joints in the head, shoulders,
torso and feet regions. A higher weight on these prevents the reconstructed
body from incorrectly leaning forward/backward.

We now optimize for § and S, with:

argnlin ()\jointsﬁjoints + )\scﬁsc> ) (6)
6750
where Ajoints = 2, Ase = 1, and Sy corresponds to the first component of the

SMPL-X shape parameters and can be seen as mostly controlling the scale
of the body.

3.3.2. Shape Optimization

Our shape optimization framework is built upon two principal cost func-
tions: a Chamfer loss (Lepamfer) and a bidirectional point-to-surface loss
(Lpas), chosen to refine the SMPL-X model’s alignment with the PIFuHD
mesh. The Chamfer loss quantifies the proximity between SMPL-X and PI-
FuHD vertices. Our point-to-surface loss selects the closest pairs of vertices
between two meshes M4, which will correspond to Mprpuap, and Mpg, which
will correspond to Mgypr.x in this section. We introduce mesh Mpg here as
in Section 3.3.3 we will use the same loss with the SMPL-X plus deformation
vector mesh. The loss computes the distance between vertex pairs projected
onto the normal vector of the vertex from mesh Mpg. Our loss favors adjust-
ment of the Mp vertices locally and perpendicular to the Mp surface, thus
reducing lateral sliding:

Lpos(Ma, Mg) :m Z dist(p, 0)+
pEMA

1 s
A Z dist(p, v),

vEMp
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where ¢ = argmin||p — v||3 and p = argmin|p — v||3. The distance dist(p, v)
vEMp pPEMA
is expressed as:

[z P—
where 77, denotes the normal at vertex v, obtained by the normalized average
of the normals of the faces adjacent to v.

Our optimization function at this stage fine-tunes the SMPL-X model

parameters (T, G, 6, 38, ¥):

dist(p,v) =

argmin ()\chﬁchamfer + Ap2sLpos ( Mp1pann, M SMPL-X)
T.,G,0,8,¢

+/\joz‘nts['joints + /\sc»Csc) ) (9)
with weighting coefficients Ao = 10, Apag = 1, Ajoints = 1000, and Asc = 1.

3.3.3. Deformation Vector Optimization

To address the SMPL model’s limitations in representing clothing, we
add per-vertex deformation vectors. Inspired by previous work [1, 19], but
adapted to our single-image context, this method allows for more precise
clothing representation. We optimize deformation vectors D € R™*3 to
adjust to the clothing geometry on the SMPL-X mesh, aiming to minimize
the same point-to-surface loss between the adjusted mesh and the PIFuHD
target. To ensure stability and realistic mesh deformation, we incorporate a
regularization term L., combining Laplacian smoothing, normal consistency
and an Ly norm on the deformation vector:

»Creg - >\1£Laplacian + )\2£normals + )\SHDHS + >\4||Didxf&h ||g7 (10)

where A\;=10 and A\;=10. We set a different weighting on the deformation
vector 10ss Diqy,y,), for the face and hands (\; = 10*) compared to the defor-
mation vector loss D for the other parts of the body (A3 = 1). The hands
and face are not always correctly reconstructed by PIFuHD and it is best
in these regions to favor the SMPL-X shape by penalizing large deformation
vectors. At this stage, our optimization equation is thus formulated as:

argmin (Lpas(Mprpann, Msvprx + D) + Lreg) (11)
D

where the two losses are simply added together. This deformation vector op-
timization greatly improves the clothing representation, capturing the wrin-
kles and later helping with the texture extraction. Our optimization strategy
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effectively integrates local adjustments within a broader global framework
through the parameterization of the SMPL-X model. This approach ensures
that any local changes, such as those between specific points and vertices, are
seamlessly incorporated into the overall structure of the SMPL-X model. Ad-
ditionally, we enhance the fidelity of these adjustments by employing Lapla-
cian and normal consistency losses. These losses are crucial as they maintain
the mesh smoothness and continuity, ensuring that local optimizations do
not compromise the global integrity and realistic appearance of the model.
Thus, our method achieves a balance between refining detailed features and
preserving surface smoothness.

The high-resolution mesh of Mpip,up results in significant computational
time and memory usage during the optimization. Our experiments demon-
strated that subsampling Mpg,ap to match the vertex count of the Mgypr-x
mesh, significantly reduces computation time while having a negligible im-
pact on the resulting quality. To achieve a reduction in the number of vertices
Vbirunp, we employed a farthest point sampling method [44]. Note that we
do not coarsen the mesh; we only subsample the vertices as the polygons of
PIFuHD are not needed in our loss functions.

Like those in most related work, our reconstructions rely on images of
people wearing shoes or socks. The SMPL-X model, with its detailed geom-
etry, including individually articulated toes, is ill-designed for optimization
toward a shoe geometry. We thus introduce a modification to the SMPL-X
mesh topology in the foot region. We replaced the toe details with a closed
surface resembling shoes (Figure 4). We manually selected the faces corre-
sponding to the inner sides of the toes and removed them from both the 3D
model and the UV map (Figure 4(b)). We then added new faces to close
the 3D mesh and added corresponding faces to the UV map (essential for
texture extraction, Section 3.4). Note that, in this process, we rely only
on the original SMPL-X vertices. Vertices which were located on the sides
of the toes are now unused (and ignored in all optimization steps). As we
rely only on the original SMPL-X vertices, we preserve the ability to use the
original skinning-based animation without any change. Only the number of
faces and vertices is slightly less. By adopting this approach, the modified
model retains the general shape of the feet while easing the optimization
process. We will release our proposed shoe-like SMPL-X mesh topology to
the community.

Even though SMPL-X can model most clothing details found in PIFuHD,
it sometimes fails to recover finer clothing wrinkles and discontinuities. To
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a) Original SMPL-X
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(b) SMPL-X after faces removal
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Figure 4: Topology modification of the SMPL-X model. (a) Original SMPL-X feet mesh
with corresponding UV map. (b) Mesh resulting from the toe inner side removal. (c¢) New
shoe-like topology.
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overcome this, we create a new mesh, SMPL-X, 4, which is a finer version of
SMPL-X (1-to-4 subdivision), as seen in Figure 5, and adapted some aspects
of our framework. First, we compute skinning weights for the new vertices
and also we subdivide the UV-map mesh. The added vertices are considered
in the optimization steps. The point-to-surface loss function (Equations 7
and 8) now uses a regular Euclidean distance between the corresponding
vertices v € MSMPL-X><4 and pE MPIFuHD:

dist(p, v) = v — pla- (12)

This change is justified by the fact that the resolution of the subdivided mesh
is sufficiently high, eliminating the need for projecting vertices with respect
to the normal vector. Furthermore, because of the difference in number of
vertices, the point to surface loss (Lpag, Equation 7) behaves in a slightly
different way. The increased number of vertices sometimes pulls the vertices
of Mgmprx,, in regions of Mpimup showcasing a noisy surface or erroneous
protrusions. To avoid pulling the surface too far at each optimization itera-
tion of Equation 7, each optimization iteration ignores mesh M4 (Mpipunp)
vertices for which the distance of Equation 12 is further than 2 cm. Through
the successive optimization iterations, the surface deforms more locally and
gradually. As such, the surface is smoother. Also, the tuning of loss parame-
ters has been adjusted to better regulate the influence of each component of
the loss functions on the overall model training. Specifically, A\; was adjusted
to 2 to increase its regulative impact, whereas Ay was increased to leb and
A4 to 1e8 (A3 remained unchanged).

In our computational framework, the Adam optimizer [45] is consistently
utilized across all stages. We conducted a parameter sweep to select good
learning rates for each step of our approach (See Tables 5-8 of the Appendix
for details). The selected learning rates are as follows: 1073 for the rigid
transformation optimization (Section 3.3.1, Equation 3), 10~ for the pose op-
timization (Section 3.3.1, Equation 6), 10~2 for the shape optimization (Sec-
tion 3.3.2), and 10~ for the deformation vector optimization (Section 3.3.3).

3.4. Texture Extraction and Completion

Now that the geometry is adjusted, we extract the color information for
the avatar from the PIFuHD mesh. Employing a blend of interpolation tech-
niques followed by a texture inpainting technique ensures a faithful texture
representation. For each texel center in the UV map of SMPL-X, we identify

15



T
e

Figure 5: Left: Original SMPL-X mesh. Right: SMPL-Xy4 (1-to-4 subdivision). The
bottom images zoom in on the shoulder and arm regions.



the closest triangle and convert the texel’s position to barycentric coordi-
nates within this triangle of the SMPL-X+4D mesh. From the corresponding
3D position, we fetch the color from the nearest PIFuHD mesh vertex.
Colors at the silhouette of the PIFuHD mesh exhibit color leakage from
the background as can be seeing in Figure 6. To identify these wrong silhou-

(a) (b)

Figure 6: Silhouette color leakage. From left to right - the input image, the PIFuHD mesh,
and the resulting texture extracted from PIFuHD.

ette texel colors, we extract the colors from the original image, and from an
image with a different uniform background color. This second image is gen-
erated by detecting the background in the original image using the Rembg
tool [46] and replacing it with a uniform color. Texels exhibiting differences
in colors correspond to silhouette texels and should be synthesized. Horizon-
tal linear interpolation is used to fill these silhouette texels from the left and
right “valid” texel colors. Figure 7 illustrates this process. Another challenge
in the extracted texture lies in the fact that the PIFuHD method employs a
naive symmetry to assign colors to the back of the avatar. This negatively
impacts occluded parts in the region at the back of the head. To address
this issue, we employ the LaMa image inpainting method [47]. This method
requires an input image and a mask specifying the area to be inpainted. In
our case, we manually crafted a static mask targeting the back of the head.
This mask remains unchanged and applied to all reconstructions, regardless
of variations in the input images. This approach is justified by the fact that
in the UV space of SMPL-X, the posterior region of the head is always at
the same position. The use of this method allows for a more realistic back
of the head, as illustrated in Figure 7 (c).
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Figure 7: From left to right: Texture extracted from PIFu-HD, texture after linear inter-
polation in the silhouette areas, texture following the application of the LaMa inpainting
method on the back of the head.

4. Results

In this section, we evaluate our 3D reconstruction approach using two
open-access datasets. The X-Avatar dataset [28] features 20 subjects from
scanned real bodies, with synthetically generated images using PyTorch3D.
It presents a good diversity across body shapes, poses, and demographics.
PeopleSnapshot [1] captures 12 subjects in A-pose through perspective RGB
video from a camera 2 meters away. For testing, we used the video’s first
frame showing the subject’s frontal view. Note that these two datasets do
not overlap with PIFuHD training dataset.

4.1. Quantitative Fvaluation

We benchmarked our results against those achieved by PIFu [6], PI-
FuHD [7], ICON [8], PHORHUM [5] and DINAR [27]. This comparison
is based on a set of specific metrics. Intersection over Union (IoU) [48] mea-
sures segmentation accuracy by calculating the ratio of overlap between the
predicted and actual silhouettes, where a higher score indicates better per-
formance. Chamfer Distance (CD) [49] evaluates the similarity between two
sets of vertices, with lower values denoting closer matches. Normal Con-
sistency (NC) [50] assesses the agreement of surface normals between the
reconstructed model and the reference, aiming for a score close to one for an
ideal match. The Structural Similarity Index (SSIM) [51] and Peak Signal-
to-Noise Ratio (PSNR) [52] gauge image quality, considering aspects like
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texture, luminance, and contrast, with higher values indicating superior im-
age reconstruction. Finally, the Learned Perceptual Image Patch Similarity
(LPIPS) [53] metric evaluates perceptual similarity between images, focusing
on high-level visual features significant for human perception, where closer
matches yield lower scores.

Table 1: Numerical comparisons of single-view 3D reconstructions on the X-Avatar dataset.
Best results are highlighted in bold gF€€fl and second-best in amber. “Ours subdiv”
corresponds to using the SMPL-X, 4 mesh.

3D Metrics Rendered Normals Rendered RGB Images Nbr
Method CD | NC1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 IoU 1 vertices |
PIFu [6] 1.16 0.808 0.835  0.142 18.54 0.832  0.144 19.90 0.971 50,000

PIFHD 7  [Of6 0828 0557 Q089 2W62 OMIZ 009 2155 D984 170,000
PHORHUM [5] 2.48 0.75 0.782 0.216 13.96 0.76 0.192 13.67 0.890 100,000

ICON [8] 2.98 0.721 0.833 0.125 1848 0.805 0.143 17.89 0.947 48,000
Mallek et al. [9]  0.91 0.803 0.869 0.127  20.75 0.896 0.075 23128 0.974
Ours 091 0805 0:870 0.125 2082 0.900 0073 23:28 0.976
Ours subdiv 0:84 0.807 (0876 0:108 2074 0911 0066 23.03 0979 41,738

Table 1 presents comparative results based on the X-Avatar dataset. Our
approach exhibits robust and competitive performance across various met-
rics, affirming its efficacy for single-view 3D reconstruction. While slightly
outperformed in some cases, the differences are minor. The slight perfor-
mance decrement is partly attributed to the use of a parametric body model,
which, despite offering substantial flexibility, may struggle to capture small
body or clothing details. Our results do not exhibit a pronounced advantage
in metrics such as LPIPS, PSNR for rendered normals, and SSIM for rendered
RGB images primarily due to the underlying structure of our model. Our re-
construction relies on a parametric model which utilizes less than six percent
of the vertices of the PIFuHD model. This reduction in vertex density inher-
ently limits our model’s capacity to capture extremely fine geometric details,
such as hair, and to precisely converge to the complex geometries exemplified
by PIFuHD. Note that PHORHUM, being specifically trained on perspective
data, has a weaker performance on our orthographic projection setting. To
reduce the misalignment between the source and the reprojected images, we
have applied minor translation and scale adjustments before computing the
quality metrics to allow for a fairer comparison. ICON performs worse than
PIFuHD in terms of Chamfer distance. In the ICON paper, the experiments
use difficult poses, effectively highlighting how ICON is significantly better
than PIFuHD in that context. In contrast, our experiments were conducted
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with frontal images and relatively simple poses, a setting in which PIFuHD
outperforms ICON, which explains the apparent discrepancy in Chamfer dis-
tance between our study and that reported in the ICON paper. Finally, we
can note that our approach, with and without subdivision, outperforms the
method of Mallek et al. [9] with the only exception of PSNR on RGB im-
ages. When considering our approach without subdivision, the numerical
differences to the method of Mallek et al. [9] are smaller, mainly because
our contribution in the foot modeling results in relatively few pixels in the
overall image. Note that our optimization approach being non-deterministic,
the optimized avatars slightly differ every time the optimization is computed.
The results in Table 1 for our approach correspond to the median value over
10 optimizations.

We evaluated our approach alongside DINAR on the PeopleSnapshot
dataset, and the results are shown in Table 2. This dataset consists of real-
world perspective images, which correspond to the training environment of
DINAR. Additionally, since DINAR’s rendered outputs do not perfectly align
with the input images, we further applied cropping and scaling adjustments
to ensure a fairer comparison. Despite these conditions, our method con-
sistently achieves higher fidelity and segmentation quality, demonstrating
robustness across both orthographic and perspective-based scenarios.

Table 2: Quantitative comparison on the PeopleSnapshot dataset using rendered RGB
image metrics. Our method achieves higher fidelity and segmentation quality than DINAR.

Rendered RGB Images  IoU
Method SSIM 1 LPIPS | PSNR 110U 1

DINAR [27] 0.947  0.070 26.88 0.871
Ours subdiv 0.985 0.029 33.55 0.955

4.2. Qualitative Fvaluation

Quantitative evaluations do not always align with human perception.
Therefore, we present qualitative results of our approach alongside the meth-
ods of PIFu, PIFuHD, ICON, and PHORHUM on synthetic images in Fig-
ure 8 and Figure 9, as well as a comparison on real images in Figure 10.
Figure 8 focuses on comparing input images to rendered images from iden-
tical viewpoints. Our rendered images closely mirror the source images.
Conversely, PHORHUM reveals deficiencies in color restitution, attributed
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Figure 8: Qualitative evaluation of X-Avatar samples (same as input view).
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to their unreliable attempt at estimating scene lighting for albedo color re-
construction. Alternative methods, including ICON, PIFu, and PIFuHD,
exhibit performances comparable to ours, with the lower resolution of ICON
and PIFu resulting in a slight loss of sharpness in the rendered images. Fig-
ure 11 illustrates a comparison of foot reconstruction, highlighting the dif-
ferences between the SMPL-X foot topology used in the method of Mallek
et al. [9] and our shoe-like topology. Figure 12 highlights the finer details
on the clothes that are recovered when using the proposed subdivided mesh
SMPL-X 4. While this subdivision strategy is optional, Table 1 shows that
it improves the quantitative metric results, increasing the advantage of our
proposed approach compared to the method of Mallek et al. [9].

We then assess the performance of our approach in generating rendered
images from new perspectives with the X-Avatar (Figure 9) and PeopleSnap-
shot (Figure 10) datasets.

Our approach excels in estimating shape, pose, and colors, outperform-
ing PIFu and PHORHUM. PHORHUM, in particular, exhibits anomalies in
color and pose estimation, while PIFu struggles with color completion issues,
especially near the silhouette of the body. Furthermore, our approach ben-
efits from the use of a parametric model, enabling the generation of more
natural and realistic face and hand shapes.

Concluding this evaluation, it is crucial to highlight a distinctive ad-
vantage of our approach: the ability to easily animate the reconstructed
3D avatars using linear blend skinning. This feature starkly contrasts with
other methods that do not facilitate such direct animation. Ilustrating the
animation capability of the proposed approach, Figure 13 presents three ani-
mations generated from the extensive AMASS dataset of human motions [54]
showcasing the versatility of our approach.

Animation 1 (Figure 13a) features a series of dance poses. Animation 2
(Figure 13b) depicts an avatar executing gymnastic poses. Animation 3 (Fig-
ure 13c) demonstrates the capacity of our approach to capture and reproduce
a range of facial expressions and hand movements.

4.3. Ablation Study

In this section, we present an ablation study on the multiple steps and
optimizations of our model, focusing on geometric and color reconstruction
using the X-Avatar dataset. We conduct a series of tests where individual
components are removed from our pipeline. Table 3 allows us to isolate and
understand the impact of each component on the overall performance. The
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Figure 9: Qualitative evaluation of X-Avatar samples across varied perspectives, distinct
from the initial view

',’
A%ﬁih ')”

1H§ﬁm§

DINAR PHORHUM PIFu

Figure 10: Qualitative evaluation of PeopleSnapshot samples
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(a) SMPL-X foot topology (b) Our foot topology

Figure 11: Comparison of foot reconstruction.

last row (Ours) shows that our full pipeline has the best and second best
values for five out of nine measures, demonstrating that it outperforms most
of the other configurations. Rows labelled “w/o P2S” in Table 3 and the
column labelled “w/o P2S” in Figure 14 illustrate the critical role of the
point-to-surface loss in Equation 9 and 11, collecting the worst quantitative
metric values. Rows “w/o Ly norm hand & face” and “w/o Ly norm body,
hand & face” in Table 3 show that the quantitative measures are better
without the Lo, norm, but the qualitative results are much worse as can be
seen in Figure 14 “w/o Ly norm hand & face” (similar qualitative problems
occur for “w/o Ly norm body, hand & face”). The removal of the Ly norm for
the hand and face parts in our model increases flexibility in the deformation
process, allowing for a better coverage of these areas when projected in image
space. However, one can see that the reconstruction of the hands in column
“w/o Ly norm hand & face” of Figure 14 is quite degraded compared to our
full pipeline. According to Table 3, Equation 11 performs better in terms of
Chamfer distance when ignoring the regularization term, but again we can
see that the qualitative result is worse than the full pipeline (column “w/o

regularization” in Figure 14 ), with flipped and intersecting triangles on the
body and hands.
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(a) w/o subdiv (SMPL-X) (b) with subdiv (SMPL-Xx4)

Figure 12: Comparison without and with mesh subdivision.

Table 3: Comparison with respect to the ablated components. Best results highlighted in

gréei, second-best in amber, worst in [féd italics.

3D Metrics Rendered Normals Rendered RGB Images
Method CD | NCt SSIM1t LPIPS| PSNRT SSIMtT LPIPS| PSNRT ToUT
Ours w/o sc Eq. 6 0927 0802 0867 @E2E 2067 0895  0:076 2289 0973
Ours w/o sc Eq. 9 0.910 0.801  0.867 0.127 20.79 0.896 0.076 23.29 0.973
Ours w/o P2S Eq. 9 0.169 0.864 0.111 0.936
Ours w/o Chamfer Eq. 9 0.916 0.801  0.867 0.126 20.62 0.896 0.076 22.79 0.972
Ours w/o regularization Eq. 10 01899 0.795  0.865 0.130 20.57 0.896 0.080 22.87 0.972
Ours w/o Laplacian Eq. 10 0.920 0.801  0.866 0.126 20.65 0.895 0.076 22.82 0.973
Ours w/o normals Eq. 10 0.924 0.800  0.868 0.126 20.65 0.896 0.075 22.74 0.973
Ours w/o Lz norm body Eq. 10 0.917 0.801  0.866 0.127 20.65 0.895 0.077 22.83 0.972
Ours w/o Lz norm hand & face Eq. 10 0.903 0.801  0.869 0.126 0.900 0.075 0.975
Ours 0.910 03803 [0:869 0.127 20.75  0.896 0.075 23.23 0.974
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(b) Animation 2

(¢) Animation 3

Figure 13: Presentation of three rendered animations featuring three subjects in diverse
body poses and expressions

26



w/o P28
Equation 9

w/o regularization w/o L2 hand & face

Figure 14: Qualitative ablation
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4.4. Discussion

The quantitative and qualitative evaluations confirm the ability of our
approach to deliver high-quality 3D reconstruction. It validates not only the
numerical accuracy of our approach but also its robustness and flexibility
across varied visual and functional scenarios. Our approach is reasonably
fast, requiring 2 to 4 minutes of computation to reconstruct the pose, shape,
and texture of the results presented in this paper. Figure 15 presents the
relative computation times of a representative example. We can see that with
the regular SMPL-X mesh, most of the time goes toward texture extraction,
while with the subdivided SMPL-X mesh, most of the computation time goes
toward computing the deformation vectors. We used a computer with 2 cores
at 2.2 GHz, 24 GB of memory and an NVidia L4 GPU.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
SMPL-X Subdivided
Align ®Pose ®Shape M Deformation ® Texture

Figure 15: Relative computation times for the various steps of our approach, Align (Equa-
tion 3), Pose (Section 3.3.1), Shape (Section 3.3.2), Deformation (Section 3.3.3), and
Texture (Section 3.4), as well as for the original vs. subdivided SMPL-X mesh.

The conducted experiments confirmed fidelity of the resulting mesh.
Notably, the incorporation of a Laplacian regularization loss significantly
smoothed the mesh, reducing the irregularities and discontinuities seen in
previous methods. Table 4 highlights the distinctions between our approach
and other methods.
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Table 4: Comparison according to several criteria

Method Single Shape Animation Expression Textured Compact
Image Variability Represen-
Input tation

SMPLify-X

Video Avatar

PIFuHD

PHORHUM

Ours

Our approach, while using a mesh with fewer vertices compared to PIFu,
PIFuHD, ICON, and PHORHUM (= 6% compared to PIFuHD), achieves
levels of details that are comparable to implicit function-based methods,
leading to fine-detailed avatars. Unlike the PIFu-based methods relying on
deep learning models like SCANimate for animation, our approach uses the
SMPL-X model, favouring robust, widely-used animation techniques like lin-
ear blend skinning. In terms of expressiveness, our approach, through the use
of SMPL-X, allows for animations with a wider range of facial expressions
and hand movements, surpassing other methods limited to body postures.
Our texture process also outperforms others, providing avatars with rich and
more detailed textures.

5. Conclusion

In this paper, we tackled the challenge of generating 3D human avatars
from a single image. Our approach extends the work of Mallek et al. [9]. We
are driven by the objective to make these avatars realistic, animatable and
expressive. By leveraging cutting-edge techniques such as PIFuHD, Open-
Pose, and the SMPL-X model, we have succeeded in producing 3D avatars
that faithfully replicate the human morphology. We utilized PIFuHD to gen-
erate an accurate target 3D mesh and relied on OpenPose to estimate 2D
joints that are subsequently lifted to 3D. We then fit an SMPL-X model to
this target mesh by applying a sequence of optimization steps. We started
with a rigid registration and then refined the shape and pose parameters.
We introduced a final refinement process by applying a deformation vector
to the SMPL-X mesh for a more faithful modeling of clothing geometry.
Most often, avatars are reconstructed from images of people wearing shoes
or socks. Thus, we modified the SMPL-X mesh topology to reflect that. Our
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modification maintains the same ease of use and animation of SMPL-X as
we kept the exact same vertices and only changed the mesh topology. Fur-
thermore, we demonstrate how to adapt our approach to a finer resolution
SMPL-X mesh. We also showed that this subdivision strategy improves the
quantitative metrics. Finally, we incorporated a phase of texture extraction
and completion. We showed that our approach outperforms the related work
when considering several evaluation criteria: reconstructs from a single im-
age, uses a compact mesh, models humans wearing tight to loose clothing,
produces a plausible reconstruction of hands and face, synthesizes a realistic
texture, and allows easy animation of the avatars. None of the methods we
have compared to could simultaneously achieve a good performance on all of
these criteria.

Overall, the proposed approach represents a significant step toward
achieving realistic and animatable human avatars, laying the groundwork
for future improvements. While promising, our texture generation requires
further refinement for enhanced fidelity. Investigating the use of diffusion-
based models [33, 36, 37, 38, 39] has the potential to better capture the back
side of the avatar. While our approach is successful regarding certain types
of loose clothing, it does not yet support very loose garments, like skirts.
Investigating other methods [34, 35, 37, 38, 39] which successfully support
loose garments could help in rethinking our use of the SMPL-X mesh to
allow for different garment topologies while preserving the ability to easily
animate the resulting avatar. While PIFuHD works well for the global shape
of the body, its reconstruction of the hands is sometimes poor, and our ap-
proach suffers from that. Investigating better methods for the reconstruction
of hands could provide significant improvements in that sense.
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Appendix

Tables 5-8 showcase the parameter sweep we conducted to select the best
learning rates for the different steps of our approach.

Table 5: Parameter sweep with respect to the learning rate for the rigid optimization phase
(Section 3.3.1, Equation 3). Best results are highlighted in bold gF€éfl and second-best
in amber.

3D Metrics Rendered Normals Rendered RGB Images IoU 1
Learning rate CD | NC1 SSIM 1 LPIPS | PSNR 1+ SSIM 1 LPIPS | PSNR 1
le-2 0:828 0.806 0.877  0.110 20.68 0:911  0.068 22.83 0.978
le-3 0.850 0806  0:878 0109 2076 0911 0.063 22:97 0.978
le-4 0.850 0.808 0.877  0.110 20.66 0.910 (01066 22.77 0978

Table 6: Parameter sweep with respect to the learning rate for the pose optimization phase

(Section 3.3.1, Equation 6). Best results are highlighted in bold gF€€#l and second-best
in amber.

3D Metrics Rendered Normals Rendered RGB Images IoU 1
Learning rate CD | NC1 SSIM 1 LPIPS | PSNR 1+ SSIM 1 LPIPS | PSNR 1
1e-3 0:850 0.807 0877 0409 2071 0911 0.067 2257 0.978
e 0.850 0506  0.878 0109 2076 0911 0068 0.978
le-5 0.850 0.807 0.877  0.110 20.65 0.910 0.068 22.83 [0:978

Table 7: Parameter sweep with respect to the learning rate for the shape optimization

phase (Section 3.3.2). Best results are highlighted in bold gE€€#l and second-best in am-
ber.

3D Metrics Rendered Normals Rendered RGB Images IoU 1
Learning rate CD | NC1  SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1
le-1 0.87 0.800 0.871  0.117 20.37 0.905 0.073 22.74 0.973
le-2 0.85 0.806 ~ 0.878 0.109 20.76 0.068
le-3 0.88 0.798 0.871  0.116 20.35 0.905  0.073 22.75 0.973
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