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A B S T R A C T

Visual dubbing uses visual computing and deep learning to alter the lip and mouth ar-
ticulations of the actor to sync with the dubbed speech. It has the potential to greatly
improve the content generated from the dubbing industry. Quality of the dubbed result
is primary for the industry. An important requirement is that visual lip sync changes
be localized to the mouth region and not affect the rest of the actor’s face or the rest
of the video frame. Current methods can create realistic looking fake faces with ex-
pressions. However, many fail to localize lip sync and have quality problems such as
identity loss, low-res, blurs, face skin feature or colour loss, and temporal jitter. These
problems mainly arise because end-to-end training of networks to correctly disentangle
these different visual dubbing parameters (pose, skin colour, identity, lip movements,
etc.) is very difficult to achieve. Our main contribution is a new visual dubbing pipeline,
in which, instead of end-to-end training we apply incrementally different disentangling
techniques for each parameter. Our pipeline is composed of three main steps: pose
alignment, identity transfer and video reassembly. Expert models in each step are fine-
tuned for the actor. We propose an identity transfer network with an added style block,
which with pre-training is able to decouple face components, specifically identity and
expression, and also works with short video clips like TV ads. Our pipeline also in-
cludes novel stages related to temporal smoothing of the reenacted face, actor specific
super resolution to retain fine facial details, and a second pass through the identity
transfer network for preserving actor identity. Localization of lip-sync is achieved by
restricting changes in the original video frame to just the actor’s mouth region. The re-
sults are convincing, and a user survey also confirms their quality. Relevant quantitative
metrics are included.
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1. Introduction 1

Dubbing is the process of adding or altering speech or other 2

sounds in the audio track of a project that has already been 3

filmed. A major use of dubbing is in movies, serials, adver- 4

tisements, games, etc., wherein, with the goal of increasing 5

global viewership, the original dialogue is translated into the 6

audience’s language of choice, keeping the original actor. Ev- 7

ery year, hundreds of films are dubbed into dozens of interna- 8
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tional languages in Hollywood alone. New advancements in1

visual computing and deep learning such as voice cloning [1]2

and visual dubbing [2] have the potential to greatly improve the3

content generated from the dubbing industry [3]. In visual dub-4

bing, lip and mouth configuration of the actor in the original5

video are also altered to sync with the translated speech, im-6

proving viewer experience and speech comprehension [4]. Vi-7

sual dubbing also makes the translator’s task easier when com-8

pared with voice only dubbing, a prospect highly welcome to9

the dubbing industry. This is because the translator has lesser10

constraints, since lip and mouth articulations of the actor in the11

original video can be changed to match the translated speech.12

Visual dubbing research is mainly spurred by recent ad-13

vancements combining face tracking and generative networks14

which have led to the area of ”AI deepfakes” and “neural talk-15

ing heads”, with promise in creating realistic fake photos and16

videos. A common strategy in current work is to use a deep17

learning network which accepts as input the original video and18

new dubber audio or video. The network is trained to learn the19

generation of faces with desired facial expressions including lip20

and mouth articulations and then used in reenactment of the21

original actor to mouth the dubbed speech. This reenacted face22

is then patched back into the original video frame. In principle,23

these techniques would make it possible to change the actor’s24

lip and mouth configuration as needed. However, many of these25

take a generic approach, and propose end-to-end networks to26

learn and transfer face and mouth movements. These solutions27

often fail to cleanly disentangle the face parameters resulting in28

error accumulation due to which many a time, one can see that29

the rest of the face or frame also gets altered, a side effect not30

acceptable to the industry. Other noticeable quality problems in31

their output include usually low-resolution, fine facial feature32

loss, colour inconsistencies, blurring, temporal jitter and actor33

identity loss.34

Our main contribution is a new visual dubbing pipeline, in35

which, instead of end-to-end training we apply incrementally36

different disentangling techniques for each parameter. Expert37

models in each stage are fine-tuned with actor data to main-38

tain identity, mouth expression, fine facial features and resolu-39

tion.We first identified where the quality problems of color, fine40

feature loss, temporal jitter, and identity loss get introduced in41

the output by carefully analyzing each stage of the pipeline.42

Accordingly, we add appropriate correction actions after each43

stage. Another point to note is that end-to-end training of large44

deep neural networks usually require very large datasets, both45

of source and target actors’ speech and facial expressions. This46

is a problem for the industry, particularly in TV ads which47

are usually of small duration, like 30 seconds or so, and vi-48

sual dubbing of supporting cast having only a few lines in a49

movie. Since we can separately train the different stages in our50

pipeline we are able to generate good quality visual dubbing51

outputs even with small training data.52

Our visual dubbing pipeline is subject to some hard con-53

strains stemming from industry requirements, specifically that54

visual lip sync changes should be localised to the mouth and55

should not affect the rest of the actor’s face, like eyes and eye-56

brows, and certainly not the rest of the video. Another hard57

requirement is that the original quality of the video in terms 58

of resolution, lighting, colour, background, etc. be retained. 59

We designed our method to comply with these constraints even 60

though in some specific cases this may result in some visual 61

artifacts as shown in the limitations section. 62

Our innovation is in careful engineering of the dubbing 63

pipeline steps. The input to our pipeline is the actor video and 64

the dubber video. Our strategy is to limit changes in the orig- 65

inal frames to just the actor’s mouth region, keeping as is, the 66

rest of the actor’s face, and rest of the video frame. For this, we 67

generate actor lip and mouth movements mimicking the dub- 68

ber’s speech with the help of our own stylized identity transfer 69

network. Pre-training this network with the CelebA dataset en- 70

ables it to decouple face components, specifically identity and 71

expression. Additionally, due to this pre-training only a small 72

amount of subject specific training data is needed, typically a 4- 73

5 seconds video is sufficient. Then we replace the mouth region 74

in the original frame with the generated lip and mouth move- 75

ments. This frame by frame mouth pasting, can sometimes pro- 76

duce mouth quiver and mouth style mismatch. To correct this, 77

we use a second identity transfer pass but this time replacing 78

the dubber video with the reenacted actor video. This helps ad- 79

dress the major requirements of identity preservation, lip-sync 80

localization, visual quality retention of the actor’s environment, 81

and ability to work with small video clips. Our visual dubbing 82

system ensures high quality through the following: (i) dubber 83

identity does not leak into the generated actor’s mouth and face, 84

(ii) mouth patched within the actors’ face appears seamless, (iii) 85

temporal stability and (iv) generated actor’s mouth has the same 86

quality in resolution colour and lighting. Above (i) and (ii) 87

are achieved by our stylized identity transfer network, and the 88

second identity transfer pass. For (iii) we include two spatio- 89

temporal smoothing steps in different stages to remove temporal 90

jitter. For (iv), since many of our expert models work on lower 91

resolutions, we fine tune a pre-trained super-resolution network 92

to retain intricate face details of the actor such as skin pores, 93

skin colour, lip colour, etc. A user survey confirms the quality 94

of our results. We also present quantitative metrics related to 95

lip sync and overall visual quality. 96

The rest of the paper is organized as follows. In the next 97

section, we present relevant related work in facial reenactment, 98

neural talking heads and visual dubbing, and contrast these with 99

our system. This is followed by a detailed description of our 100

pipeline including the engineering of various steps that help us 101

address the problems listed above. The need for these steps 102

is substantiated through relevant ablation studies. Then we 103

present various results including comparisons with results from 104

earlier work, when ever possible. The final concluding sections 105

also present the limitations of our system. An accompanying 106

video illustrates our method, ablation study and comparison re- 107

sults. Supplementary material includes example results and our 108

user study questionnaire. 109

2. Related Work 110

2.1. Facial Reenactment 111

Facial reenactment is a conditional face synthesis task which 112

aims to change a target facial expression and pose based on 113
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Fig. 1. Our method processes the actor and dubber videos through three main steps. At the core, our stylized identity transfer network changes the face
of the dubber to the identity of the actor while preserving the mouth expression. Note that for compactness of visualization we only show the face region,
but the method uses the full image frame at every step.

a driving source. Methods can be classified as GAN based or1

model based. GAN-based methods use image-to-image transla-2

tion networks [5, 6] for transferring the expression from source3

to target. They require an intermediate product such as land-4

marks, dense motion fields or blendshapes. Nirkin et al. [7] use5

landmarks from the target and train a recurrent neural network6

for agnostic face swapping and reenactment. Wiles et al. [8]7

and Siarohin et al. [9] train a network to learn dense motion8

fields from the source. The target frame is later warped using9

the learned motion field for pose and expression.Wang et al.10

[10] propose a few shot video to video synthesis for generating11

videos using an input semantic map. Facial reenactment using12

such a method can be achieved by providing an edge map of13

the source to drive the target generation. Model-based meth-14

ods use 3D morphable face models (3DMM) [11] to estimate15

3DMM parameters. Thies et al. [12] and Ma and Deng [13]16

conducted an effective deformation transfer to both source and17

target videos, tracked facial expressions, then re-rendered the18

synthesized target faces to better fit the retrieved and warped19

mouth.Kim et al. [14] proposed a method for controlled full20

head reenactment. They first transfer the head pose, facial ex-21

pression, and eye motion using 3DMM parameters from source22

to target. Then train a rendering-to-video translation network23

to generate photo-realistic output. However, their approach re-24

quires large training data, usually hundreds of seconds of video25

clips. The literature on face reenactment focuses on complete26

facial expression transfer to the target and work off a globally27

average expression face for the source. As a result, the mouth28

expression often lacks the required intensity which is critical29

in visual dubbing. Moreover, they require a large amount of30

diverse video footage to train.31

2.2. Talking Heads32

With the recent advancement in deep learning, the problem33

of talking head generation has enjoyed great success. Talking34

head generators synthesize an audio-synchronized video given35

a few facial images for identity using some driving modality,36

like audio, text or 3DMM parameters. Talking head genera-37

tion can be subject dependent or independent. Subject depen-38

dent methods [15, 16, 17, 18, 19, 20] learn an identity spe-39

cific embedding using a large subject specific dataset. Using40

this learned embedding they create photorealistic talking heads41

of the subject.Nagano et al. [15] and [19] proposed real-time 42

talking head generation techniques for mobile devices. Nagano 43

et al. [15] desgined a network to use facial action units for talk- 44

ing heads generation, whereas [19] suggested to use two stage 45

layered network and reference landmarks. Subject independent 46

methods, also known as few shot generation methods, can work 47

on any identity. Zhou et al. [21] shows pose controllable talking 48

heads for any identity. Han et al. [22] can use either text or au- 49

dio modalities for realistic talking head generation.Wang et al. 50

[23] and Zakharov et al. [24] use facial keypoints to predict flow 51

to drive a source image using a driving video. Despite these re- 52

cent breakthroughs, talking head methods cannot be used for 53

dubbing real-world visual content as subject dependent meth- 54

ods would require many hours of video footage for target actor 55

which would be impractical in most cases. On the other hand, 56

subject independent methods result in outputs with unnatural 57

head movements and often lose the identity of the actor as they 58

generate over-smoothed faces. 59

2.3. Visual Dubbing 60

Based on the modalities used from the source, visual dubbing 61

can be: audio or expression based. Audio-based techniques cor- 62

rect the lip motion of the target to match the source audio. Of- 63

ten these are referred as lip synchronization techniques. Suwa- 64

janakorn et al. [25] trained a recurrent neural network to predict 65

mouth shape from raw audio. Based on the generated mouth 66

shape, a realistic texture of mouth was created and composited 67

on target frame. However, they require very large amount of 68

training video, for example, they needed 17 hours of Obama 69

speech footage, making this method impractical in most cases. 70

Audio-based methods [26, 27, 28] can generalize for any iden- 71

tity and voice. Chung et al. [26] jointly trained for audio and 72

video correlation, and they were able to efficiently sync static 73

image with audio but their approach fails for video sequences. 74

Prajwal et al. [27] were the first to propose the use of a powerful 75

lip-sync discriminator with which they achieved good accuracy 76

in syncing an arbitrary video with audio. However, both ap- 77

proaches suffer from blurring of mouth and inconsistent recon- 78

struction of teeth. In comparison, our method produces realistic 79

teeth and has no blurring. 80

Unlike the above methods which directly morph lips based on 81

audio, Xie et al. [28] proposed to use a two-stage framework. 82
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In the first stage, they train a generator to predict reference face1

landmarks based on audio. In the second stage, reference land-2

marks along with the target frame are used to generate the final3

output. A problem with their approach is that the generated4

reference landmarks are not always accurate. Their approach5

also leaks identity. The fundamental problem with audio-based6

methods is that speech acoustics cannot represent the full range7

of realistic facial expressions [29] due to which they cannot re-8

create all possible expressions, say, those present in the actor9

video input.10

Expression-based techniques drive lips in a target video (ac-11

tor) using expressions from a source video (dubber). Garrido12

et al. [30] capture facial performance of source and target. They13

transfer blendshape weights of the mouth from source to tar-14

get directly. Later, they detect bilabial consonants from audio15

track and then manually enforce opening and closing of mouth.16

Finally they render the mouth and composite it on the target17

frame. Their approach fails to preserve features of the actor18

while transferring the expression from the dubber. Also, their19

synthesized inner mouth has observable artifacts and does not20

look realistic. Kim et al. [31] proposed a style preserving vi-21

sual dubbing approach. They train a style translation network22

to learn the mapping of 3DMM expression parameters from23

source to target. They use a neural face renderer to synthe-24

size a realistic video portrait based on synthesized expression25

parameters. Their result preserves the style of target mouth.26

However, their approach ends up manipulating other parts of the27

face especially the eyes. Successful isolation of expression pa-28

rameters for monocular face reconstruction is still an unsolved29

problem which is being extensively investigated. In our visual30

dubbing pipeline, We do the expression transfer in 2D image31

space. Suwajanakorn et al. [25] have shown that if source and32

target are from the same identity, then seemingly realistic ex-33

pression can be created. Inspired by this, we employ a two pass34

face-swapping strategy. Our method, while preserving the tar-35

get identity, accurately transfers lip and mouth movements from36

dubber to actor. Unlike other known methods, our approach37

also requires much less data and can work on input videos of38

only a few seconds.39

3. Method40

Our goal is to create a video where an actor really looks like41

speaking in a different language. We take as input two videos42

A and D: A is the video of an actor uttering some speech in a43

language LA and D is a video of a dubber that utters the same44

speech in a different language LD. The output is a video R of45

the actor that appears to be uttering the speech in language LD,46

while at the same time maintaining all other visual aspects from47

the original video: not only the background must remain the48

same, but it is important that parts of the face, other than lip49

and mouth, for example the eye region must be kept intact.50

To formally express this process we parameterize the videos51

V(·) by the following parameters: (1) pose p (the rigid trans-52

formation of the entire head), (2) identity id (actor or dubber),53

(3) facial expression x f (of the actor or of the dubber, excluding54

mouth), (4) mouth configuration/expression xm (of the actor or55

of the dubber), (5) background b (actor video, dubber video or 56

black background) and (6) resolution (high or low). For a com- 57

pact notation, the values of these parameters are a for actor, d 58

for dubber, ↑ for high resolution, ↓ for low resolution and k for 59

videos with a black background. 60

We introduce the resolution as part of the parameter list be- 61

cause practical dubbing methods should be able to operate on 62

videos of high resolution (1080p or more). Currently, many of 63

the visual dubbing methods that are proposed operate at much 64

lower resolution. We also separate the facial expression from 65

the mouth expression because in a practical commercial con- 66

text, it is important to maximize the screen real-estate of the 67

original footage, i.e., all other than the mouth region should be 68

kept unchanged from the original video. Therefore: 69

we have A0 = V(p[a],id[a],x f [a],xm[a],b[a],↑),
D0 = V(p[d],id[d],x f [d],xm[d],b[d],↑)

and we want R = V(p[a],id[a],x f [a],xm[d],b[a],↑)
The biggest challenge in all visual dubbing methods is how 70

to disentangle and synthesize these parameters. In our method 71

we do not aim at separating them in one end to end neural 72

network; rather we apply incrementally different disentangling 73

techniques for each parameter. 74

Figure 1 shows the three main steps of our method: (1) pose 75

alignment where we register the actor and dubber poses, (2) 76

identity transfer where we synthesize the actor with the expres- 77

sion of the dubber and (3) a video reassembly step that improves 78

and assembles the final result. 79

3.1. Pose Alignment 80

We start by reconciling the pose of the two input videos by 81

rendering them both in the same pose, the pose of the actor, 82

using monocular 3D reconstruction of faces. Various methods 83

have been proposed for 3D facial reconstruction using either 84

parametric models or regression based face trackers. Methods 85

based on parametric reconstruction [32, 33, 34] provide high 86

reconstruction accuracy (NoW Challenge [35]), however they 87

don’t reconstruct the inner region of the mouth, which is critical 88

for our application. We would need an extra step for predicting 89

and reconstructing the proxy teeth, and blend them back with 90

reconstructed faces. However, unless the reconstructed proxy is 91

accurate it will lead to uncanny artifacts [30]. Therefore we use 92

the PRNet regression-based face reconstruction method [36]. 93

Using PRNet we obtain V(p[a],id[a],x f [a],xm[a],b[k],↓) and 94

V(p[a],id[d],x f [d],xm[d],b[k],↓). PRNet provides a rigid 3D 95

transformation to a canonical front facing pose. We use these 96

transformations in order to transform the reconstructed face of 97

the dubber in the same pose as the actor. Even though these 98

videos are rendered at the same resolution as the input video, 99

because of the resampling introduced by the 3D reconstruction 100

and rendering, we technically consider them as low resolution. 101

The 3D reconstruction being carried out frame by frame 102

could introduce temporal jitter. So, we apply a correction step 103

of temporal smoothing (moving average of 5 frames) on the po- 104

sition of the mesh vertices. As the illumination conditions in 105

the actor and dubber videos are likely to be vastly different, we 106

apply a tonal correction step by shifting the color space [37] of 107
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Fig. 2. Our stylized identity transfer network is composed of a shared (ac-
tor and dubber) encoder, adapted GAN module, and two decoders (spe-
cialized for the actor or dubber).

the dubber video to match that of the actor video. Doing so,1

also transforms the skin tone of the dubber to that of the actor,2

which is beneficial in later stages.3

3.2. Identity Transfer4

Once the videos are aligned, we change the identity of the5

dubber into the identity of the actor using our stylized identity6

transfer network to obtain V(p[a],id[a],x f [d],xm[d],b[k],↓).We7

designed a Y-shaped network (Figure 2): single encoder and8

dual decoder similar to the method of Naruniec et al. [38]. Our9

goal is to create a network which accurately learns an embed-10

ding from a relatively small dataset to synthesize identity trans-11

ferred faces without changing expression of the target identity.12

For this we need to decouple facial attribute parameters: iden-13

tity, pose, and expression. Since, we explicitly rigid align the14

pose of the actor and dubber, our model only needs to learn15

to decouple identity and expression in latent space. Recently,16

StyleGAN [39] has shown unparalleled decoupling of facial pa-17

rameters. We create our encoder-decoder based on the Xception18

network [40] and include a GAN module inspired from Style-19

Gan for disentanglement of parameters. Figure 3 shows the full20

details of this architecture.21

Our encoder uses depthwise separable convolution layers like22

the Xception network. Depthwise separable convolution re-23

quires less computational operations and also they provide a24

dedicated feature pathway for features of high importance. The25

encoder takes an input image of size 256 × 256 × 3 and cal-26

culates a feature map starting from 32 to 1024. The encoder27

provides two embeddings: one for expression(ϵS ) and one for28

identity(ϵI), each of size 8×8×1024. Each decoder takes input29

map of size 8 × 8 × 1024 and matches corresponding feature30

level of the encoder.31

GAN module first takes expression embedding ϵS and passes32

it through a mapping network of 3 convolutions blocks, each33

block consisting of convolution, batch norm and leaky relu34

module. The generated embedding along with identity embed-35

ding ϵI is passed further through three consecutive blocks, each36

block having two AdaIN layers. The formulation of AdaIN task37

can be written as:38

AdaIN(ϵI , ϵS ) = σ(ϵS )
ϵI − µ(ϵI)
σ(ϵI)

+ µ(ϵS ) (1)
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Fig. 3. Detailed architecture of identity transfer network. (a) share encoder
(b) decoder (c) gan module

Here µ and σ are the channel wise mean and standard devi- 39

ation operation.We jointly train the shared encoder and the two 40

decoders during each iteration. 41

We pre-train our network on the large CelebAHQ dataset [41] 42

for face reconstruction. Pre-training on CelebA helps our 43

encoder and AdaIN blocks to effectively decouple embed- 44

ding for diverse identity and expression. It also helps our 45

model to converge faster. For subject dependent training we 46

only load weights of encoder and AdaIN block. Decoders 47

start their learning from scratch. This strategy of training 48

a shared encoder with multiple identities for face swapping 49

has been shown to be effective in generating diverse expres- 50

sions [38]. To obtain the best results, we train our network on 51

the original videos A0 and D0, and also on the rendered videos 52

of the actor V(p[a],id[a],x f [a],xm[a],b[k],↓) and aligned dub- 53

ber V(p[a],id[d],x f [d],xm[d],b[k],↓). Even though the rendered 54

videos are of a lower quality than the original videos, the black 55

background helps the training to converge faster and with fewer 56

input frames (the network focuses more on the face and less 57

on the background). Faces in the frames are detected cropped 58

and aligned just like typical face recognition pipeline for the 59

training. For losses,we employ SSIM(Structural Similarity In- 60
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dex Metric) [42] as facial reconstruction loss. We multiply the1

input Iin and output image Iout with the face segmentation mask2

m f . Our facial reconstruction loss therefore looks like:3

Lrecon = S S IM(m f

⊙
Iout,m f

⊙
Iin)

Here
⊙

represents element wise multiplication. We also pe-4

nalize the mouth generation using L2 pixel-wise reconstruction5

loss. We use mouth mask mm for the mouth segmentation.6

Lmouth = ∥mm

⊙
Iout,mm

⊙
Iin∥2

Thus the loss for each common-encoder and decoder pair7

would be:8

Lactor = λ1 · Lrecon + λ2 · Lmouth

Ldubber = λ1 · Lrecon + λ2 · Lmouth

Therefore, our total training loss in the network is:9

Ltotal = Lactor +Ldubber

For the training we use λ1 = 4, λ2 = 2. We train our10

network for 60K iterations, with each original and synthe-11

sized dataset, with learning rate lr = 0.0001, and it takes12

about 3 days on a single Nvidia v100 GPU to train. Note13

that, since our machine has multi-threading issues at that time,14

causing dataloading bottlenecks, training time may signifi-15

cantly differ if multi-threading was properly supported. Dur-16

ing the inference time, we load the weights of shared encoder17

and actor decoder. We feed the pose aligned dubber video18

V(p[a],id[d],x f [d],xm[d],b[k],↓) to the network to synthesize19

the reenacted video V(p[a],id[a],x f [d],xm[d],b[k],↓) because of20

which the output in first pass has a black background.21

3.3. Video Reassembly22

The last step is to superimpose the synthesized part of the23

face with the original video. As described in Sec. 3.1 the24

dubber video is rendered in the actor pose using PRNet. PR-25

Net provides the necessary rigid 3D transformations needed26

for this operation, but unfortunately, the pose estimation is27

noisy and thus the resulting video can be jittery. Therefore28

we apply spatio-temporal landmark smoothing to stabilize the29

video (Section 3.3.1). We further apply a super-resolution step30

to bring the video to the same resolution as the input (Sec-31

tion 3.3.2) resulting in V(p[a],id[a],x f [d],xm[d],b[k],↑). What32

is left is to cut a mask around the mouth region and com-33

posite [43] it with the original actor footage thus obtaining34

V(p[a],id[a],x f [a],xm[d],b[a],↑).35

Unfortunately, a simple compositing operation of the mouth36

region can result in uncanny effects because of positional errors37

as can be seen in the accompanying video.The positional er-38

ror occurs when the position of the synthesized mouth doesn’t39

match with the exact position of mouth in the actor. This40

is because, the 3d rigid transformation from PRNet is some-41

times noisy as a result of which the mouth position of pose42

aligned dubber and actor will differ. The same noisy dub-43

ber image when used for synthesizing expression results in44

(a) (b) (c) (d)

Fig. 4. Composting of the expression. (a) actor frame (b) synthesized ex-
pression (c) mask used (d) final result

incorrect mouth position. An elegant solution to this prob- 45

lem is to use a second pass and recycle the result through the 46

identity transfer step once more with the original A0 and with 47

V(p[a],id[a],x f [a],xm[d],b[a],↑) replacing the dubbing video. 48

This is possible because both these videos are on the same pose. 49

The resulting output is a convincing dubbing sequence of the 50

actor that retains the content of the original footage everywhere 51

except the mouth region that is lip-synced to the new speech. 52

This second identity transfer pass as described above is a cru- 53

cial correction step in our process. This is because of the fol- 54

lowing. During the first identity transfer the goal is to change 55

the dubber video to have the actor’s identity retaining the dub- 56

ber’s facial expressions. Given the small amount of data and 57

especially when there is vast difference in facial features of the 58

dubber and actor, some mix of features is unavoidable. The cut 59

and paste of the mouth region can introduce further positional 60

errors resulting in some uncanny effects. This second pass ele- 61

gantly corrects these problems using the original actor video. 62

Figure 4 illustrates the composting of the synthesized mouth. 63

Figure 4(a) shows the original actor frame. Figure 4(b) shows 64

the synthesized facial expression. Figure 4(c) shows the mask 65

used for blending and Figure 4(d) shows the final result. 66

3.3.1. Spatio-Temporal Landmark Stabilization 67

The pose estimation provided by the monocular 3D shape 68

estimation is fairly noisy thus resulting in a jittery video se- 69

quence. We extract 2D face landmarks using DLib [44] for 70

the reenacted video V(p[a],id[a],x f [a],xm[d],b[k],↓), and tem- 71

porally smooth their respective positions. We then compute a 72

2D rigid alignment to align the reenacted video landmarks to 73

the smoothed landmarks (applying that transformation to the 74

video). The most difficult challenge in temporal stabilization 75

is the balance between jitter and lag [45]: during the parts of 76

the video where the scene is mostly static the jittering artifact is 77

more prominent and thus a larger smoothing window needs to 78

be applied while during the parts where there is fast movement, 79

too much smoothing might result in video lag. To balance these 80

we employ the 1 Euro filter proposed by Casiez et al. [45]. 81

3.3.2. Finely Tuned Super Resolution 82

We use the network of Yang et al. [46] to do a super reso- 83

lution of 512 × 512 from our synthesized output of 256 × 256. 84

One challenge with any super-resolution method is that it will 85

always make the result visually sharper and clearer. However, 86

given a video input, due to motion, focusing and other reasons, 87

the input footage might not always be sharp and the super- 88

resolution image might not, in fact, match the quality of the 89
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(a) (b) (c) (d)

Fig. 5. Finely Tuned Super Resolution. (a) input frame (b) output before
super resolution (c) super resolution using only Yang et al. [46] (d) super
resolution using Yang et al. [46] and our data augmentation.

input. We address this using data augmentation. We take the1

high-resolution video input and create a low-resolution version2

by blurring it. We blur the video in two different ways: 1) us-3

ing the guassian blurring from the above paper, 2) we self-swap4

the original actor video(passing the actor image from shared5

encoder-actor decoder pair) using our trained identity transfer6

network. We use these pairs of images of the actor to further7

train the super-resolution network. We finetune the model for8

1000 iterations. It takes about 35 minutes for finetuning on sin-9

gle Nvidia Tesla v100 GPU. During finetuning we change fol-10

lowing parameters compared to the ones in the original paper:11

learning rate lr = 0.0002, α = 1.0 and β = 1.0 This fine tuning12

step yielded overall better results.13

We illustrate this in Figure 5. Figure 5(a) shows the input14

frame. Figure 5(b) shows the output before the super resolution,15

where it is clear that the visual quality is lower. We purpose-16

fully chose a frame where the input frame and the output frame17

happen to have similar mouth opening. Figure 5(c) shows the18

frame after using only Yang et al. [46]. Figure 5(d) shows the19

final output frame using Yang et al. [46] with our data augmen-20

tation. The final result matches the quality of the input frame21

much better: it is not as blurry as the output without super res-22

olution but not as sharp as the super resolution without our data23

augmentation.24

4. Results25

We tested our method on over a dozen production quality26

dubbing scenarios provided by our industry collaborators. Be-27

cause of copyright reasons, here, we can only show results on28

copyright free YouTube video clips. For original videos (i.e. ac-29

tors) we selected a few clips of speeches of international public30

figures and the dubbing was done by professionals. These dub-31

bers have training in traditional dubbing, but no additional train-32

ing was done for these dubbing sessions other than mentioning33

that in addition to the sound recording there is a camera that34

records their facial expression. In fact, as you can see in the ac-35

companying video, the dubbers actually keep their heads quite36

down, making it rather challenging for face transfer. In addi-37

tion to these sequences we also extracted a few video sequences38

from the supplementary material submitted to the ACM digital39

library of Kim et al. [31] and compared our results to theirs. All40

the results generated by us are available as a video in the supple- 41

mental material. We put all the necessary videos (actor, dubber 42

and result) at full resolution and length. Comparative results as 43

well as ablation studies are included in the supplemental video. 44

5. Evaluation 45

Using our selected clips of public figures, we evaluate our 46

method against the recent state-of-the-art methods - audio based 47

lip-sync [27], talking head generation [47] and face reenact- 48

ment [9]. For visual dubbing methods, we found it challenging 49

to evaluate our method against other methods. There are no uni- 50

form datasets available targeted to this problem, and neither is 51

the source code of these methods. Still from the recent video 52

dubbing methods, we cropped the actor and dubber sequences 53

from the online video presentation of Kim et al. [31] and we 54

processed them with our pipeline. This comparison is not an 55

apple to apple comparison because we do not have the same 56

training videos in terms of both length and resolution. Never- 57

theless, even with much less training data (185 to 300 frames 58

for our approach, 3000 to 9000 for Kim et al. [31]), our results 59

are comparable and in some respects better than those of Kim 60

et al. [31]. 61

We also compared our results to traditional dubbing through 62

a user study where we ask a few qualitative questions related 63

to the lip synchronization with the audio, visual quality of the 64

face, and blind selection of preferred video out of our results 65

and traditional dubbing. 66

5.1. Quantitative Evaluation 67

For quantitative comparisons, we evaluate lip-sync accuracy 68

and visual quality of the generated results. We use the Land- 69

mark Distance (LMD) metric proposed by Chen et al. [48]. 70

LMD calculates normalized euclidean distance between land- 71

marks of the mouth for the generated result and the dubber 72

on per frame basis. Our use of LMD is justified because 73

of the availability of ground-truth expression from the paired 74

actor-dubber sequence. Table 1 shows LMD score on our 75

dataset between our methods and various state-of-the-art meth- 76

ods. We also employ Learned Perceptual Image Patch Simi- 77

larity (LPIPS [49]), Frechet Inception Distance (FID [50]) and 78

Peak Signal to Noise Ratio (PSNR) metrics to assess the overall 79

visual quality of the generated result compared to the original 80

actor video. Table 2 shows the result of the visual quality eval- 81

uation. 82

For the videos from Kim et al. [31], we calculate lip-sync 83

accuracy as well as visual metrics (Table 3). Since the cropped 84

videos were of low resolution, visual metrics comparison in this 85

scenario might not be completely accurate. 86

Our method largely outperforms all methods in FID and 87

PSNR, and it outperforms FOMM and MakeItTalk in LPIPS. 88

When compared to Wav2Lip using the LPIPS metric as well as 89

when using the LMD metric, the values are similar. However, a 90

major advantage of our method is that it uses much less training 91

data compared to all the above methods and it is specifically de- 92

signed to keep the original video intact in the upper face region, 93

which if changed can lead to uncanny effects [51]. 94
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Table 1. Landmark Distance (LMD) metric (lower is better) of mouth ex-
pression between our generated result and the dubber video computed on
our dataset.

Dataset Ours Wav2Lip FOMM MakeItTalk
Macron 0.78 0.93 0.81 0.79
Kovind EN 0.68 0.72 0.69 0.75
Kovind FR 0.73 0.74 0.79 0.67

Table 2. Visual quality evaluation (LIPS - lower is better, FID - lower is
better, PSNR - higher is better) of results generated using other methods
compared to ours.

Metrics

Dataset Methods LPIPS ↓ FID ↓ PSNR ↑

Macron

Ours 0.02 1.04 37.13
Wav2Lip 0.04 4.77 32.30

FOMM 0.13 11.50 16.01
MakeItTalk 0.12 16.45 16.73

Kovind En

Ours 0.04 5.30 26.12
Wav2Lip 0.05 11.55 26.15

FOMM 0.12 60.60 19.58
MakeItTalk 0.11 90.99 20.65

Kovind FR

Ours 0.04 5.51 26.14
Wav2Lip 0.05 11.63 26.09

FOMM 0.12 52.31 19.48
MakeItTalk 0.12 76.41 20.77

5.2. User Study1

The goal of the visual dubbing process is, ultimately, to pro-2

duce video content that yields a superior experience to a viewer.3

Obtaining real-world opinions is very important since human4

eyes are the expert discriminator for assessing any audio-visual5

mismatch and temporal artifact. Accordingly, we carried out a6

user study that compares our visual dubbing method to the cur-7

rent dubbing method used in the industry which is overlaying8

the audio content. Using three of our result videos, we showed9

our participants the result of our method and the result of a pro-10

fessionally produced (sound only) dubbing sequence, and asked11

a few questions regarding the videos. Our study has 23 par-12

ticipants. The questionnaire they answered is provided in the13

supplementary material and the three videos shown correspond14

to the results 1-3 in our supplementary material results video.15

We summarize the findings in Table 4. A vast majority (69.6%16

to 87.0%) of the participants found the lip motions in our re-17

sults to be synchronized with the audio. Moreover, when asked18

about the overall visual quality of the face in our results, 60.8%19

Table 3. Comparison with Kim et al. [31]. LMD - lower is better, LIPS -
lower is better, FID - lower is better, PSNR - higher is better.

Metrics
Dataset Methods LMD ↓ LPIPS ↓ FID ↓ PSNR ↑

Obama Ours 0.56 0.02 5.44 34.45
Kim [2019] 0.67 0.02 2.74 30.16

E. and J. Ours 1.16 0.03 22.39 36.32
Kim [2019] 1.24 0.06 24.39 26.90

F. and K. Ours 1.16 0.17 31.50 16.18
Kim [2019] 1.52 0.18 36.45 16.74

to 82.6% of the participants said our results are good or excel- 20

lent. Finally, when presented with clips which were tradition- 21

ally dubbed and our visual dubbing results, a majority (65.2% 22

to 91.3%) preferred visual dubbing results.

Table 4. User study statistics (in percentage). For “Lip Sync Acc.” we
asked the participants if the lips motion is synchronized with the audio
(Strongly agree, Agree, Neutral, Disagree, Strongly Disagree) and here
we report “Strongly agree”+“Agree”. For “Visual Quality” we asked the
participants to rate the overall visual quality (Excellent, Good, Fair, Poor,
Very poor) and here we report “Excellent”+“Good”. “Preference” reports
which clip the participant preferred. The values do not sum to 100% as
there was a “No preference” option.

Preference

Dataset Lip
Sync
Acc.

Visual
Quality

Visual
Dubbed

Traditional
Dubbed

Macron 78.2% 82.6% 91.3% 4.3%
Kovind EN 69.6% 60.8% 65.2% 17.4%
Kovind FR 87.0% 73.9% 82.6% 8.7%

23

6. Discussion 24

For the spatio-temporal stabilization step, even if the mouth 25

alignment is not completely perfect after the stabilization, the 26

second pass through the stylized identity transfer network fine 27

tunes the alignment of the mouth and face very well. We also 28

tested doing a 2D alignment of the reenacted video toward the 29

original video of the actor. That proved to introduce some more 30

jittering as the chin and mouth movements of the original ac- 31

tor’s video are not the same as the ones of the reenacted video. 32

Our second identity transfer pass elegantly solves the un- 33

canny effect resulting from first cut and paste. However, it 34

slightly diminishes the expression dynamics in the final gen- 35

erated output. 36

Limitations. Our most important limitation stems from the re- 37

quirement that we composite only the lower part of the face 38

resulting in occasional artifacts. Our strategy to repeat the face 39

swap process improves the results, but not in all cases. More 40

specifically, in frames where the pose of the actor frame has the 41

jaw open while the dubber has it closed, the pasting results in 42

a double chin artifact that can be seen in the video comparison 43

with Kim et al. [31]. There are also special cases when moving 44

wrinkle artifact is observed with actor having strong nasolabial 45

folds. This occurs when the part of the nasolabial fold, con- 46

structed in the synthesized mouth, does not completely align 47

with the one in upper part of the face. 48

Another limitation comes from the automatic landmark iden- 49

tification. Sometimes we had to manually adjust the landmarks 50

of the actor or dubber. For example, the Macron and Merkel 51

dubbing worked fine with the automatic landmarks, but the 52

Kovind dubbing required the adjustment of landmarks for 200 53

out of 1185 frames of the dubber. This is solely because of the 54

landmark detector of DLib [44]. Our method is independent of 55

that detector and can benefit from more precise landmark de- 56

tection methods, present or future. 57
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Ethics considerations. Our method, like dozens of other deep1

fake methods can be misused for malicious purposes such as2

misrepresenting individual and spreading misinformation. We3

are mitigating these risks by only providing the code to profes-4

sional dubbing companies that have a transparent professional5

conduct.6

7. Ablation Studies7

In the accompanying video we have included a section with8

four ablation studies that we performed in order to demon-9

strate the necessity of individual steps of our method. In the10

first one, we look at the impact of the second identity trans-11

fer pass. As can be seen in the video, without this pass the12

result exhibits various temporal artifacts introduced when past-13

ing only the mouth region and sometimes further exacerbated14

by the Poisson blending step. The second ablation study high-15

lights the necessity of the temporal stabilization steps. In the16

third ablation study, we vary the footage available for training to17

demonstrate our claim of not requiring large training data. We18

compare the original result that was trained on 30 seconds to a19

sub-clip trained only on 5 seconds. As we can see, in general,20

there are only minor visual changes between them illustrating21

the fact that our method works well even on short clips. Finally,22

we show the impact of the pre-training and AdaIN blocks in the23

stylized identity transfer network. For short clips, especially,24

where the lack of training data is an issue, this step is very im-25

portant.26

8. Conclusion27

In this work we present a new visual dubbing pipeline where28

the main design objectives, raised from typical industry scenar-29

ios, are the preservation of the rest of the face expression from30

the original actor footage, the ability to deliver good results on31

short video clips, and maintaining the resolution and general32

visual quality of the input. The pipeline design evolved over a33

continual improvement process in which our industry collabo-34

rators provided us actor (real TV ads) and dubber videos, and35

feedback on output from our pipeline that drove the changes in36

the pipeline steps in an iterative fashion.37

Our pipeline contains several novel ideas and techniques such38

as a two-pass identity transfer, temporal stabilization, data aug-39

mentation for both identity transfer as well as fine-tuned super40

resolution. The pipeline enables us to disentangle the differ-41

ent parameters in visual dubbing using a step-wise approach,42

something which is difficult to achieve using end-to-end trained43

networks.44

We evaluate our method qualitatively as well as quantita-45

tively on professionally produced dubbing clips showing the46

real-world potential of our pipeline. Our results are convincing47

and confirmed by a user study focused on the overall experience48

of the dubbing results.49
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[31] Kim, H, Elgharib, M, Zollhöfer, M, Seidel, HP, Beeler, T, Richardt,34

C, et al. Neural style-preserving visual dubbing. ACM Trans Graph35

2019;38(6):1–13.36

[32] Deng, Y, Yang, J, Xu, S, Chen, D, Jia, Y, Tong, X. Accurate 3d37

face reconstruction with weakly-supervised learning: From single image38

to image set. In: Proceedings of the IEEE/CVF Conference on Computer39

Vision and Pattern Recognition Workshops. 2019, p. 0–0.40

[33] Guo, J, Zhu, X, Yang, Y, Yang, F, Lei, Z, Li, SZ. Towards fast,41

accurate and stable 3d dense face alignment. In: European Conference on42

Computer Vision. Springer; 2020, p. 152–168.43

[34] Feng, Y, Feng, H, Black, MJ, Bolkart, T. Learning an animatable44

detailed 3d face model from in-the-wild images. ACM Transactions on45

Graphics (ToG) 2021;40(4):1–13.46

[35] Sanyal, S, Bolkart, T, Feng, H, Black, M. Learning to regress 3D47

face shape and expression from an image without 3D supervision. In:48

Proceedings IEEE Conf. on Computer Vision and Pattern Recognition49

(CVPR). 2019, p. 7763–7772.50

[36] Feng, Y, Wu, F, Shao, X, Wang, Y, Zhou, X. Joint 3d face reconstruc-51

tion and dense alignment with position map regression network. In: Pro-52

ceedings of the European conference on computer vision (ECCV). Cham:53

Springer; 2018, p. 534–551.54

[37] Reinhard, E, Adhikhmin, M, Gooch, B, Shirley, P. Color transfer be-55

tween images. IEEE Computer graphics and applications 2001;21(5):34–56

41.57

[38] Naruniec, J, Helminger, L, Schroers, C, Weber, R. High-Resolution58

Neural Face Swapping for Visual Effects. Computer Graphics Forum59

2020;39(4):173–184.60

[39] Karras, T, Laine, S, Aila, T. A style-based generator architecture for61

generative adversarial networks. In: IEEE/CVF CVPR. Los Alamitos,62

USA: IEEE; 2019, p. 4401–4410.63

[40] Chollet, F. Xception: Deep learning with depthwise separable convolu-64

tions. In: CVPR. Los Alamitos, CA, USA: IEEE; 2017, p. 1800–1807.65

[41] Karras, T, Laine, S, Aila, T. A style-based generator architecture for66

generative adversarial networks. In: IEEE/CVF CVPR. Los Alamitos,67

CA, USA: IEEE; 2019, p. 4396–4405.68

[42] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality as-69

sessment: from error visibility to structural similarity. IEEE transactions70

on image processing 2004;13(4):600–612.71
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