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Abstract. We propose a method for real-time cloth deformation using
neural networks. The computational overhead of most of the existing
learning methods for cloth simulation often limits their use in interac-
tive applications. Employing a two-stage training process, our method
predicts garment deformations in real-time. In the first stage, a graph
neural network extracts cloth vertex features which are compressed into
a latent vector with a mesh convolution network. We then decode the
latent vector to blend shape weights, which are fed to a trainable blend
shape module. In the second stage, we freeze the latent extraction and
train a temporal latent predictor network. The temporal latent predictor
uses a subset of the inputs from the first stage, ensuring that inputs are
restricted to those which are readily available in a typical game engine.
Then, during inference, the latent predictor predicts the compacted la-
tent which is processed by the decoder and blend shape networks from
the first stage. The latent predictor is the crucial component to speed up
our inference time by replacing the resource-intensive graph neural net-
work from the first stage. Our experiments demonstrate that our method
effectively balances computational efficiency and realistic cloth deforma-
tion, making it suitable for real-time use in applications such as games.

Keywords: Cloth synthesis · Deep neural network · Real time

1 Introduction

Modeling, synthesizing and rendering clothing on virtual characters is a criti-
cal task in many applications such as games, special effects, telepresence, and
VR environments. Physical simulation has been typically used with excellent
results [1,18], but with significant limitations related especially to performance,
stability, and controllability [18].
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Modern video games contain many complex components related to graphics
and animation working together with a limited computational budget and with a
high number of assets (i.e. characters, garment types, accessories, motion types).
Therefore, garment synthesis methods aimed at games require, in addition to
the high quality of the results, high performance as well as a high degree of
generalization to adapt to the large number of assets that typically appear in a
game.

Most used methods in games predict displacement on a template garment
in the canonical pose and subsequently drive cloth deformations using a combi-
nation of blend shapes and Linear Blend Skinning (LBS) [13, 16]. However, as
noted by Grigorev et al. [8], this pose-driven deformation has difficulties both in
correctly representing loose garments and with the dynamic behaviour of cloth-
ing. This is because pose-driven methods are not supervised by any real physics
simulation. The HOOD method [8] tries to address these issues by learning com-
plex cloth deformations using direct physics supervision at a vertex level and, as
such, is agnostic to the underlying body. One major concern with HOOD though
is that it is far too slow to be used in video games.

In this work, we propose a garment synthesis method specifically designed
with game requirements in mind. Our method uses the blend shapes and LBS
methods while producing good realistic cloth deformation in real time. Our
method uses two key ideas. First, we distil the per-vertex feature vector ob-
tained from a powerful but slower method such as HOOD [8] that encodes the
complex information about the garment deformation to a per-garment compact
latent space that can be efficiently decoded. Then we compute the posed gar-
ment from the compact latent space. This addresses only half of the problem:
even if the decoding is efficient, the encoding based on the graph embedding
and message passing in HOOD is quite slow. To address this issue, our second
key idea is to create a fast latent predictor that computes the latent code of
the next frame of the deformation. We demonstrate that this approach produces
high-quality results at very fast speeds. Moreover, it generalizes over different
body shapes thus allowing only one latent space for a variety of character shapes
and sizes. We further demonstrate its suitability for game-like applications by
showing a real-time demo where the body poses are generated ad-hoc and in
real-time using motion matching [6, 9], a common method used in games for
character pose synthesis. Our main contributions can be summarized as: (i) a
network architecture for effective distillation of per-vertex features to a compact
latent space, (ii) an efficient latent predictor for real-time purposes relying on
a compact set of inputs readily available in game engines, and (iii) a two-stage
training strategy to achieve quality and speed in computing cloth dynamics.

The rest of the paper is organized as follows: section 2 presents in more detail
the related work, section 3 presents in detail our method, section 4 presents our
results, comparisons and analysis and, finally, section 5 presents our conclusions,
limitations and future work.
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2 Related Work

In the last decade, an enormous amount of work has been levied toward apply-
ing deep learning-based methods to various academic fields including computer
graphics and computer animation. Character garment animation has recently
received increasing attention for said research. Garment synthesis using neural
networks can be largely classified into pose-driven methods where the prediction
is conditioned on the body poses and the outputs of the neural networks are
displacement for a template garment [5,19,21,23] and/or deformations encoded
as blend shapes [2, 12, 14]. These approaches are appealing as the computation
of linear blend skinning and blend shapes can be done extremely efficiently on
GPU.

An early example of displacement based methods is TailorNet [19], which is a
supervised method for predicting character clothing using pose, body shape, and
garment style as input. The key to the methodology involves explicitly separat-
ing low-frequency and high-frequency garment deformations in-order to avoid the
common problem of overly smooth output that neural networks suffer from. Low
and high-frequency displacement are generated as functions of body shape, pose,
and style using a Multi-Layered Perceptron (MLP). The high-frequency displace-
ment is further refined using the mixture weights predicted by the garment style
and the body shape. Self-Supervised Neural Dynamic Garments (SNUG) [21] for-
mulates garment physical-based constraints as loss terms which are minimized
during training, allowing for the model to learn displacement for dynamic gar-
ment deformations in a self-supervised manner removing the need of simulated
data to train. Swish [12] is a quasi-static garment deformer, taking as input the
character pose and outputting PCA weights which are used to reconstruct dis-
placement with PCA vectors, similar to blend shapes. This is one of the only
two methods that are suited for deployment in games and in fact was used in
Electronic Arts Madden NFL 21 to deform football player jerseys. However, this
method is limited to tight garments and it does not take into account the dy-
namics of the cloth. The largest limitation of the LBS-based methods is their
failure on loose garments. Zhang et al. [23] address this by learning a generative
space of plausible garment geometries. Then, their method learns a mapping to
this space to capture the motion-dependent dynamic deformations, conditioned
on the previous state of the garment as well as its relative position with respect
to the underlying body. SMPLicit [7] is another generative model capable of
representing body pose, shape, and clothing geometry. It can represent multiple
garment topologies with the same model. This is achieved via a learned implicit
function.

Another way to address the failure cases for loose garments is to model the
deformed garment using blend shapes [2,3,11,14]. In the training stage, a set of
blend shapes is created to span the deformation space of the garment thus im-
proving over the LBS-only methods. Physically-Based Neural Solver (PBNS) [2]
uses a self-supervised learning approach for learning garment deformations simi-
lar to SNUG [21]. Neural cloth simulation (NCS) [3] utilizes an encoder-decoder
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Fig. 1: Overview of our method. We develop a compact latent space for cloth deforma-
tion in the first stage (a), and then in the second stage (b) we train a latent predictor
to efficiently predict a vector in the compact latent space. During inference (c), we
utilize lightweight MLPs (the latent predictor and the decoder) and blend shapes for
fast inference.

neural network architecture which explicitly disentangles static and dynamic
cloth deformations.

HOOD [8] departs from the pose-based generation framework to get the
initially posed garment and uses physics supervision at the vertex level to drive
garment deformation. While the results are impressive, due to its usage of Graph
Neural Networks coupled with the necessity of computing per-vertex features at
every time step, this approach is ill suited to real-time in-game cloth deformation.

3 Method

Our method, depicted in Figure 1, predicts displacement on a template garment
in the canonical space and uses LBS to perform garment synthesis for compu-
tational efficiency and ease of application. Designed for real-time applications,
such as games, our method utilizes a two-stage training process to model dy-
namic cloth behavior. Our key idea is to obtain a compact latent representation
for cloth deformation that can be predicted given sparse inputs and converted
into displacement on a template garment.
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While a method like HOOD [8] can simulate high-quality garment deforma-
tion with dynamics using time integration by predicting acceleration, it results in
a high-dimensional latent representation and demands significant computational
resources at inference time, making it unsuitable for game engines and real-time
applications. Specifically, its encoder generates high-dimensional latent features,
its processor updates these features with graph neural networks and message
passing, and then its decoder predicts acceleration with the processed features.
Utilizing the architecture of the encoder and the processor, which are effective
at capturing garment deformation and dynamics, our compact latent learning
stage aims to train a network that predicts displacement by compressing the
high-dimensional latent features from the encoder and the processor into a com-
pact latent vector using Mesh Convolution [25]. Leveraging the compact latent
vector, we predict the displacement with our decoder and learnable blend shapes.
The decoder predicts blend shape weights from the compact latent vector, and
then the displacement is computed as a weighted sum of the learnable blend
shapes with the blend shape weights. Finally, we perform LBS on the deformed
garment with the displacement. Training these networks in an end-to-end man-
ner, as illustrated in Fig. 1 (a), enables us to learn a compact latent space that
effectively represents garment deformation and dynamics.

Our latent predictor learning stage trains a lightweight MLP to get rid of
the encoder, the processor, and the convolutional neural network of the compact
latent learning stage, ensuring fast inference, as shown in Fig. 1 (b). This block is
trained to predict the latent vector at the next time step Zt+1 using the current
latent vector Zt, root joint velocities of two frames {vt, vt−1}, joint rotations
of three frames {ϕt+1, ϕt, ϕt−1}, joint positions of three frames {ρt+1, ρt, ρt−1},
the body shape parameter β, and material parameters {m,µ, λ, k}, which are
detailed in Sec. 3.3. These inputs are necessary and sufficient to predict the next
step latent vector within interactive frame rates. During inference time, using
this simple MLP with the decoder and the blend shapes enables our method to
be applied in real-time applications, as presented in Fig. 1 (c).

3.1 Garment Model

Our garment model G(β,θ,X) is defined as:

G(β,θ,X) = LBS(T (β,θ,X), J(β),θ, W̃) (1)

where β and θ are shape and pose parameters used by the SMPL body
model [15], X is a feature vector defined in sections 3.2 and 3.3, and LBS
is the linear blend skinning function. This function transforms the deformed
garment T (β,θ,X) from the canonical space to the posed space with joint lo-
cations J(β) of the body in shape β, pose θ, and the diffused skinning weights
W̃.

The core of our garment model is the deformed garment T (β,θ,X). This
involves deforming the template garment T with diffused shape blend-shapes
GS(β) based on the body shape β and further deforming the shaped garment
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(T+GS(β)) using displacements predicted by network inputs X. The diffusion
method for skinning weights W̃ and shape blend shapes GS(β), introduced by
Grigorev et al. [8], is necessary due to the challenge posed by the diverse SMPL
body shapes. This method allows garments, which are initially designed to fit
the template SMPL body, to be aligned with different shapes of the template
body, ensuring appropriate deformation.

3.2 Compact Latent Learning Stage

The goal of this learning stage is to train our network Φ and obtain a low-
dimensional latent representation for garment deformation and dynamics. Our
network Φ follows an Encode-Process-Convolve-Decode architecture, which inte-
grates the Encode-Process architecture [20] of HOOD with a mesh convolution
network and our decoder. The network Φ is trained in an unsupervised manner
to predict displacement on the shaped garment for the next time step. This is
different from HOOD which predicts acceleration for the next time step. Refer to
supplementary material for implementation details. With no ground-truth sim-
ulation data requirement, we optimize physics-based losses on the final garment
vertices G(β,θ,XH+) using the deformed garment T (β,θ,XH+). The deformed
garment in this stage is defined as:

T (β,θ,XH+) = T+GS(β) + Φ(XH+), (2)

where Φ(XH+) is the displacement predicted by our network for the given inputs
XH+.
Inputs XH+: The network Φ takes inputs XH+, similar to those in Grigorev et al.
[8]. The inputs XH+ consist of per-vertex and per-edge feature vectors from the
garment mesh and the body mesh at time t. The feature vectors for each vertex
include velocity, normals, material parameters, vertex type, and vertex level.
Material parameters for each vertex consist of mass m, Lamé parameters µ and
λ, and the bending coefficient k. The vertex type indicates whether a vertex is
pinned to prevent a garment from falling down from a body, and the vertex level
represents the coarse level of a vertex (HOOD uses coarsened graphs for its multi-
level message passing). Additionally, we incorporate positions and accelerations
for garment and body vertices to enhance garment behavior modelling. The
feature vectors for each edge of the garment include the relative position of
connected vertices at the current time t and in the rest pose, with norms of
these relative positions, along with material parameters and delta time. The same
per-edge feature vectors are included from coarsened graphs of the garment. For
edges connecting body and garment vertices by their proximity, the edge feature
vectors include relative positions at the current time t and the next time t+ 1,
with norms and delta time.
Encode and Process: The encoder comprises MLPs in the same way as HOOD.
It transforms the input feature vectors XH+ into latent vertex and edge features,
which are then processed by a series of message passing blocks in the proces-
sor. This processor updates the features to capture garment deformation and
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dynamics, following the same approach and inputs of latent vertex and edge
features as HOOD. Since HOOD passes only the processed vertex features to
its decoder after the processor, indicating that the vertex features contain the
necessary information for garment deformation and dynamics, we also pass only
the processed vertex features to the mesh convolution network without the edge
features.

Convolve: We compress the processed vertex features into a compact latent vec-
tor Z with the mesh convolution network by Zhou et al. [25]. This network excels
at constructing localized latent features, making it ideal for our compression task.
We utilize its convolution and residual layers to reduce the dimensionality of the
processed vertex features and flatten the compressed vertex features into a latent
vector. Since the compressed latent vector Z ∈ RL with the dimension L is used
at inference time, the dimension L of the latent vector has to be small enough
to be evaluated in interactive frame rates, and large enough to encode garment
deformation and dynamics. This latent vector is then passed to the decoder.

Decode: When predicting garment deformations, learnable blend shapes have
proven effective in modeling non-linear garment behavior [2–4]. Following this
approach, we build our decoder fdec : RL → RD with an MLP, which takes the
latent vector Z ∈ RL and predicts D blend shape weights for our learnable blend
shapes. The learnable blend shapes consist of D blend shape matrices. Thus, the
final displacement for each vertex is defined as:

D∑
j

Dj,ifdec(Z)j , (3)

where D is the array of the learnable blend shape matrices and Dj,i indicates
the blend shape basis for the ith garment vertex of the jth blend shape matrix in
the array. A single blend shape matrix Dj ∈ RN×3 consists of blend shape bases
for N garment vertices. The combination of the MLP with the blend shapes is
fast enough to enable real-time inference. Details about the implementation are
elaborated in the supplementary material.

Loss Functions: We train our network with the same losses as described by
Grigorev et al. [8]. We employ the bending loss Lbending that introduces smooth-
ness by penalizing sharp bends, measured through the dihedral angles between
adjacent triangles [1]. The stretching loss Lstretching, based on the Saint Venant-
Kirchhoff (StVK) model, enforces hyperelastic material behavior. The inertia loss
Linertia is used to generate realistic dynamic motion by resisting drastic changes
in velocity. The gravity loss Lgravity applies a constant downward force on the
vertices of the garment mesh, creating realistic drapes and falls. The friction
loss Lfriction prevents the sliding motion of the garment, enhancing its stability
and realism. Since all the above losses can cause interpenetration between the
garment and the body, the collision loss Lcollision is used to move the garment
vertices away from the body vertices. Therefore, the total loss L is defined as a
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weighted sum of these individual losses:

L =wbLbending + wsLstretching+

wiLinertia + wgLgravity+

wfLfriction + wcLcollision,

(4)

where wb, ws, wi, wg, wf , and wc are scalar weights that control the contributions
of each loss term. By adjusting these weights, we fine-tune the balance between
different aspects of cloth behavior. Following unsupervised training methods with
physics-based losses [2,3,8,21], optimizing our network using these losses allows
for realistic cloth deformation, similar to solving equations of motion for cloth
simulation through energy optimization.

3.3 Latent Predictor Learning Stage

The goal of this stage is to train a latent predictor fLP, which will replace the
computationally intensive Encode-Process-Convolve components of the network
Φ in the compact latent learning stage.

To ensure that the latent predictor is lightweight and suitable for real-
time use, it is constructed solely with an MLP. Refer to the supplementary
material for implementation details. The latent predictor takes a set of sim-
pler inputs Xc compared to the inputs XH+. The inputs Xc are optimized
for instantaneous preparation in each frame while being robust enough to ac-
curately predict the compact latent vector Z. These inputs are defined as
Xc = {Zt,v,ϕ,ρ,β,m, µ, λ, k}. The latent vector at the current time step Zt

provides temporal context, aiding in the prediction of the next latent vector.
This input latent vector is set to zero in the first frame. The inputs include joint
velocities v, local joint rotations ϕ, and global joint positions ρ. Specifically,
the joint velocities comprise root joint velocities over two frames {vt, vt−1}, and
the pose consists of local joint rotations over three frames {ϕt+1, ϕt, ϕt−1} in 6D
representation [24] and global joint positions over three frames {ρt+1, ρt, ρt−1}.
We include the global joint positions which are evaluated by forward kinematics
with animation sequences, in order to enable the latent predictor to find a bet-
ter mapping function from the inputs to a latent vector. To prevent the latent
predictor from overfitting to the global joint positions of animation sequences,
we subtract global joint positions with the root joint translation and remove the
root joint translation from the inputs. We also exclude joints such as wrists and
hands from the inputs, due to their minimal impact on garment deformation.
We additionally incorporate the body shape β and garment material parame-
ters. The material parameters are mass m, Lamé parameters µ and λ, and the
bending coefficient k, which are also used for the compact latent learning stage.
Through these inputs, we can reduce the number of variables in XH+ from hun-
dreds of thousands of parameters down to thousands in Xc. For example, we
reduce 886,165 floating-point variables in XH+ to 2,591 floating-point variables
in Xc for a t-shirt garment in our training dataset.
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Utilizing these inputs, the latent predictor predicts the next latent vector
Zt+1 = fLP(Xc). To optimize the latent predictor, we compute the ground truth
latent vector Zgt

t+1 using the Encode-Process-Convolve components with the in-
puts XH+, while keeping the weights of the components frozen. The optimization
is performed by minimizing the mean squared error loss between the predicted
latent vector and the ground truth:

LMSE =
1

L

L∑
i

(
Zgt

t+1,i − Zt+1,i

)2 (5)

During inference, our garment model G(β,θ,Xc) gets the final transformed
vertices using the deformed garment T (β,θ,Xc). The deformed garment at in-
ference time is defined as:

T (β,θ,Xc) = T+GS(β) + Ψ(Xc), (6)

where the function Ψ predicts the displacement on the shaped garment us-
ing the latent predictor, the decoder, and the learnable blend shapes with
the given inputs Xc. The displacement for each vertex is computed as∑D

j Dj,ifdec(fLP(Xc))j .

4 Results and Discussion

In this section, we evaluate the effectiveness and performance of our networks.
We first detail our training setup. Next, we qualitatively compare our networks
with a state-of-the-art method, NCS [3]. Additionally, we measure and compare
the computational performance of our method against NCS. Furthermore, we
validate the effectiveness of our two-stage training process by an ablation study,
and we demonstrate the efficiency and applicability of our method by imple-
menting it in a real-time application demo.

4.1 Training Setup

Training Dataset: For our experiments, we use pose sequences from the
AMASS dataset [17]. We adopt the sequence list from the VTO dataset [22] for
training purposes. The VTO dataset takes sequences from the AMASS dataset,
but we replace some unavailable sequences of the list with others in similar pose
categories of the AMASS dataset (The list of sequences is found in the sup-
plementary material). This sequence list contains 56 sequences with a total of
19,145 frames, comprising 13 walking, 12 running, 10 jumping, 10 arm move-
ments, 6 torso movements, 4 dancing, and 1 avoidance movement sequence. For
testing, we use other sequences from the AMASS dataset, excluding those used
for training. The garments for our experiments include a dress, a long-sleeve top,
pants, a tank top, and a t-shirt, provided by Grigorev et al. [8] for training their
HOOD network. These garments are aligned with the template female body of
SMPL. Accordingly, we used the SMPL female body for our experiments.



10 C. Lee et al.

Training Details: We trained five networks for compact latent learning and
five latent predictors with the five garments in the training set. We implemented
our method and trained the networks on a PC, equipped with an Intel Xeon W-
2135 CPU, an NVIDIA RTX A4000 GPU, and 64GB of RAM. Training for the
compact latent learning stage took approximately 40 hours per garment, with
120,000 iterations each. We used the Adam optimizer for training the networks
in the compact latent learning stage, with a learning rate 5× 10−5, and applied
gradient clipping with a max norm of 1.0. Since the training method from HOOD
does not support batch training, we used a batch size of one. For each training
pose, We randomly sampled the shape β from the uniform distribution U(−3, 3).
We also randomly sampled material parameters for the inputs by sampling a
value from the uniform distribution U(0, 1) and scaling it with its minimum
and maximum values. The mass for each vertex of a garment m ranged from
4.34× 10−2 to 7× 10−1, the range of Lamé’s second parameter µ from 15909 to
63636, the range of Lamé’s first parameter λ from 3535.41 to 93333.73, and the
range of the bending coefficient k from 6.37× 10−8 to 1.31× 10−3. To advance
our garment deformation over time, we apply the autoregressive training from
HOOD, predicting one next step at the beginning and increasing the number
of prediction steps every 5000 iterations to 5. We further set the inertia loss
weight wi from 3.0 to 5.0 and the gravity loss weight wg from 2.0 to 3.0 to make
our garment deformation more dynamic, with the other weights wb, ws, wf set
to 1.0. The collision loss wc starts at 5 × 103 at the beginning of training and
increases linearly to 8 × 106 from 50,000 iterations to 100,000 iterations. Each
latent predictor was trained for 5 million iterations, which took approximately 12
hours. We trained latent predictors for each garment using an Adam optimizer
with a learning rate of 1× 10−4 and a batch size of 512.
Normalization: When training a network in the compact latent learning stage,
we adopted the inputs and outputs normalization from HOOD. Unlike the nor-
malization method for the outputs from HOOD, which gathers statistics for
acceleration from linearly-skinned garments, we collect statistics for displace-
ment from our prediction and evaluate the final displacement by denormalizing
the predicted outputs. When training a latent predictor, we also normalize the
inputs Xc and the outputs Z by mean and standard deviations for each input
and each output except for the material parameters. The material parameters
in the inputs are normalized to fall between 0.0 and 1.0 based on their value
ranges.

4.2 Comparison with State-of-the-art

For this comparison, we trained five NCS networks for each garment in the
training set with the template SMPL female body, as NCS supports only a fixed-
shaped body with a garment. We used the public code released by Bertiche et
al. [3] and a batch size of 512. We chose the cloth model of Baraff et al. [1], since
it is more optimal than the StVK model for convergence according to Bertiche et
al. [3]. We further applied the heuristic method of Li et al. [14], which gradually
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Fig. 2: Qualitative comparison with NCS [3]. For each garment, the first column shows
the results from networks Φ in the compact latent learning stage, the second column
shows results from networks Ψ using latent predictors fLP, and the third column shows
results from NCS networks.

increases the inertia loss weight from 0.1 to 1.0. This heuristic allows us to get
the best cloth dynamics.

Unsupervised methods lack ground-truth data for quantitative analysis. Fur-
thermore, the variety of network architectures, loss function implementations,
and parameter ranges complicates a fair quantitative comparison. Moreover,
the sole comparison of loss values does not work. For instance, a lower inertia
loss value does not guarantee superior quality or more dynamic deformation,
as demonstrated by Bertiche et al. [3]. Consequently, our comparison is solely
qualitative.

We present our qualitative results with NCS in Fig. 2 and the supplementary
video. The first column shows the inference from the compact latent learning
stage network, the second column shows the inference using the latent predictor
with the decoder and blend shapes, and the third column shows the inference
from NCS. As seen in Fig. 2 and the supplementary video, our method produces
wrinkles and dynamics of similar quality to NCS. Unlike NCS, our method sup-
ports generalization to different body shapes with the same trained network.
This generalization is shown in Fig. 3 and the supplementary video, which in-
cludes a thin body, the template body, and a heavy body. Our latent predictor
can handle different body shape parameters β and predicts a compact latent
vector accordingly.

For computational performance comparisons, a wide range of neural models
for cloth simulation exist. Graph neural network models such as HOOD [8] and
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(a) (b) (c) (d) (e) (f)

Fig. 3: The generalization capacity to different body shapes from networks Ψ using the
latent predictor, the decoder, and the blend shapes. (a) and (d) are the thin bodies,
(b) and (e) are the template bodies, and (c) and (f) are the heavy bodies.

SwinGar [14] do not claim to achieve engine-ready real-time performance, as their
architecture limits their performance to orders of magnitude slower. Only pose-
driven models such as PBNS [2], SNUG [21], and NCS [3] achieve the desired
performance criteria. Out of these models, PBNS is purely a static model, not
being capable of achieving garment dynamics, and SNUG has dynamics limited
to three frames, as thoroughly discussed in Bertiche et al. [3]. As such, we limit
our comparison to the closest competitor, NCS [3].

Performance Evaluation: We evaluated the per-frame inference times on
GPU for the "full model" (including both model inference and blend shape reso-
lution). We also separately evaluated the runtimes for solely the neural network
inference without the blend shape resolution step. Our method takes 523 mi-
croseconds per frame for the full model and 238 microseconds for the neural
network inference. In contrast, NCS takes 1266 microseconds per frame for the
full model and 1030 microseconds for the neural network inference. This result
shows that our method outperforms NCS on GPU in the computational perfor-
mance. We believe this behavior is explained by architecture differences between
our model and NCS: our model utilizes more neurons but a simpler structure
than NCS, as we do not utilize a GRU layer. As such, when computing on GPU,
our model benefits more from GPU parallelism than NCS, while when comput-
ing on CPU, the lack of parallelism hurts our performance. The evaluation was
done using models exported to ONNX Runtime on a t-shirt garment with 4424
vertices. The hardware utilized was an Intel Xeon W-2255 CPU @ 3.7GHz CPU,
and an NVIDIA RTX 2070 Super GPU.

4.3 Ablation Study

To validate the effectiveness of our two-stage training process in learning gar-
ment deformation and dynamics, we performed an ablation study. We directly
trained only the components used during inference (Fig. 1 (c)), specifically the
latent predictor, the decoder, and the learnable blend shapes. We used the same
training setup with the t-shirt garment as in the compact latent learning stage,
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(a) Full method (b) Training only the inference block (Fig. 1 (c))

Fig. 4: (a) Our method shows accurate garment deformation and realistic dynamics
(results from network Ψ using the latent predictor, the decoder, and the blend shapes).
(b) The ablation study, trained with only the inference block (Fig. 1 (c)), results in
poor and invalid deformations, highlighting the necessity of the compact latent learning
stage.

utilized the same losses (Eq. (4)) from the compact latent learning stage, and
additionally supported batch training with a batch size of 32. The results, pre-
sented in Fig. 4 and the supplementary video, demonstrate that training with
only the MLPs and blend shapes does not achieve proper garment deformation
and dynamics. The results from the ablation study exhibit less realistic dynamics
and invalid deformations in parts of the garment. This outcome validates that
our compact latent learning stage is essential for effectively learning garment
deformation and dynamics.

4.4 Application on Real-Time Demo

We implemented our inference model with the trained latent predictor, decoder,
and blend shapes using C++ and OpenGL. In the supplementary video, we show
a SMPL body controlled using motion matching [6,9]. This shows the ease with
which our method can be applied in real time, thanks to our inference model
consisting of only two MLPs with blend shapes.

5 Conclusion, Limitations and Future Work

Realistic cloth deformation in game applications is complex due to varying char-
acter body shapes, poses, and movements, and many garments with different
geometry, topology and materials. On top of these requirements, real-time cloth
deformation is essential for an enjoyable game experience. Procedural physics-
based techniques are being replaced by neural network approaches. The latter
seems more robust and yields high-quality results. However, the representation
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models required to capture realistic cloth deformation behavior are of very high
dimension and correspondingly difficult to incorporate in game engines with
limited resources and also far too slow for use in games. The two-stage training
strategy presented in this work balances computational resource constraints and
realistic cloth deformation effectively for application in games. The first stage
learns a compact representation from the high-dimensional feature representa-
tion of a complex trained network, and the second stage learns a latent predictor
with inputs in a format best suited for input to game engines. At inference time,
the latent predictor predicts the compacted latent which is processed by the
decoder and blend shape networks from the first stage, enabling framewise in-
ference in real-time. This two-stage strategy is general and could be used in
other neural network methods, wherein high-quality results mandate very high
dimensional feature representations, and correspondingly high computational re-
sources, limiting their application in real-time environments. Our experiments
demonstrate the effectiveness and applicability of our method compared to NCS.

Our method has some limitations. Similar to other learning-based methods
for garment synthesis, there are instances in test sequences where interpenetra-
tion between the garment and the body is not fully resolved. Since we utilize the
previous compact latent in the latent predictor, these failures can lead to invalid
garment deformation. This issue is especially problematic on loose garments.
Future work could focus on enhancing collision handling by implementing an
edge-based collision loss, which may provide more robust results compared to
the vertex-based collision loss currently used [10]. The issue of drift is likewise a
potential problem, notably for applications such as games where inference is run
for long periods of time. In practice, our model proved to be robust to this: all
of our experiments were exempt from drift. Our explanation for this robustness
against drift is that our method first predicts learned latents before outputting
absolute canonical space displacements. However, there are no explicit guaran-
tees on the robustness of the model output with respect to drift. Another area
of improvement is the generalization to garments with different topologies. The
mesh convolution and the learnable blend shapes in our method are not agnostic
to garment topology. In the future, we will explore other ways to compress the
high-dimensional per-vertex features and compute the displacement from them,
regardless of the garment topology.
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