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Visual dubbing uses visual computing and deep learning to alter the lip and mouth ar-
ticulations of the actor to sync with the dubbed speech. It has the potential to greatly
improve the content generated from the dubbing industry. Quality of the dubbed result
is primary for the industry. An important requirement is that visual lip sync changes
be localized to the mouth region and not affect the rest of the actor’s face or the rest
of the video frame. Current methods can create realistic looking fake faces with ex-
pressions. However, many fail to localize lip sync and have quality problems such as
identity loss, low-res, blurs, face skin feature or colour loss, and temporal jitter. These
problems mainly arise because end-to-end training of networks to correctly disentangle
these different visual dubbing parameters (pose, skin colour, identity, lip movements,
etc.) is very difficult to achieve. Our main contribution is a new visual dubbing pipeline,
in which, instead of end-to-end training we apply incrementally different disentangling
techniques for each parameter. Our pipeline is composed of three main steps: pose
alignment, identity transfer and video reassembly. Expert models in each step are fine-
tuned for the actor. We propose an identity transfer network with an added style block,
which with pre-training is able to decouple face components, specifically identity and
expression, and also works with short video clips like TV ads. Our pipeline also in-
cludes novel stages related to temporal smoothing of the reenacted face, actor specific
super resolution to retain fine facial details, and a second pass through the identity
transfer network for preserving actor identity. Localization of lip-sync is achieved by
restricting changes in the original video frame to just the actor’s mouth region. The re-
sults are convincing, and a user survey also confirms their quality. Relevant quantitative
metrics are included.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Dubbing is the process of adding or altering speech or other
sounds in the audio track of a project that has already been
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tisements, games, etc., wherein, with the goal of increasing
global viewership, the original dialogue is translated into the
audience’s language of choice, keeping the original actor. Ev-
ery year, hundreds of films are dubbed into dozens of interna-
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tional languages in Hollywood alone. New advancements in
visual computing and deep learning such as voice cloning [1]
and visual dubbing [2]] have the potential to greatly improve the
content generated from the dubbing industry [3]. In visual dub-
bing, lip and mouth configuration of the actor in the original
video are also altered to sync with the translated speech, im-
proving viewer experience and speech comprehension [4]]. Vi-
sual dubbing also makes the translator’s task easier when com-
pared with voice only dubbing, a prospect highly welcome to
the dubbing industry. This is because the translator has lesser
constraints, since lip and mouth articulations of the actor in the
original video can be changed to match the translated speech.

Visual dubbing research is mainly spurred by recent ad-
vancements combining face tracking and generative networks
which have led to the area of ”Al deepfakes” and “neural talk-
ing heads”, with promise in creating realistic fake photos and
videos. A common strategy in current work is to use a deep
learning network which accepts as input the original video and
new dubber audio or video. The network is trained to learn the
generation of faces with desired facial expressions including lip
and mouth articulations and then used in reenactment of the
original actor to mouth the dubbed speech. This reenacted face
is then patched back into the original video frame. In principle,
these techniques would make it possible to change the actor’s
lip and mouth configuration as needed. However, many of these
take a generic approach, and propose end-to-end networks to
learn and transfer face and mouth movements. These solutions
often fail to cleanly disentangle the face parameters resulting in
error accumulation due to which many a time, one can see that
the rest of the face or frame also gets altered, a side effect not
acceptable to the industry. Other noticeable quality problems in
their output include usually low-resolution, fine facial feature
loss, colour inconsistencies, blurring, temporal jitter and actor
identity loss.

Our main contribution is a new visual dubbing pipeline, in
which, instead of end-to-end training we apply incrementally
different disentangling techniques for each parameter. Expert
models in each stage are fine-tuned with actor data to main-
tain identity, mouth expression, fine facial features and resolu-
tion.We first identified where the quality problems of color, fine
feature loss, temporal jitter, and identity loss get introduced in
the output by carefully analyzing each stage of the pipeline.
Accordingly, we add appropriate correction actions after each
stage. Another point to note is that end-to-end training of large
deep neural networks usually require very large datasets, both
of source and target actors’ speech and facial expressions. This
is a problem for the industry, particularly in TV ads which
are usually of small duration, like 30 seconds or so, and vi-
sual dubbing of supporting cast having only a few lines in a
movie. Since we can separately train the different stages in our
pipeline we are able to generate good quality visual dubbing
outputs even with small training data.

Our visual dubbing pipeline is subject to some hard con-
strains stemming from industry requirements, specifically that
visual lip sync changes should be localised to the mouth and
should not affect the rest of the actor’s face, like eyes and eye-
brows, and certainly not the rest of the video. Another hard

requirement is that the original quality of the video in terms
of resolution, lighting, colour, background, etc. be retained.
We designed our method to comply with these constraints even
though in some specific cases this may result in some visual
artifacts as shown in the limitations section.

Our innovation is in careful engineering of the dubbing
pipeline steps. The input to our pipeline is the actor video and
the dubber video. Our strategy is to limit changes in the orig-
inal frames to just the actor’s mouth region, keeping as is, the
rest of the actor’s face, and rest of the video frame. For this, we
generate actor lip and mouth movements mimicking the dub-
ber’s speech with the help of our own stylized identity transfer
network. Pre-training this network with the CelebA dataset en-
ables it to decouple face components, specifically identity and
expression. Additionally, due to this pre-training only a small
amount of subject specific training data is needed, typically a 4-
5 seconds video is sufficient. Then we replace the mouth region
in the original frame with the generated lip and mouth move-
ments. This frame by frame mouth pasting, can sometimes pro-
duce mouth quiver and mouth style mismatch. To correct this,
we use a second identity transfer pass but this time replacing
the dubber video with the reenacted actor video. This helps ad-
dress the major requirements of identity preservation, lip-sync
localization, visual quality retention of the actor’s environment,
and ability to work with small video clips. Our visual dubbing
system ensures high quality through the following: (i) dubber
identity does not leak into the generated actor’s mouth and face,
(ii) mouth patched within the actors’ face appears seamless, (iii)
temporal stability and (iv) generated actor’s mouth has the same
quality in resolution colour and lighting. Above (i) and (ii)
are achieved by our stylized identity transfer network, and the
second identity transfer pass. For (iii) we include two spatio-
temporal smoothing steps in different stages to remove temporal
jitter. For (iv), since many of our expert models work on lower
resolutions, we fine tune a pre-trained super-resolution network
to retain intricate face details of the actor such as skin pores,
skin colour, lip colour, etc. A user survey confirms the quality
of our results. We also present quantitative metrics related to
lip sync and overall visual quality.

The rest of the paper is organized as follows. In the next
section, we present relevant related work in facial reenactment,
neural talking heads and visual dubbing, and contrast these with
our system. This is followed by a detailed description of our
pipeline including the engineering of various steps that help us
address the problems listed above. The need for these steps
is substantiated through relevant ablation studies. Then we
present various results including comparisons with results from
earlier work, when ever possible. The final concluding sections
also present the limitations of our system. An accompanying
video illustrates our method, ablation study and comparison re-
sults. Supplementary material includes example results and our
user study questionnaire.

2. Related Work

2.1. Facial Reenactment
Facial reenactment is a conditional face synthesis task which
aims to change a target facial expression and pose based on
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Fig. 1. Our method processes the actor and dubber videos through three main steps. At the core, our stylized identity transfer network changes the face
of the dubber to the identity of the actor while preserving the mouth expression. Note that for compactness of visualization we only show the face region,

but the method uses the full image frame at every step.

a driving source. Methods can be classified as GAN based or
model based. GAN-based methods use image-to-image transla-
tion networks [3} [6] for transferring the expression from source
to target. They require an intermediate product such as land-
marks, dense motion fields or blendshapes. Nirkin et al. [7] use
landmarks from the target and train a recurrent neural network
for agnostic face swapping and reenactment. Wiles et al.
and Siarohin et al. [9] train a network to learn dense motion
fields from the source. The target frame is later warped using
the learned motion field for pose and expression.Wang et al.
[10] propose a few shot video to video synthesis for generating
videos using an input semantic map. Facial reenactment using
such a method can be achieved by providing an edge map of
the source to drive the target generation. Model-based meth-
ods use 3D morphable face models (3DMM) [11]] to estimate
3DMM parameters. Thies et al. [12]] and Ma and Deng [13]]
conducted an effective deformation transfer to both source and
target videos, tracked facial expressions, then re-rendered the
synthesized target faces to better fit the retrieved and warped
mouth.Kim et al. [14] proposed a method for controlled full
head reenactment. They first transfer the head pose, facial ex-
pression, and eye motion using 3DMM parameters from source
to target. Then train a rendering-to-video translation network
to generate photo-realistic output. However, their approach re-
quires large training data, usually hundreds of seconds of video
clips. The literature on face reenactment focuses on complete
facial expression transfer to the target and work off a globally
average expression face for the source. As a result, the mouth
expression often lacks the required intensity which is critical
in visual dubbing. Moreover, they require a large amount of
diverse video footage to train.

2.2. Talking Heads

With the recent advancement in deep learning, the problem
of talking head generation has enjoyed great success. Talking
head generators synthesize an audio-synchronized video given
a few facial images for identity using some driving modality,
like audio, text or 3DMM parameters. Talking head genera-
tion can be subject dependent or independent. Subject depen-
dent methods [13} (16} 17, [18] [19] 20] learn an identity spe-
cific embedding using a large subject specific dataset. Using
this learned embedding they create photorealistic talking heads

of the subject.Nagano et al. [13] and [19] proposed real-time
talking head generation techniques for mobile devices. Nagano
et al. desgined a network to use facial action units for talk-
ing heads generation, whereas [19]] suggested to use two stage
layered network and reference landmarks. Subject independent
methods, also known as few shot generation methods, can work
on any identity. Zhou et al. [21]] shows pose controllable talking
heads for any identity. Han et al. [22] can use either text or au-
dio modalities for realistic talking head generation.Wang et al.
[23]] and Zakharov et al. [24]] use facial keypoints to predict flow
to drive a source image using a driving video. Despite these re-
cent breakthroughs, talking head methods cannot be used for
dubbing real-world visual content as subject dependent meth-
ods would require many hours of video footage for target actor
which would be impractical in most cases. On the other hand,
subject independent methods result in outputs with unnatural
head movements and often lose the identity of the actor as they
generate over-smoothed faces.

2.3. Visual Dubbing

Based on the modalities used from the source, visual dubbing
can be: audio or expression based. Audio-based techniques cor-
rect the lip motion of the target to match the source audio. Of-
ten these are referred as lip synchronization techniques. Suwa-
janakorn et al. trained a recurrent neural network to predict
mouth shape from raw audio. Based on the generated mouth
shape, a realistic texture of mouth was created and composited
on target frame. However, they require very large amount of
training video, for example, they needed 17 hours of Obama
speech footage, making this method impractical in most cases.
Audio-based methods [26), can generalize for any iden-
tity and voice. Chung et al. [26] jointly trained for audio and
video correlation, and they were able to efficiently sync static
image with audio but their approach fails for video sequences.
Prajwal et al. [27] were the first to propose the use of a powerful
lip-sync discriminator with which they achieved good accuracy
in syncing an arbitrary video with audio. However, both ap-
proaches suffer from blurring of mouth and inconsistent recon-
struction of teeth. In comparison, our method produces realistic
teeth and has no blurring.

Unlike the above methods which directly morph lips based on
audio, Xie et al. [28] proposed to use a two-stage framework.
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In the first stage, they train a generator to predict reference face
landmarks based on audio. In the second stage, reference land-
marks along with the target frame are used to generate the final
output. A problem with their approach is that the generated
reference landmarks are not always accurate. Their approach
also leaks identity. The fundamental problem with audio-based
methods is that speech acoustics cannot represent the full range
of realistic facial expressions [29] due to which they cannot re-
create all possible expressions, say, those present in the actor
video input.

Expression-based techniques drive lips in a target video (ac-
tor) using expressions from a source video (dubber). Garrido
et al. [30]] capture facial performance of source and target. They
transfer blendshape weights of the mouth from source to tar-
get directly. Later, they detect bilabial consonants from audio
track and then manually enforce opening and closing of mouth.
Finally they render the mouth and composite it on the target
frame. Their approach fails to preserve features of the actor
while transferring the expression from the dubber. Also, their
synthesized inner mouth has observable artifacts and does not
look realistic. Kim et al. [31] proposed a style preserving vi-
sual dubbing approach. They train a style translation network
to learn the mapping of 3DMM expression parameters from
source to target. They use a neural face renderer to synthe-
size a realistic video portrait based on synthesized expression
parameters. Their result preserves the style of target mouth.
However, their approach ends up manipulating other parts of the
face especially the eyes. Successful isolation of expression pa-
rameters for monocular face reconstruction is still an unsolved
problem which is being extensively investigated. In our visual
dubbing pipeline, We do the expression transfer in 2D image
space. Suwajanakorn et al. [25] have shown that if source and
target are from the same identity, then seemingly realistic ex-
pression can be created. Inspired by this, we employ a two pass
face-swapping strategy. Our method, while preserving the tar-
get identity, accurately transfers lip and mouth movements from
dubber to actor. Unlike other known methods, our approach
also requires much less data and can work on input videos of
only a few seconds.

3. Method

Our goal is to create a video where an actor really looks like
speaking in a different language. We take as input two videos
A and D: A is the video of an actor uttering some speech in a
language L4 and D is a video of a dubber that utters the same
speech in a different language Lp. The output is a video R of
the actor that appears to be uttering the speech in language Lp,
while at the same time maintaining all other visual aspects from
the original video: not only the background must remain the
same, but it is important that parts of the face, other than lip
and mouth, for example the eye region must be kept intact.

To formally express this process we parameterize the videos
V(-) by the following parameters: (1) pose p (the rigid trans-
formation of the entire head), (2) identity id (actor or dubber),
(3) facial expression x (of the actor or of the dubber, excluding
mouth), (4) mouth configuration/expression x,, (of the actor or

of the dubber), (5) background b (actor video, dubber video or
black background) and (6) resolution (high or low). For a com-
pact notation, the values of these parameters are a for actor, d
for dubber, T for high resolution, | for low resolution and k for
videos with a black background.

We introduce the resolution as part of the parameter list be-
cause practical dubbing methods should be able to operate on
videos of high resolution (1080p or more). Currently, many of
the visual dubbing methods that are proposed operate at much
lower resolution. We also separate the facial expression from
the mouth expression because in a practical commercial con-
text, it is important to maximize the screen real-estate of the
original footage, i.e., all other than the mouth region should be
kept unchanged from the original video. Therefore:

we have Ay = V(plal,idlal.xs[al,xn[al,blal,T),
Dy = V(pldl.idld],xs[d],xu[d],bld],T)

and we want R = V(plal,id[a],x¢[al,x,[d],bla],T)

The biggest challenge in all visual dubbing methods is how
to disentangle and synthesize these parameters. In our method
we do not aim at separating them in one end to end neural
network; rather we apply incrementally different disentangling
techniques for each parameter.

Figure[I| shows the three main steps of our method: (1) pose
alignment where we register the actor and dubber poses, (2)
identity transfer where we synthesize the actor with the expres-
sion of the dubber and (3) a video reassembly step that improves
and assembles the final result.

3.1. Pose Alignment

We start by reconciling the pose of the two input videos by
rendering them both in the same pose, the pose of the actor,
using monocular 3D reconstruction of faces. Various methods
have been proposed for 3D facial reconstruction using either
parametric models or regression based face trackers. Methods
based on parametric reconstruction [32] 33] [34]] provide high
reconstruction accuracy (NoW Challenge [35]]), however they
don’t reconstruct the inner region of the mouth, which is critical
for our application. We would need an extra step for predicting
and reconstructing the proxy teeth, and blend them back with
reconstructed faces. However, unless the reconstructed proxy is
accurate it will lead to uncanny artifacts [30]. Therefore we use
the PRNet regression-based face reconstruction method [36].
Using PRNet we obtain V(plal,id[al,xs[a],x,[al,b[k],]) and
V(plal,id[d],x¢[d],x,[d],b[k],l). PRNet provides a rigid 3D
transformation to a canonical front facing pose. We use these
transformations in order to transform the reconstructed face of
the dubber in the same pose as the actor. Even though these
videos are rendered at the same resolution as the input video,
because of the resampling introduced by the 3D reconstruction
and rendering, we technically consider them as low resolution.

The 3D reconstruction being carried out frame by frame
could introduce temporal jitter. So, we apply a correction step
of temporal smoothing (moving average of 5 frames) on the po-
sition of the mesh vertices. As the illumination conditions in
the actor and dubber videos are likely to be vastly different, we
apply a tonal correction step by shifting the color space [37] of
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Fig. 2. Our stylized identity transfer network is composed of a shared (ac-
tor and dubber) encoder, adapted GAN module, and two decoders (spe-
cialized for the actor or dubber).

the dubber video to match that of the actor video. Doing so,
also transforms the skin tone of the dubber to that of the actor,
which is beneficial in later stages.

3.2. Identity Transfer

Once the videos are aligned, we change the identity of the
dubber into the identity of the actor using our stylized identity
transfer network to obtain V(p[al,id[al,x([d],x.,[d],b[k],]). We
designed a Y-shaped network (Figure [2): single encoder and
dual decoder similar to the method of Naruniec et al. [38]]. Our
goal is to create a network which accurately learns an embed-
ding from a relatively small dataset to synthesize identity trans-
ferred faces without changing expression of the target identity.
For this we need to decouple facial attribute parameters: iden-
tity, pose, and expression. Since, we explicitly rigid align the
pose of the actor and dubber, our model only needs to learn
to decouple identity and expression in latent space. Recently,
StyleGAN [39]] has shown unparalleled decoupling of facial pa-
rameters. We create our encoder-decoder based on the Xception
network [40] and include a GAN module inspired from Style-
Gan for disentanglement of parameters. Figure[3|shows the full
details of this architecture.

Our encoder uses depthwise separable convolution layers like
the Xception network. Depthwise separable convolution re-
quires less computational operations and also they provide a
dedicated feature pathway for features of high importance. The
encoder takes an input image of size 256 X 256 x 3 and cal-
culates a feature map starting from 32 to 1024. The encoder
provides two embeddings: one for expression(es) and one for
identity(e;), each of size 8 x 8 x 1024. Each decoder takes input
map of size 8§ X 8 x 1024 and matches corresponding feature
level of the encoder.

GAN module first takes expression embedding €5 and passes
it through a mapping network of 3 convolutions blocks, each
block consisting of convolution, batch norm and leaky relu
module. The generated embedding along with identity embed-
ding ¢ is passed further through three consecutive blocks, each
block having two AdalN layers. The formulation of AdaIN task
can be written as:

— u(er)

AdalIN(e;, es) = o(es) oy THE) (1)

Input,
256x256x3

|

Conv 3x3, 32, /2
BN Latent Embedding,
8x8x1024

DBlock, 1024
DBlock, 512
DBlock, 256

Relu

®
®

SeparableConv 3x3
BN
Relu

Conv 1x1, /2

SeparableConv 3x3
BN
Relu
MaxPool, 3x3, /2

Conv 1x1, /2

SBlock
Conv 1x1, /2 SBlock, 256
DBlock, 128 Conv 3x3
® BN
RelLu
Conv 1x1, 12 SBlock, 512 DBlock, 64 ConvTranpose2D 3x3
BN
®
DBlock, 32 RelU
DBlock

SBlock, 1024

Expression
Embedding

|dentity ‘

Embedding Output

(a) (b)

Conv 3x3
BN
ReLu

c o
GE=!
3
£3
a
X E
wow

Latent Embedding,
8x8x1024

Identity

o
£
=]
°
@
2
=
w

Conv 3x3
Adaln
Leaky ReLU
Conv 3x3

(c) 3x

Fig. 3. Detailed architecture of identity transfer network. (a) share encoder
(b) decoder (c) gan module

Here u and o are the channel wise mean and standard devi-
ation operation.We jointly train the shared encoder and the two
decoders during each iteration.

‘We pre-train our network on the large CelebAHQ dataset [41]]
for face reconstruction. Pre-training on CelebA helps our
encoder and AdaIN blocks to effectively decouple embed-
ding for diverse identity and expression. It also helps our
model to converge faster. For subject dependent training we
only load weights of encoder and AdaIN block. Decoders
start their learning from scratch. This strategy of training
a shared encoder with multiple identities for face swapping
has been shown to be effective in generating diverse expres-
sions [38]]. To obtain the best results, we train our network on
the original videos Ay and Dy, and also on the rendered videos
of the actor V(plal,id[a],xf[al,x,[al,blk],]) and aligned dub-
ber V(plal,id[d],xs[d],x.[d],b[k],]). Even though the rendered
videos are of a lower quality than the original videos, the black
background helps the training to converge faster and with fewer
input frames (the network focuses more on the face and less
on the background). Faces in the frames are detected cropped
and aligned just like typical face recognition pipeline for the
training. For losses,we employ SSIM(Structural Similarity In-
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dex Metric) [42] as facial reconstruction loss. We multiply the
input /;, and output image I,,; with the face segmentation mask
m/. Our facial reconstruction loss therefore looks like:

Lreeon = SSIMmy () lou my (4) L)

Here (*) represents element wise multiplication. We also pe-
nalize the mouth generation using £, pixel-wise reconstruction
loss. We use mouth mask m,, for the mouth segmentation.

-Emouth = ”mm @ Loy, my, @ Iin||2

Thus the loss for each common-encoder and decoder pair
would be:

-Lactor = Lremn + A2 Lmouth
-Edubber = -Erecon + Az - -Lmomh

Therefore, our total training loss in the network is:

-[:total = -[:acmr + Ldubber

For the training we use 4; = 4, 1, = 2. We train our
network for 60K iterations, with each original and synthe-
sized dataset, with learning rate /r = 0.0001, and it takes
about 3 days on a single Nvidia v100 GPU to train. Note
that, since our machine has multi-threading issues at that time,
causing dataloading bottlenecks, training time may signifi-
cantly differ if multi-threading was properly supported. Dur-
ing the inference time, we load the weights of shared encoder
and actor decoder. We feed the pose aligned dubber video
V(plal,idld],xs[d],xd],blk],]) to the network to synthesize
the reenacted video V(plal,idlal,x¢[d],x,[d],blk],]) because of
which the output in first pass has a black background.

3.3. Video Reassembly

The last step is to superimpose the synthesized part of the
face with the original video. As described in Sec. the
dubber video is rendered in the actor pose using PRNet. PR-
Net provides the necessary rigid 3D transformations needed
for this operation, but unfortunately, the pose estimation is
noisy and thus the resulting video can be jittery. Therefore
we apply spatio-temporal landmark smoothing to stabilize the
video (Section [3.3.1). We further apply a super-resolution step
to bring the video to the same resolution as the input (Sec-
tion [3.3.2) resulting in V(p[al,id[a],xs[d],x[d],b[k],T). What
is left is to cut a mask around the mouth region and com-
posite [43] it with the original actor footage thus obtaining
V(plal,idlal,xlal,x,[d],blal,T).

Unfortunately, a simple compositing operation of the mouth
region can result in uncanny effects because of positional errors
as can be seen in the accompanying video.The positional er-
ror occurs when the position of the synthesized mouth doesn’t
match with the exact position of mouth in the actor. This
is because, the 3d rigid transformation from PRNet is some-
times noisy as a result of which the mouth position of pose
aligned dubber and actor will differ. The same noisy dub-
ber image when used for synthesizing expression results in

Fig. 4. Composting of the expression. (a) actor frame (b) synthesized ex-
pression (c) mask used (d) final result

incorrect mouth position. An elegant solution to this prob-
lem is to use a second pass and recycle the result through the
identity transfer step once more with the original Ay and with
V(plal,idlal,xs[al,x.[d],blal,T) replacing the dubbing video.
This is possible because both these videos are on the same pose.

The resulting output is a convincing dubbing sequence of the
actor that retains the content of the original footage everywhere
except the mouth region that is lip-synced to the new speech.

This second identity transfer pass as described above is a cru-
cial correction step in our process. This is because of the fol-
lowing. During the first identity transfer the goal is to change
the dubber video to have the actor’s identity retaining the dub-
ber’s facial expressions. Given the small amount of data and
especially when there is vast difference in facial features of the
dubber and actor, some mix of features is unavoidable. The cut
and paste of the mouth region can introduce further positional
errors resulting in some uncanny effects. This second pass ele-
gantly corrects these problems using the original actor video.

Figuredillustrates the composting of the synthesized mouth.
Figure [{a) shows the original actor frame. Figure f{b) shows
the synthesized facial expression. Figure [d[c) shows the mask
used for blending and Figure ff[(d) shows the final result.

3.3.1. Spatio-Temporal Landmark Stabilization

The pose estimation provided by the monocular 3D shape
estimation is fairly noisy thus resulting in a jittery video se-
quence. We extract 2D face landmarks using DLib [44] for
the reenacted video V(plal,id[al,x([al,x,[d],b[k],]), and tem-
porally smooth their respective positions. We then compute a
2D rigid alignment to align the reenacted video landmarks to
the smoothed landmarks (applying that transformation to the
video). The most difficult challenge in temporal stabilization
is the balance between jitter and lag [45]: during the parts of
the video where the scene is mostly static the jittering artifact is
more prominent and thus a larger smoothing window needs to
be applied while during the parts where there is fast movement,
too much smoothing might result in video lag. To balance these
we employ the 1 Euro filter proposed by Casiez et al. [45]].

3.3.2. Finely Tuned Super Resolution

We use the network of Yang et al. [46] to do a super reso-
lution of 512 x 512 from our synthesized output of 256 x 256.
One challenge with any super-resolution method is that it will
always make the result visually sharper and clearer. However,
given a video input, due to motion, focusing and other reasons,
the input footage might not always be sharp and the super-
resolution image might not, in fact, match the quality of the
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Fig. 5. Finely Tuned Super Resolution. (a) input frame (b) output before
super resolution (c) super resolution using only Yang et al. (d) super
resolution using Yang et al. and our data augmentation.

input. We address this using data augmentation. We take the
high-resolution video input and create a low-resolution version
by blurring it. We blur the video in two different ways: 1) us-
ing the guassian blurring from the above paper, 2) we self-swap
the original actor video(passing the actor image from shared
encoder-actor decoder pair) using our trained identity transfer
network. We use these pairs of images of the actor to further
train the super-resolution network. We finetune the model for
1000 iterations. It takes about 35 minutes for finetuning on sin-
gle Nvidia Tesla v100 GPU. During finetuning we change fol-
lowing parameters compared to the ones in the original paper:
learning rate Ir = 0.0002, @ = 1.0 and 8 = 1.0 This fine tuning
step yielded overall better results.

We illustrate this in Figure 5] Figure [5(a) shows the input
frame. Figure[5(b) shows the output before the super resolution,
where it is clear that the visual quality is lower. We purpose-
fully chose a frame where the input frame and the output frame
happen to have similar mouth opening. Figure [5[c) shows the
frame after using only Yang et al. [46]. Figure 5{d) shows the
final output frame using Yang et al. [46] with our data augmen-
tation. The final result matches the quality of the input frame
much better: it is not as blurry as the output without super res-
olution but not as sharp as the super resolution without our data
augmentation.

4. Results

We tested our method on over a dozen production quality
dubbing scenarios provided by our industry collaborators. Be-
cause of copyright reasons, here, we can only show results on
copyright free YouTube video clips. For original videos (i.e. ac-
tors) we selected a few clips of speeches of international public
figures and the dubbing was done by professionals. These dub-
bers have training in traditional dubbing, but no additional train-
ing was done for these dubbing sessions other than mentioning
that in addition to the sound recording there is a camera that
records their facial expression. In fact, as you can see in the ac-
companying video, the dubbers actually keep their heads quite
down, making it rather challenging for face transfer. In addi-
tion to these sequences we also extracted a few video sequences
from the supplementary material submitted to the ACM digital
library of Kim et al. [31] and compared our results to theirs. All

the results generated by us are available as a video in the supple-
mental material. We put all the necessary videos (actor, dubber
and result) at full resolution and length. Comparative results as
well as ablation studies are included in the supplemental video.

5. Evaluation

Using our selected clips of public figures, we evaluate our
method against the recent state-of-the-art methods - audio based
lip-sync [27], talking head generation [47] and face reenact-
ment [9]. For visual dubbing methods, we found it challenging
to evaluate our method against other methods. There are no uni-
form datasets available targeted to this problem, and neither is
the source code of these methods. Still from the recent video
dubbing methods, we cropped the actor and dubber sequences
from the online video presentation of Kim et al. [31]] and we
processed them with our pipeline. This comparison is not an
apple to apple comparison because we do not have the same
training videos in terms of both length and resolution. Never-
theless, even with much less training data (185 to 300 frames
for our approach, 3000 to 9000 for Kim et al. [31]]), our results
are comparable and in some respects better than those of Kim
et al. [31].

We also compared our results to traditional dubbing through
a user study where we ask a few qualitative questions related
to the lip synchronization with the audio, visual quality of the
face, and blind selection of preferred video out of our results
and traditional dubbing.

5.1. Quantitative Evaluation

For quantitative comparisons, we evaluate lip-sync accuracy
and visual quality of the generated results. We use the Land-
mark Distance (LMD) metric proposed by Chen et al. [48].
LMD calculates normalized euclidean distance between land-
marks of the mouth for the generated result and the dubber
on per frame basis. Our use of LMD is justified because
of the availability of ground-truth expression from the paired
actor-dubber sequence. Table [I] shows LMD score on our
dataset between our methods and various state-of-the-art meth-
ods. We also employ Learned Perceptual Image Patch Simi-
larity (LPIPS [49]), Frechet Inception Distance (FID [50]) and
Peak Signal to Noise Ratio (PSNR) metrics to assess the overall
visual quality of the generated result compared to the original
actor video. Table 2] shows the result of the visual quality eval-
uation.

For the videos from Kim et al. [31]], we calculate lip-sync
accuracy as well as visual metrics (Table3)). Since the cropped
videos were of low resolution, visual metrics comparison in this
scenario might not be completely accurate.

Our method largely outperforms all methods in FID and
PSNR, and it outperforms FOMM and MakeltTalk in LPIPS.
When compared to Wav2Lip using the LPIPS metric as well as
when using the LMD metric, the values are similar. However, a
major advantage of our method is that it uses much less training
data compared to all the above methods and it is specifically de-
signed to keep the original video intact in the upper face region,
which if changed can lead to uncanny effects [51].
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Table 1. Landmark Distance (LMD) metric (lower is better) of mouth ex-
pression between our generated result and the dubber video computed on
our dataset.

Dataset Ours Wav2Lip FOMM MakeltTalk
Macron 0.78 0.93 0.81 0.79
Kovind EN  0.68 0.72 0.69 0.75
Kovind FR  0.73 0.74 0.79 0.67

Table 2. Visual quality evaluation (LIPS - lower is better, FID - lower is
better, PSNR - higher is better) of results generated using other methods
compared to ours.

Metrics
Dataset  Methods LPIPS| FID| PSNR1
Ours 0.02 1.04 3713
M Wav2Lip 004 477 3230
acron FOMM 0.13  11.50 16.01
MakeltTalk 012 1645 16.73
Ours 0.04 5.30 26.12
. Wav2Lip 005 1155  26.15
Kovind En FOMM 012 60.60 19.58
MakeltTalk 011 9099  20.65
Ours 0.04 551 2614
. Wav2Lip 005 11.63  26.09
Kovind FR FOMM 0.12 5231 1948
MakeltTalk 012 7641 20.77

5.2. User Study

The goal of the visual dubbing process is, ultimately, to pro-
duce video content that yields a superior experience to a viewer.
Obtaining real-world opinions is very important since human
eyes are the expert discriminator for assessing any audio-visual
mismatch and temporal artifact. Accordingly, we carried out a
user study that compares our visual dubbing method to the cur-
rent dubbing method used in the industry which is overlaying
the audio content. Using three of our result videos, we showed
our participants the result of our method and the result of a pro-
fessionally produced (sound only) dubbing sequence, and asked
a few questions regarding the videos. Our study has 23 par-
ticipants. The questionnaire they answered is provided in the
supplementary material and the three videos shown correspond
to the results 1-3 in our supplementary material results video.
We summarize the findings in Table[d] A vast majority (69.6%
to 87.0%) of the participants found the lip motions in our re-
sults to be synchronized with the audio. Moreover, when asked
about the overall visual quality of the face in our results, 60.8%

Table 3. Comparison with Kim et al. [31]. LMD - lower is better, LIPS -
lower is better, FID - lower is better, PSNR - higher is better.

Metrics
Dataset Methods LMD | LPIPS| FID| PSNR7T
Obama ‘ Ours 0.56 0.02 5.44 34.45
Kim [2019]] 0.67 0.02 2.74 30.16
E. and . _ Ours 1.16 0.03 22.39 36.32
Kim [2019] 1.24 0.06 24.39 26.90
F and K. . Ours 1.16 017 31.50 16.18
Kim [2019] 1.52 0.18  36.45 16.74

to 82.6% of the participants said our results are good or excel-
lent. Finally, when presented with clips which were tradition-
ally dubbed and our visual dubbing results, a majority (65.2%
to 91.3%) preferred visual dubbing results.

Table 4. User study statistics (in percentage). For “Lip Sync Acc.” we
asked the participants if the lips motion is synchronized with the audio
(Strongly agree, Agree, Neutral, Disagree, Strongly Disagree) and here
we report “Strongly agree”+“Agree”. For “Visual Quality” we asked the
participants to rate the overall visual quality (Excellent, Good, Fair, Poor,
Very poor) and here we report “Excellent”’+“Good”. “Preference” reports
which clip the participant preferred. The values do not sum to 100% as
there was a “No preference” option.

Preference
Dataset Lip Visual Visual Traditional
Sync Quality Dubbed Dubbed
Acc.
Macron 78.2% 82.6% 91.3% 4.3%
Kovind EN  69.6% 60.8% 65.2% 17.4%
Kovind FR  87.0% 73.9% 82.6% 8.7%

6. Discussion

For the spatio-temporal stabilization step, even if the mouth
alignment is not completely perfect after the stabilization, the
second pass through the stylized identity transfer network fine
tunes the alignment of the mouth and face very well. We also
tested doing a 2D alignment of the reenacted video toward the
original video of the actor. That proved to introduce some more
jittering as the chin and mouth movements of the original ac-
tor’s video are not the same as the ones of the reenacted video.

Our second identity transfer pass elegantly solves the un-
canny effect resulting from first cut and paste. However, it
slightly diminishes the expression dynamics in the final gen-
erated output.

Limitations. Our most important limitation stems from the re-
quirement that we composite only the lower part of the face
resulting in occasional artifacts. Our strategy to repeat the face
swap process improves the results, but not in all cases. More
specifically, in frames where the pose of the actor frame has the
jaw open while the dubber has it closed, the pasting results in
a double chin artifact that can be seen in the video comparison
with Kim et al. [31]]. There are also special cases when moving
wrinkle artifact is observed with actor having strong nasolabial
folds. This occurs when the part of the nasolabial fold, con-
structed in the synthesized mouth, does not completely align
with the one in upper part of the face.

Another limitation comes from the automatic landmark iden-
tification. Sometimes we had to manually adjust the landmarks
of the actor or dubber. For example, the Macron and Merkel
dubbing worked fine with the automatic landmarks, but the
Kovind dubbing required the adjustment of landmarks for 200
out of 1185 frames of the dubber. This is solely because of the
landmark detector of DLib [44]]. Our method is independent of
that detector and can benefit from more precise landmark de-
tection methods, present or future.
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Ethics considerations. Our method, like dozens of other deep
fake methods can be misused for malicious purposes such as
misrepresenting individual and spreading misinformation. We
are mitigating these risks by only providing the code to profes-
sional dubbing companies that have a transparent professional
conduct.

7. Ablation Studies

In the accompanying video we have included a section with
four ablation studies that we performed in order to demon-
strate the necessity of individual steps of our method. In the
first one, we look at the impact of the second identity trans-
fer pass. As can be seen in the video, without this pass the
result exhibits various temporal artifacts introduced when past-
ing only the mouth region and sometimes further exacerbated
by the Poisson blending step. The second ablation study high-
lights the necessity of the temporal stabilization steps. In the
third ablation study, we vary the footage available for training to
demonstrate our claim of not requiring large training data. We
compare the original result that was trained on 30 seconds to a
sub-clip trained only on 5 seconds. As we can see, in general,
there are only minor visual changes between them illustrating
the fact that our method works well even on short clips. Finally,
we show the impact of the pre-training and AdalN blocks in the
stylized identity transfer network. For short clips, especially,
where the lack of training data is an issue, this step is very im-
portant.

8. Conclusion

In this work we present a new visual dubbing pipeline where
the main design objectives, raised from typical industry scenar-
ios, are the preservation of the rest of the face expression from
the original actor footage, the ability to deliver good results on
short video clips, and maintaining the resolution and general
visual quality of the input. The pipeline design evolved over a
continual improvement process in which our industry collabo-
rators provided us actor (real TV ads) and dubber videos, and
feedback on output from our pipeline that drove the changes in
the pipeline steps in an iterative fashion.

Our pipeline contains several novel ideas and techniques such
as a two-pass identity transfer, temporal stabilization, data aug-
mentation for both identity transfer as well as fine-tuned super
resolution. The pipeline enables us to disentangle the differ-
ent parameters in visual dubbing using a step-wise approach,
something which is difficult to achieve using end-to-end trained
networks.

We evaluate our method qualitatively as well as quantita-
tively on professionally produced dubbing clips showing the
real-world potential of our pipeline. Our results are convincing
and confirmed by a user study focused on the overall experience
of the dubbing results.
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