

## Visual dubbing pipeline with localized lip-sync and two-pass identity transfer

Dhyey Patel<sup>a</sup>, Houssem Zouaghi<sup>b</sup>, Sudhir Mudur<sup>a</sup>, Eric Paquette<sup>b</sup>, Serge Laforest<sup>c</sup>, Martin Rouillard<sup>d</sup>, Tiberiu Popa<sup>a</sup>

<sup>a</sup>Concordia University, Montreal

<sup>b</sup>École de technologie supérieure, Montreal

<sup>c</sup>Audio Z, Montreal

<sup>d</sup>Webcargo, Montreal

### ARTICLE INFO

#### Article history:

Received September 23, 2022

**Keywords:** Visual dubbing, Reenactment, Style transfer

### ABSTRACT

Visual dubbing uses visual computing and deep learning to alter the lip and mouth articulations of the actor to sync with the dubbed speech. It has the potential to greatly improve the content generated from the dubbing industry. Quality of the dubbed result is primary for the industry. An important requirement is that visual lip sync changes be localized to the mouth region and not affect the rest of the actor's face or the rest of the video frame. Current methods can create realistic looking fake faces with expressions. However, many fail to localize lip sync and have quality problems such as identity loss, low-res, blurs, face skin feature or colour loss, and temporal jitter. These problems mainly arise because end-to-end training of networks to correctly disentangle these different visual dubbing parameters (pose, skin colour, identity, lip movements, etc.) is very difficult to achieve. Our main contribution is a new visual dubbing pipeline, in which, instead of end-to-end training we apply incrementally different disentangling techniques for each parameter. Our pipeline is composed of three main steps: pose alignment, identity transfer and video reassembly. Expert models in each step are fine-tuned for the actor. We propose an identity transfer network with an added style block, which with pre-training is able to decouple face components, specifically identity and expression, and also works with short video clips like TV ads. Our pipeline also includes novel stages related to temporal smoothing of the reenacted face, actor specific super resolution to retain fine facial details, and a second pass through the identity transfer network for preserving actor identity. Localization of lip-sync is achieved by restricting changes in the original video frame to just the actor's mouth region. The results are convincing, and a user survey also confirms their quality. Relevant quantitative metrics are included.

© 2022 Elsevier B.V. All rights reserved.

### 1. Introduction

Dubbing is the process of adding or altering speech or other sounds in the audio track of a project that has already been filmed. A major use of dubbing is in movies, serials, advertisements, games, etc., wherein, with the goal of increasing global viewership, the original dialogue is translated into the audience's language of choice, keeping the original actor. Every year, hundreds of films are dubbed into dozens of interna-

e-mail: [pateldhyey98@gmail.com](mailto:pateldhyey98@gmail.com) (Dhyey Patel),  
[houssem.zouaghi@ymail.com](mailto:houssem.zouaghi@ymail.com) (Houssem Zouaghi),  
[sudhir.mudur@concordia.ca](mailto:sudhir.mudur@concordia.ca) (Sudhir Mudur),  
[eric.paquette@etsmtl.ca](mailto:eric.paquette@etsmtl.ca) (Eric Paquette), [serge@audioz.com](mailto:serge@audioz.com) (Serge Laforest), [martin@webcargo.net](mailto:martin@webcargo.net) (Martin Rouillard),  
[tiberiu.popa@concordia.ca](mailto:tiberiu.popa@concordia.ca) (Tiberiu Popa)

tional languages in Hollywood alone. New advancements in visual computing and deep learning such as voice cloning [1] and visual dubbing [2] have the potential to greatly improve the content generated from the dubbing industry [3]. In visual dubbing, lip and mouth configuration of the actor in the original video are also altered to sync with the translated speech, improving viewer experience and speech comprehension [4]. Visual dubbing also makes the translator's task easier when compared with voice only dubbing, a prospect highly welcome to the dubbing industry. This is because the translator has lesser constraints, since lip and mouth articulations of the actor in the original video can be changed to match the translated speech.

Visual dubbing research is mainly spurred by recent advancements combining face tracking and generative networks which have led to the area of "AI deepfakes" and "neural talking heads", with promise in creating realistic fake photos and videos. A common strategy in current work is to use a deep learning network which accepts as input the original video and new dubber audio or video. The network is trained to learn the generation of faces with desired facial expressions including lip and mouth articulations and then used in reenactment of the original actor to mouth the dubbed speech. This reenacted face is then patched back into the original video frame. In principle, these techniques would make it possible to change the actor's lip and mouth configuration as needed. However, many of these take a generic approach, and propose end-to-end networks to learn and transfer face and mouth movements. These solutions often fail to cleanly disentangle the face parameters resulting in error accumulation due to which many a time, one can see that the rest of the face or frame also gets altered, a side effect not acceptable to the industry. Other noticeable quality problems in their output include usually low-resolution, fine facial feature loss, colour inconsistencies, blurring, temporal jitter and actor identity loss.

Our main contribution is a new visual dubbing pipeline, in which, instead of end-to-end training we apply incrementally different disentangling techniques for each parameter. Expert models in each stage are fine-tuned with actor data to maintain identity, mouth expression, fine facial features and resolution. We first identified where the quality problems of color, fine feature loss, temporal jitter, and identity loss get introduced in the output by carefully analyzing each stage of the pipeline. Accordingly, we add appropriate correction actions after each stage. Another point to note is that end-to-end training of large deep neural networks usually require very large datasets, both of source and target actors' speech and facial expressions. This is a problem for the industry, particularly in TV ads which are usually of small duration, like 30 seconds or so, and visual dubbing of supporting cast having only a few lines in a movie. Since we can separately train the different stages in our pipeline we are able to generate good quality visual dubbing outputs even with small training data.

Our visual dubbing pipeline is subject to some hard constraints stemming from industry requirements, specifically that visual lip sync changes should be localised to the mouth and should not affect the rest of the actor's face, like eyes and eyebrows, and certainly not the rest of the video. Another hard

requirement is that the original quality of the video in terms of resolution, lighting, colour, background, etc. be retained. We designed our method to comply with these constraints even though in some specific cases this may result in some visual artifacts as shown in the limitations section.

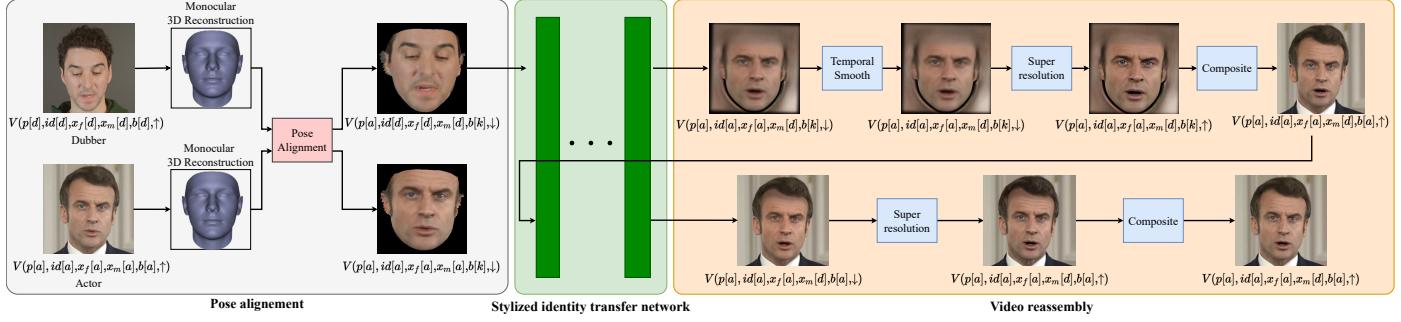
Our innovation is in careful engineering of the dubbing pipeline steps. The input to our pipeline is the actor video and the dubber video. Our strategy is to limit changes in the original frames to just the actor's mouth region, keeping as is, the rest of the actor's face, and rest of the video frame. For this, we generate actor lip and mouth movements mimicking the dubber's speech with the help of our own stylized identity transfer network. Pre-training this network with the CelebA dataset enables it to decouple face components, specifically identity and expression. Additionally, due to this pre-training only a small amount of subject specific training data is needed, typically a 4-5 seconds video is sufficient. Then we replace the mouth region in the original frame with the generated lip and mouth movements. This frame by frame mouth pasting, can sometimes produce mouth quiver and mouth style mismatch. To correct this, we use a second identity transfer pass but this time replacing the dubber video with the reenacted actor video. This helps address the major requirements of identity preservation, lip-sync localization, visual quality retention of the actor's environment, and ability to work with small video clips. Our visual dubbing system ensures high quality through the following: (i) dubber identity does not leak into the generated actor's mouth and face, (ii) mouth patched within the actors' face appears seamless, (iii) temporal stability and (iv) generated actor's mouth has the same quality in resolution colour and lighting. Above (i) and (ii) are achieved by our stylized identity transfer network, and the second identity transfer pass. For (iii) we include two spatio-temporal smoothing steps in different stages to remove temporal jitter. For (iv), since many of our expert models work on lower resolutions, we fine tune a pre-trained super-resolution network to retain intricate face details of the actor such as skin pores, skin colour, lip colour, etc. A user survey confirms the quality of our results. We also present quantitative metrics related to lip sync and overall visual quality.

The rest of the paper is organized as follows. In the next section, we present relevant related work in facial reenactment, neural talking heads and visual dubbing, and contrast these with our system. This is followed by a detailed description of our pipeline including the engineering of various steps that help us address the problems listed above. The need for these steps is substantiated through relevant ablation studies. Then we present various results including comparisons with results from earlier work, when ever possible. The final concluding sections also present the limitations of our system. An accompanying video illustrates our method, ablation study and comparison results. Supplementary material includes example results and our user study questionnaire.

## 2. Related Work

### 2.1. Facial Reenactment

Facial reenactment is a conditional face synthesis task which aims to change a target facial expression and pose based on



**Fig. 1.** Our method processes the actor and dubber videos through three main steps. At the core, our stylized identity transfer network changes the face of the dubber to the identity of the actor while preserving the mouth expression. Note that for compactness of visualization we only show the face region, but the method uses the full image frame at every step.

1 a driving source. Methods can be classified as GAN based or  
 2 model based. GAN-based methods use image-to-image translation  
 3 networks [5, 6] for transferring the expression from source  
 4 to target. They require an intermediate product such as land-  
 5 marks, dense motion fields or blendshapes. Nirkin et al. [7] use  
 6 landmarks from the target and train a recurrent neural network  
 7 for agnostic face swapping and reenactment. Wiles et al. [8]  
 8 and Siarohin et al. [9] train a network to learn dense motion  
 9 fields from the source. The target frame is later warped using  
 10 the learned motion field for pose and expression. Wang et al.  
 11 [10] propose a few shot video to video synthesis for generating  
 12 videos using an input semantic map. Facial reenactment using  
 13 such a method can be achieved by providing an edge map of  
 14 the source to drive the target generation. Model-based meth-  
 15 ods use 3D morphable face models (3DMM) [11] to estimate  
 16 3DMM parameters. Thies et al. [12] and Ma and Deng [13]  
 17 conducted an effective deformation transfer to both source and  
 18 target videos, tracked facial expressions, then re-rendered the  
 19 synthesized target faces to better fit the retrieved and warped  
 20 mouth. Kim et al. [14] proposed a method for controlled full  
 21 head reenactment. They first transfer the head pose, facial ex-  
 22 pression, and eye motion using 3DMM parameters from source  
 23 to target. Then train a rendering-to-video translation network  
 24 to generate photo-realistic output. However, their approach re-  
 25 quires large training data, usually hundreds of seconds of video  
 26 clips. The literature on face reenactment focuses on complete  
 27 facial expression transfer to the target and work off a globally  
 28 average expression face for the source. As a result, the mouth  
 29 expression often lacks the required intensity which is critical  
 30 in visual dubbing. Moreover, they require a large amount of  
 31 diverse video footage to train.

## 32 2.2. Talking Heads

33 With the recent advancement in deep learning, the problem  
 34 of talking head generation has enjoyed great success. Talking  
 35 head generators synthesize an audio-synchronized video given  
 36 a few facial images for identity using some driving modality,  
 37 like audio, text or 3DMM parameters. Talking head genera-  
 38 tion can be subject dependent or independent. Subject depen-  
 39 dent methods [15, 16, 17, 18, 19, 20] learn an identity spe-  
 40 cific embedding using a large subject specific dataset. Using  
 41 this learned embedding they create photorealistic talking heads

of the subject. Nagano et al. [15] and [19] proposed real-time  
 42 talking head generation techniques for mobile devices. Nagano et al. [15] designed a network to use facial action units for talk-  
 43 ing heads generation, whereas [19] suggested to use two stage  
 44 layered network and reference landmarks. Subject independent  
 45 methods, also known as few shot generation methods, can work  
 46 on any identity. Zhou et al. [21] shows pose controllable talking  
 47 heads for any identity. Han et al. [22] can use either text or au-  
 48 dio modalities for realistic talking head generation. Wang et al.  
 49 [23] and Zakharov et al. [24] use facial keypoints to predict flow  
 50 to drive a source image using a driving video. Despite these re-  
 51 cent breakthroughs, talking head methods cannot be used for  
 52 dubbing real-world visual content as subject dependent meth-  
 53 ods would require many hours of video footage for target actor  
 54 which would be impractical in most cases. On the other hand,  
 55 subject independent methods result in outputs with unnatural  
 56 head movements and often lose the identity of the actor as they  
 57 generate over-smoothed faces.

## 58 2.3. Visual Dubbing

59 Based on the modalities used from the source, visual dubbing  
 60 can be: audio or expression based. Audio-based techniques cor-  
 61 rect the lip motion of the target to match the source audio. Of-  
 62 ten these are referred as lip synchronization techniques. Suwa-  
 63 janakorn et al. [25] trained a recurrent neural network to predict  
 64 mouth shape from raw audio. Based on the generated mouth  
 65 shape, a realistic texture of mouth was created and composited  
 66 on target frame. However, they require very large amount of  
 67 training video, for example, they needed 17 hours of Obama  
 68 speech footage, making this method impractical in most cases.  
 69 Audio-based methods [26, 27, 28] can generalize for any iden-  
 70 tity and voice. Chung et al. [26] jointly trained for audio and  
 71 video correlation, and they were able to efficiently sync static  
 72 image with audio but their approach fails for video sequences.  
 73 Prajwal et al. [27] were the first to propose the use of a powerful  
 74 lip-sync discriminator with which they achieved good accuracy  
 75 in syncing an arbitrary video with audio. However, both ap-  
 76 proaches suffer from blurring of mouth and inconsistent recon-  
 77 struction of teeth. In comparison, our method produces realistic  
 78 teeth and has no blurring.

79 Unlike the above methods which directly morph lips based on  
 80 audio, Xie et al. [28] proposed to use a two-stage framework.

1 In the first stage, they train a generator to predict reference face  
 2 landmarks based on audio. In the second stage, reference landmarks  
 3 along with the target frame are used to generate the final  
 4 output. A problem with their approach is that the generated  
 5 reference landmarks are not always accurate. Their approach  
 6 also leaks identity. The fundamental problem with audio-based  
 7 methods is that speech acoustics cannot represent the full range  
 8 of realistic facial expressions [29] due to which they cannot re-  
 9 create all possible expressions, say, those present in the actor  
 10 video input.

11 Expression-based techniques drive lips in a target video (actor)  
 12 using expressions from a source video (dubber). Garrido  
 13 et al. [30] capture facial performance of source and target. They  
 14 transfer blendshape weights of the mouth from source to target  
 15 directly. Later, they detect bilabial consonants from audio  
 16 track and then manually enforce opening and closing of mouth.  
 17 Finally they render the mouth and composite it on the target  
 18 frame. Their approach fails to preserve features of the actor  
 19 while transferring the expression from the dubber. Also, their  
 20 synthesized inner mouth has observable artifacts and does not  
 21 look realistic. Kim et al. [31] proposed a style preserving visual  
 22 dubbing approach. They train a style translation network  
 23 to learn the mapping of 3DMM expression parameters from  
 24 source to target. They use a neural face renderer to synthe-  
 25 size a realistic video portrait based on synthesized expression  
 26 parameters. Their result preserves the style of target mouth.  
 27 However, their approach ends up manipulating other parts of the  
 28 face especially the eyes. Successful isolation of expression pa-  
 29 rameters for monocular face reconstruction is still an unsolved  
 30 problem which is being extensively investigated. In our visual  
 31 dubbing pipeline, We do the expression transfer in 2D image  
 32 space. Suwajanakorn et al. [25] have shown that if source and  
 33 target are from the same identity, then seemingly realistic ex-  
 34 pression can be created. Inspired by this, we employ a two pass  
 35 face-swapping strategy. Our method, while preserving the tar-  
 36 get identity, accurately transfers lip and mouth movements from  
 37 dubber to actor. Unlike other known methods, our approach  
 38 also requires much less data and can work on input videos of  
 39 only a few seconds.

### 40 3. Method

41 Our goal is to create a video where an actor really looks like  
 42 speaking in a different language. We take as input two videos  
 43  $A$  and  $D$ :  $A$  is the video of an actor uttering some speech in a  
 44 language  $L_A$  and  $D$  is a video of a dubber that utters the same  
 45 speech in a different language  $L_D$ . The output is a video  $R$  of  
 46 the actor that appears to be uttering the speech in language  $L_D$ ,  
 47 while at the same time maintaining all other visual aspects from  
 48 the original video: not only the background must remain the  
 49 same, but it is important that parts of the face, other than lip  
 50 and mouth, for example the eye region must be kept intact.

51 To formally express this process we parameterize the videos  
 52  $V(\cdot)$  by the following parameters: (1) pose  $p$  (the rigid trans-  
 53 formation of the entire head), (2) identity  $id$  (actor or dubber),  
 54 (3) facial expression  $x_f$  (of the actor or of the dubber, excluding  
 55 mouth), (4) mouth configuration/expression  $x_m$  (of the actor or

56 of the dubber), (5) background  $b$  (actor video, dubber video or  
 57 black background) and (6) resolution (high or low). For a com-  
 58 pact notation, the values of these parameters are  $a$  for actor,  $d$   
 59 for dubber,  $\uparrow$  for high resolution,  $\downarrow$  for low resolution and  $k$  for  
 60 videos with a black background.

61 We introduce the resolution as part of the parameter list be-  
 62 cause practical dubbing methods should be able to operate on  
 63 videos of high resolution (1080p or more). Currently, many of  
 64 the visual dubbing methods that are proposed operate at much  
 65 lower resolution. We also separate the facial expression from  
 66 the mouth expression because in a practical commercial con-  
 67 text, it is important to maximize the screen real-estate of the  
 68 original footage, i.e., all other than the mouth region should be  
 69 kept unchanged from the original video. Therefore:

$$70 \text{we have } A_0 = V(p[a], id[a], x_f[a], x_m[a], b[a], \uparrow),$$

$$71 D_0 = V(p[d], id[d], x_f[d], x_m[d], b[d], \uparrow)$$

$$72 \text{and we want } R = V(p[a], id[a], x_f[a], x_m[d], b[a], \uparrow)$$

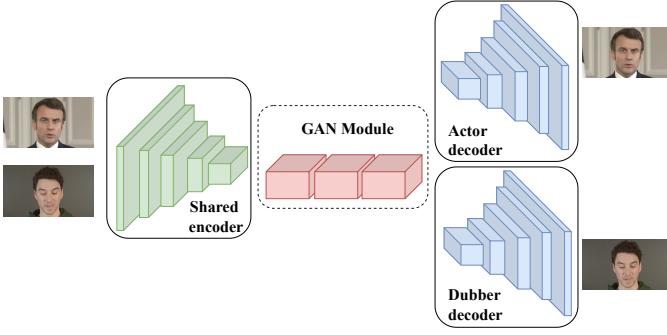
73 The biggest challenge in all visual dubbing methods is how  
 74 to disentangle and synthesize these parameters. In our method  
 75 we do not aim at separating them in one end to end neural  
 76 network; rather we apply incrementally different disentangling  
 77 techniques for each parameter.

78 Figure 1 shows the three main steps of our method: (1) *pose*  
 79 *alignment* where we register the actor and dubber poses, (2)  
 80 *identity transfer* where we synthesize the actor with the ex-  
 81 pression of the dubber and (3) a *video reassembly* step that im-  
 82 proves and assembles the final result.

#### 83 3.1. Pose Alignment

84 We start by reconciling the pose of the two input videos by  
 85 rendering them both in the same pose, the pose of the actor,  
 86 using monocular 3D reconstruction of faces. Various methods  
 87 have been proposed for 3D facial reconstruction using either  
 88 parametric models or regression based face trackers. Methods  
 89 based on parametric reconstruction [32, 33, 34] provide high  
 90 reconstruction accuracy (NoW Challenge [35]), however they  
 91 don't reconstruct the inner region of the mouth, which is critical  
 92 for our application. We would need an extra step for predicting  
 93 and reconstructing the proxy teeth, and blend them back with  
 94 reconstructed faces. However, unless the reconstructed proxy is  
 95 accurate it will lead to uncanny artifacts [30]. Therefore we use  
 96 the PRNet regression-based face reconstruction method [36].  
 97 Using PRNet we obtain  $V(p[a], id[a], x_f[a], x_m[a], b[k], \downarrow)$  and  
 98  $V(p[d], id[d], x_f[d], x_m[d], b[k], \downarrow)$ . PRNet provides a rigid 3D  
 99 transformation to a canonical front facing pose. We use these  
 100 transformations in order to transform the reconstructed face of  
 101 the dubber in the same pose as the actor. Even though these  
 102 videos are rendered at the same resolution as the input video,  
 103 because of the resampling introduced by the 3D reconstruction  
 104 and rendering, we technically consider them as low resolution.

105 The 3D reconstruction being carried out frame by frame  
 106 could introduce temporal jitter. So, we apply a correction step  
 107 of temporal smoothing (moving average of 5 frames) on the po-  
 108 sition of the mesh vertices. As the illumination conditions in  
 109 the actor and dubber videos are likely to be vastly different, we  
 110 apply a tonal correction step by shifting the color space [37] of



**Fig. 2.** Our stylized identity transfer network is composed of a shared (actor and dubber) encoder, adapted GAN module, and two decoders (specialized for the actor or dubber).

1 the dubber video to match that of the actor video. Doing so,  
2 also transforms the skin tone of the dubber to that of the actor,  
3 which is beneficial in later stages.

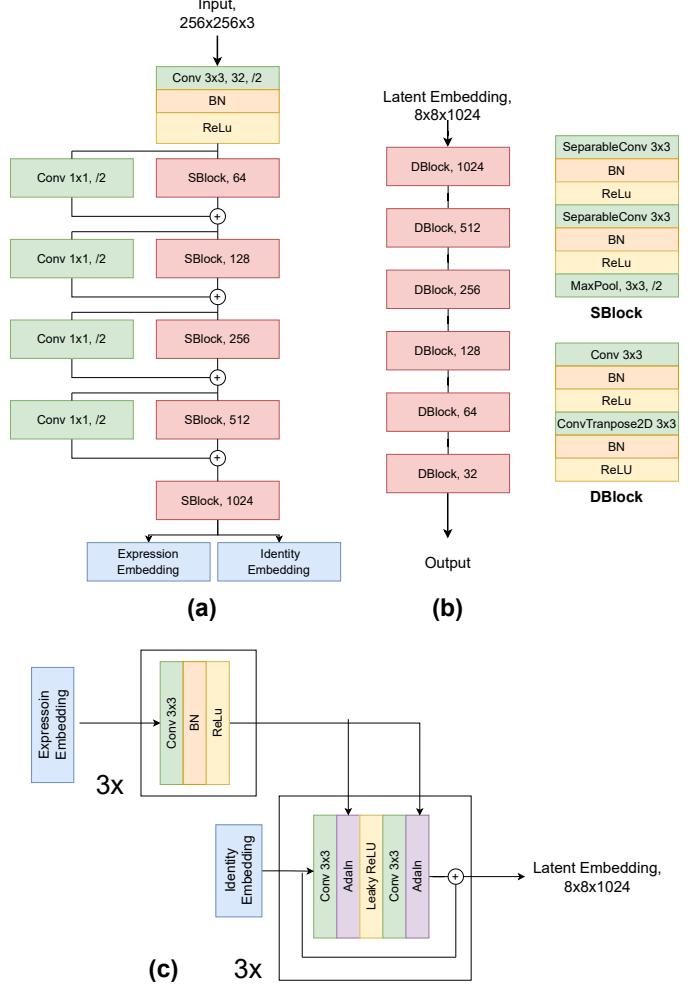
### 4 3.2. Identity Transfer

5 Once the videos are aligned, we change the identity of the  
6 dubber into the identity of the actor using our stylized identity  
7 transfer network to obtain  $V(p[a], id[a], x_f[d], x_m[d], b[k], \downarrow)$ . We  
8 designed a Y-shaped network (Figure 2): single encoder and  
9 dual decoder similar to the method of Naruniec et al. [38]. Our  
10 goal is to create a network which accurately learns an embedding  
11 from a relatively small dataset to synthesize identity transferred faces without changing expression of the target identity.  
12 For this we need to decouple facial attribute parameters: identity,  
13 pose, and expression. Since, we explicitly rigid align the  
14 pose of the actor and dubber, our model only needs to learn  
15 to decouple identity and expression in latent space. Recently,  
16 StyleGAN [39] has shown unparalleled decoupling of facial pa-  
17 rameters. We create our encoder-decoder based on the Xception  
18 network [40] and include a GAN module inspired from Style-  
19 Gan for disentanglement of parameters. Figure 3 shows the full  
20 details of this architecture.

21 Our encoder uses depthwise separable convolution layers like  
22 the Xception network. Depthwise separable convolution re-  
23 quires less computational operations and also they provide a  
24 dedicated feature pathway for features of high importance. The  
25 encoder takes an input image of size  $256 \times 256 \times 3$  and cal-  
26 culates a feature map starting from 32 to 1024. The encoder  
27 provides two embeddings: one for expression ( $\epsilon_S$ ) and one for  
28 identity ( $\epsilon_I$ ), each of size  $8 \times 8 \times 1024$ . Each decoder takes input  
29 map of size  $8 \times 8 \times 1024$  and matches corresponding feature  
30 level of the encoder.

31 GAN module first takes expression embedding  $\epsilon_S$  and passes  
32 it through a mapping network of 3 convolutions blocks, each  
33 block consisting of convolution, batch norm and leaky relu  
34 module. The generated embedding along with identity embed-  
35 ding  $\epsilon_I$  is passed further through three consecutive blocks, each  
36 block having two AdaIN layers. The formulation of AdaIN task  
37 can be written as:

$$AdaIN(\epsilon_I, \epsilon_S) = \sigma(\epsilon_S) \frac{\epsilon_I - \mu(\epsilon_I)}{\sigma(\epsilon_I)} + \mu(\epsilon_S) \quad (1)$$



**Fig. 3.** Detailed architecture of identity transfer network. (a) share encoder (b) decoder (c) gan module

39 Here  $\mu$  and  $\sigma$  are the channel wise mean and standard devi-  
40 ation operation. We jointly train the shared encoder and the two  
41 decoders during each iteration.

42 We pre-train our network on the large CelebAHQ dataset [41]  
43 for face reconstruction. Pre-training on CelebA helps our  
44 encoder and AdaIN blocks to effectively decouple embed-  
45 ding for diverse identity and expression. It also helps our  
46 model to converge faster. For subject dependent training we  
47 only load weights of encoder and AdaIN block. Decoders  
48 start their learning from scratch. This strategy of training  
49 a shared encoder with multiple identities for face swapping  
50 has been shown to be effective in generating diverse expres-  
51 sions [38]. To obtain the best results, we train our network on  
52 the original videos  $A_0$  and  $D_0$ , and also on the rendered videos  
53 of the actor  $V(p[a], id[a], x_f[a], x_m[a], b[k], \downarrow)$  and aligned dub-  
54 ber  $V(p[a], id[d], x_f[d], x_m[d], b[k], \downarrow)$ . Even though the rendered  
55 videos are of a lower quality than the original videos, the black  
56 background helps the training to converge faster and with fewer  
57 input frames (the network focuses more on the face and less  
58 on the background). Faces in the frames are detected cropped  
59 and aligned just like typical face recognition pipeline for the  
60 training. For losses, we employ SSIM (Structural Similarity In-

*dex Metric*) [42] as facial reconstruction loss. We multiply the input  $I_{in}$  and output image  $I_{out}$  with the face segmentation mask  $\mathbf{m}_f$ . Our facial reconstruction loss therefore looks like:

$$\mathcal{L}_{recon} = SSIM(\mathbf{m}_f \odot I_{out}, \mathbf{m}_f \odot I_{in})$$

Here  $\odot$  represents element wise multiplication. We also penalize the mouth generation using  $\mathcal{L}_2$  pixel-wise reconstruction loss. We use mouth mask  $\mathbf{m}_m$  for the mouth segmentation.

$$\mathcal{L}_{mouth} = \|\mathbf{m}_m \odot I_{out}, \mathbf{m}_m \odot I_{in}\|_2$$

Thus the loss for each common-encoder and decoder pair would be:

$$\mathcal{L}_{actor} = \lambda_1 \cdot \mathcal{L}_{recon} + \lambda_2 \cdot \mathcal{L}_{mouth}$$

$$\mathcal{L}_{dubber} = \lambda_1 \cdot \mathcal{L}_{recon} + \lambda_2 \cdot \mathcal{L}_{mouth}$$

Therefore, our total training loss in the network is:

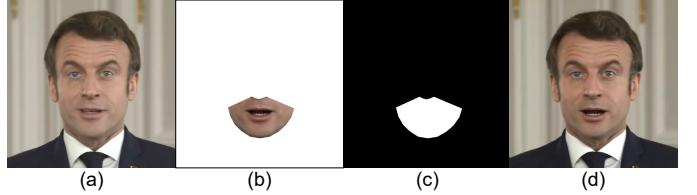
$$\mathcal{L}_{total} = \mathcal{L}_{actor} + \mathcal{L}_{dubber}$$

For the training we use  $\lambda_1 = 4$ ,  $\lambda_2 = 2$ . We train our network for 60K iterations, with each original and synthesized dataset, with learning rate  $lr = 0.0001$ , and it takes about 3 days on a single Nvidia v100 GPU to train. Note that, since our machine has multi-threading issues at that time, causing dataloading bottlenecks, training time may significantly differ if multi-threading was properly supported. During the inference time, we load the weights of shared encoder and actor decoder. We feed the pose aligned dubber video  $V(p[a], id[d], x_f[d], x_m[d], b[k], \downarrow)$  to the network to synthesize the reenacted video  $V(p[a], id[a], x_f[d], x_m[d], b[k], \downarrow)$  because of which the output in first pass has a black background.

### 3.3. Video Reassembly

The last step is to superimpose the synthesized part of the face with the original video. As described in Sec. 3.1 the dubber video is rendered in the actor pose using PRNet. PRNet provides the necessary rigid 3D transformations needed for this operation, but unfortunately, the pose estimation is noisy and thus the resulting video can be jittery. Therefore we apply spatio-temporal landmark smoothing to stabilize the video (Section 3.3.1). We further apply a super-resolution step to bring the video to the same resolution as the input (Section 3.3.2) resulting in  $V(p[a], id[a], x_f[d], x_m[d], b[k], \uparrow)$ . What is left is to cut a mask around the mouth region and composite [43] it with the original actor footage thus obtaining  $V(p[a], id[a], x_f[a], x_m[d], b[a], \uparrow)$ .

Unfortunately, a simple compositing operation of the mouth region can result in uncanny effects because of positional errors as can be seen in the accompanying video. The positional error occurs when the position of the synthesized mouth doesn't match with the exact position of mouth in the actor. This is because, the 3d rigid transformation from PRNet is sometimes noisy as a result of which the mouth position of pose aligned dubber and actor will differ. The same noisy dubber image when used for synthesizing expression results in



**Fig. 4. Composting of the expression.** (a) actor frame (b) synthesized expression (c) mask used (d) final result

incorrect mouth position. An elegant solution to this problem is to use a second pass and recycle the result through the identity transfer step once more with the original  $A_0$  and with  $V(p[a], id[a], x_f[a], x_m[d], b[a], \uparrow)$  replacing the dubbing video. This is possible because both these videos are on the same pose.

The resulting output is a convincing dubbing sequence of the actor that retains the content of the original footage everywhere except the mouth region that is lip-synced to the new speech.

This second identity transfer pass as described above is a crucial correction step in our process. This is because of the following. During the first identity transfer the goal is to change the dubber video to have the actor's identity retaining the dubber's facial expressions. Given the small amount of data and especially when there is vast difference in facial features of the dubber and actor, some mix of features is unavoidable. The cut and paste of the mouth region can introduce further positional errors resulting in some uncanny effects. This second pass elegantly corrects these problems using the original actor video.

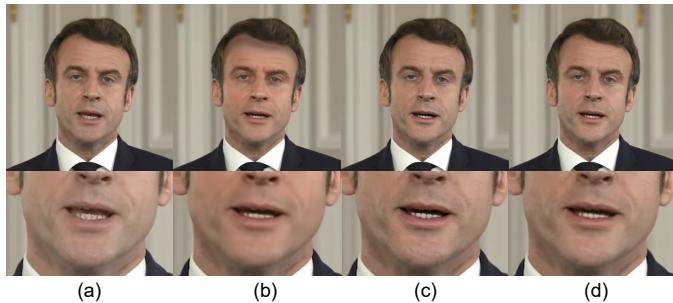
Figure 4 illustrates the composting of the synthesized mouth. Figure 4(a) shows the original actor frame. Figure 4(b) shows the synthesized facial expression. Figure 4(c) shows the mask used for blending and Figure 4(d) shows the final result.

#### 3.3.1. Spatio-Temporal Landmark Stabilization

The pose estimation provided by the monocular 3D shape estimation is fairly noisy thus resulting in a jittery video sequence. We extract 2D face landmarks using DLib [44] for the reenacted video  $V(p[a], id[a], x_f[a], x_m[d], b[k], \downarrow)$ , and temporally smooth their respective positions. We then compute a 2D rigid alignment to align the reenacted video landmarks to the smoothed landmarks (applying that transformation to the video). The most difficult challenge in temporal stabilization is the balance between jitter and lag [45]: during the parts of the video where the scene is mostly static the jittering artifact is more prominent and thus a larger smoothing window needs to be applied while during the parts where there is fast movement, too much smoothing might result in video lag. To balance these we employ the 1 Euro filter proposed by Casiez et al. [45].

#### 3.3.2. Finely Tuned Super Resolution

We use the network of Yang et al. [46] to do a super resolution of  $512 \times 512$  from our synthesized output of  $256 \times 256$ . One challenge with any super-resolution method is that it will always make the result visually sharper and clearer. However, given a video input, due to motion, focusing and other reasons, the input footage might not always be sharp and the super-resolution image might not, in fact, match the quality of the



**Fig. 5. Finely Tuned Super Resolution.** (a) input frame (b) output before super resolution (c) super resolution using only Yang et al. [46] (d) super resolution using Yang et al. [46] and our data augmentation.

1 input. We address this using data augmentation. We take the  
2 high-resolution video input and create a low-resolution version  
3 by blurring it. We blur the video in two different ways: 1) using  
4 the gaussian blurring from the above paper, 2) we self-swap  
5 the original actor video(passing the actor image from shared  
6 encoder-actor decoder pair) using our trained identity transfer  
7 network. We use these pairs of images of the actor to further  
8 train the super-resolution network. We finetune the model for  
9 1000 iterations. It takes about 35 minutes for finetuning on sin-  
10 ggle Nvidia Tesla v100 GPU. During finetuning we change fol-  
11 lowing parameters compared to the ones in the original paper:  
12 learning rate  $lr = 0.0002$ ,  $\alpha = 1.0$  and  $\beta = 1.0$  This fine tuning  
13 step yielded overall better results.

14 We illustrate this in Figure 5. Figure 5(a) shows the input  
15 frame. Figure 5(b) shows the output before the super resolution,  
16 where it is clear that the visual quality is lower. We purpose-  
17 fully chose a frame where the input frame and the output frame  
18 happen to have similar mouth opening. Figure 5(c) shows the  
19 frame after using only Yang et al. [46]. Figure 5(d) shows the  
20 final output frame using Yang et al. [46] with our data augmen-  
21 tation. The final result matches the quality of the input frame  
22 much better: it is not as blurry as the output without super res-  
23 olution but not as sharp as the super resolution without our data  
24 augmentation.

## 25 4. Results

26 We tested our method on over a dozen production quality  
27 dubbing scenarios provided by our industry collaborators. Be-  
28 cause of copyright reasons, here, we can only show results on  
29 copyright free YouTube video clips. For original videos (i.e. ac-  
30 tors) we selected a few clips of speeches of international public  
31 figures and the dubbing was done by professionals. These dub-  
32 bers have training in traditional dubbing, but no additional train-  
33 ing was done for these dubbing sessions other than mentioning  
34 that in addition to the sound recording there is a camera that  
35 records their facial expression. In fact, as you can see in the ac-  
36 companying video, the dubbers actually keep their heads quite  
37 down, making it rather challenging for face transfer. In addition  
38 to these sequences we also extracted a few video sequences  
39 from the supplementary material submitted to the ACM digital  
40 library of Kim et al. [31] and compared our results to theirs. All

41 the results generated by us are available as a video in the supple-  
42 mental material. We put all the necessary videos (actor, dubber  
43 and result) at full resolution and length. Comparative results as  
44 well as ablation studies are included in the supplemental video.

## 45 5. Evaluation

46 Using our selected clips of public figures, we evaluate our  
47 method against the recent state-of-the-art methods - audio based  
48 lip-sync [27], talking head generation [47] and face reenact-  
49 ment [9]. For visual dubbing methods, we found it challenging  
50 to evaluate our method against other methods. There are no uni-  
51 form datasets available targeted to this problem, and neither is  
52 the source code of these methods. Still from the recent video  
53 dubbing methods, we cropped the actor and dubber sequences  
54 from the online video presentation of Kim et al. [31] and we  
55 processed them with our pipeline. This comparison is not an  
56 apple to apple comparison because we do not have the same  
57 training videos in terms of both length and resolution. Never-  
58 theless, even with much less training data (185 to 300 frames  
59 for our approach, 3000 to 9000 for Kim et al. [31]), our results  
60 are comparable and in some respects better than those of Kim  
61 et al. [31].

62 We also compared our results to traditional dubbing through  
63 a user study where we ask a few qualitative questions related  
64 to the lip synchronization with the audio, visual quality of the  
65 face, and blind selection of preferred video out of our results  
66 and traditional dubbing.

### 67 5.1. Quantitative Evaluation

68 For quantitative comparisons, we evaluate lip-sync accuracy  
69 and visual quality of the generated results. We use the Land-  
70 mark Distance (LMD) metric proposed by Chen et al. [48].  
71 LMD calculates normalized euclidean distance between land-  
72 marks of the mouth for the generated result and the dubber  
73 on per frame basis. Our use of LMD is justified because  
74 of the availability of ground-truth expression from the paired  
75 actor-dubber sequence. Table 1 shows LMD score on our  
76 dataset between our methods and various state-of-the-art meth-  
77 ods. We also employ Learned Perceptual Image Patch Simi-  
78 larity (LPIPS [49]), Frechet Inception Distance (FID [50]) and  
79 Peak Signal to Noise Ratio (PSNR) metrics to assess the overall  
80 visual quality of the generated result compared to the original  
81 actor video. Table 2 shows the result of the visual quality eval-  
82 uation.

83 For the videos from Kim et al. [31], we calculate lip-sync  
84 accuracy as well as visual metrics (Table 3). Since the cropped  
85 videos were of low resolution, visual metrics comparison in this  
86 scenario might not be completely accurate.

87 Our method largely outperforms all methods in FID and  
88 PSNR, and it outperforms FOMM and MakeItTalk in LPIPS.  
89 When compared to Wav2Lip using the LPIPS metric as well as  
90 when using the LMD metric, the values are similar. However, a  
91 major advantage of our method is that it uses much less training  
92 data compared to all the above methods and it is specifically de-  
93 signed to keep the original video intact in the upper face region,  
94 which if changed can lead to uncanny effects [51].

**Table 1. Landmark Distance (LMD) metric (lower is better) of mouth expression between our generated result and the dubber video computed on our dataset.**

| Dataset   | Ours        | Wav2Lip | FOMM | MakeItTalk  |
|-----------|-------------|---------|------|-------------|
| Macron    | <b>0.78</b> | 0.93    | 0.81 | 0.79        |
| Kovind EN | <b>0.68</b> | 0.72    | 0.69 | 0.75        |
| Kovind FR | 0.73        | 0.74    | 0.79 | <b>0.67</b> |

**Table 2. Visual quality evaluation (LIPS - lower is better, FID - lower is better, PSNR - higher is better) of results generated using other methods compared to ours.**

| Metrics   |            |             |             |              |
|-----------|------------|-------------|-------------|--------------|
| Dataset   | Methods    | LPIPS ↓     | FID ↓       | PSNR ↑       |
| Macron    | Ours       | <b>0.02</b> | <b>1.04</b> | <b>37.13</b> |
|           | Wav2Lip    | 0.04        | 4.77        | 32.30        |
|           | FOMM       | 0.13        | 11.50       | 16.01        |
|           | MakeItTalk | 0.12        | 16.45       | 16.73        |
| Kovind En | Ours       | <b>0.04</b> | <b>5.30</b> | 26.12        |
|           | Wav2Lip    | 0.05        | 11.55       | <b>26.15</b> |
|           | FOMM       | 0.12        | 60.60       | 19.58        |
|           | MakeItTalk | 0.11        | 90.99       | 20.65        |
| Kovind FR | Ours       | <b>0.04</b> | <b>5.51</b> | <b>26.14</b> |
|           | Wav2Lip    | 0.05        | 11.63       | 26.09        |
|           | FOMM       | 0.12        | 52.31       | 19.48        |
|           | MakeItTalk | 0.12        | 76.41       | 20.77        |

## 5.2. User Study

The goal of the visual dubbing process is, ultimately, to produce video content that yields a superior experience to a viewer. Obtaining real-world opinions is very important since human eyes are the expert discriminator for assessing any audio-visual mismatch and temporal artifact. Accordingly, we carried out a user study that compares our visual dubbing method to the current dubbing method used in the industry which is overlaying the audio content. Using three of our result videos, we showed our participants the result of our method and the result of a professionally produced (sound only) dubbing sequence, and asked a few questions regarding the videos. Our study has 23 participants. The questionnaire they answered is provided in the supplementary material and the three videos shown correspond to the results 1-3 in our supplementary material results video. We summarize the findings in Table 4. A vast majority (69.6% to 87.0%) of the participants found the lip motions in our results to be synchronized with the audio. Moreover, when asked about the overall visual quality of the face in our results, 60.8%

to 82.6% of the participants said our results are good or excellent. Finally, when presented with clips which were traditionally dubbed and our visual dubbing results, a majority (65.2% to 91.3%) preferred visual dubbing results.

**Table 4. User study statistics (in percentage).** For “Lip Sync Acc.” we asked the participants if the lips motion is synchronized with the audio (Strongly agree, Agree, Neutral, Disagree, Strongly Disagree) and here we report “Strongly agree”+“Agree”. For “Visual Quality” we asked the participants to rate the overall visual quality (Excellent, Good, Fair, Poor, Very poor) and here we report “Excellent”+“Good”. “Preference” reports which clip the participant preferred. The values do not sum to 100% as there was a “No preference” option.

| Dataset   | Lip Sync Acc. | Visual Quality | Preference    |                    |
|-----------|---------------|----------------|---------------|--------------------|
|           |               |                | Visual Dubbed | Traditional Dubbed |
| Macron    | 78.2%         | 82.6%          | 91.3%         | 4.3%               |
| Kovind EN | 69.6%         | 60.8%          | 65.2%         | 17.4%              |
| Kovind FR | 87.0%         | 73.9%          | 82.6%         | 8.7%               |

## 6. Discussion

For the spatio-temporal stabilization step, even if the mouth alignment is not completely perfect after the stabilization, the second pass through the stylized identity transfer network fine tunes the alignment of the mouth and face very well. We also tested doing a 2D alignment of the reenacted video toward the original video of the actor. That proved to introduce some more jittering as the chin and mouth movements of the original actor’s video are not the same as the ones of the reenacted video.

Our second identity transfer pass elegantly solves the uncanny effect resulting from first cut and paste. However, it slightly diminishes the expression dynamics in the final generated output.

**Limitations.** Our most important limitation stems from the requirement that we composite only the lower part of the face resulting in occasional artifacts. Our strategy to repeat the face swap process improves the results, but not in all cases. More specifically, in frames where the pose of the actor frame has the jaw open while the dubber has it closed, the pasting results in a double chin artifact that can be seen in the video comparison with Kim et al. [31]. There are also special cases when moving wrinkle artifact is observed with actor having strong nasolabial folds. This occurs when the part of the nasolabial fold, constructed in the synthesized mouth, does not completely align with the one in upper part of the face.

Another limitation comes from the automatic landmark identification. Sometimes we had to manually adjust the landmarks of the actor or dubber. For example, the Macron and Merkel dubbing worked fine with the automatic landmarks, but the Kovind dubbing required the adjustment of landmarks for 200 out of 1185 frames of the dubber. This is solely because of the landmark detector of DLib [44]. Our method is independent of that detector and can benefit from more precise landmark detection methods, present or future.

**Table 3. Comparison with Kim et al. [31]. LMD - lower is better, LIPS - lower is better, FID - lower is better, PSNR - higher is better.**

| Metrics   |            |             |             |              |
|-----------|------------|-------------|-------------|--------------|
| Dataset   | Methods    | LMD ↓       | LPIPS ↓     | FID ↓        |
| Obama     | Ours       | <b>0.56</b> | 0.02        | 5.44         |
|           | Kim [2019] | 0.67        | <b>0.02</b> | <b>2.74</b>  |
| E. and J. | Ours       | <b>1.16</b> | <b>0.03</b> | <b>22.39</b> |
|           | Kim [2019] | 1.24        | 0.06        | 24.39        |
| F. and K. | Ours       | <b>1.16</b> | <b>0.17</b> | <b>31.50</b> |
|           | Kim [2019] | 1.52        | 0.18        | 36.45        |

1 *Ethics considerations.* Our method, like dozens of other deep  
 2 fake methods can be misused for malicious purposes such as  
 3 misrepresenting individual and spreading misinformation. We  
 4 are mitigating these risks by only providing the code to profes-  
 5 sional dubbing companies that have a transparent professional  
 6 conduct.

## 7 7. Ablation Studies

8 In the accompanying video we have included a section with  
 9 four ablation studies that we performed in order to demon-  
 10 strate the necessity of individual steps of our method. In the  
 11 first one, we look at the impact of the second identity trans-  
 12 fer pass. As can be seen in the video, without this pass the  
 13 result exhibits various temporal artifacts introduced when past-  
 14 ing only the mouth region and sometimes further exacerbated  
 15 by the Poisson blending step. The second ablation study high-  
 16 lights the necessity of the temporal stabilization steps. In the  
 17 third ablation study, we vary the footage available for training to  
 18 demonstrate our claim of not requiring large training data. We  
 19 compare the original result that was trained on 30 seconds to a  
 20 sub-clip trained only on 5 seconds. As we can see, in general,  
 21 there are only minor visual changes between them illustrating  
 22 the fact that our method works well even on short clips. Finally,  
 23 we show the impact of the pre-training and AdaIN blocks in the  
 24 stylized identity transfer network. For short clips, especially,  
 25 where the lack of training data is an issue, this step is very im-  
 26 portant.

## 27 8. Conclusion

28 In this work we present a new visual dubbing pipeline where  
 29 the main design objectives, raised from typical industry scenar-  
 30 os, are the preservation of the rest of the face expression from  
 31 the original actor footage, the ability to deliver good results on  
 32 short video clips, and maintaining the resolution and general  
 33 visual quality of the input. The pipeline design evolved over a  
 34 continual improvement process in which our industry collabo-  
 35 rators provided us actor (real TV ads) and dubber videos, and  
 36 feedback on output from our pipeline that drove the changes in  
 37 the pipeline steps in an iterative fashion.

38 Our pipeline contains several novel ideas and techniques such  
 39 as a two-pass identity transfer, temporal stabilization, data aug-  
 40mentation for both identity transfer as well as fine-tuned super  
 41 resolution. The pipeline enables us to disentangle the differ-  
 42 ent parameters in visual dubbing using a step-wise approach,  
 43 something which is difficult to achieve using end-to-end trained  
 44 networks.

45 We evaluate our method qualitatively as well as quantita-  
 46 tively on professionally produced dubbing clips showing the  
 47 real-world potential of our pipeline. Our results are convincing  
 48 and confirmed by a user study focused on the overall experience  
 49 of the dubbing results.

## 50 Acknowledgments

51 We acknowledge the support of the Natural Sciences and  
 52 Engineering Research Council of Canada (NSERC). This work

53 was supported by Mitacs through the Mitacs Accelerate pro-  
 54 gram. We would also like to thank AudioZ for facilitating the  
 55 data capture and providing various support for this project. We  
 56 would like to thank the anonymous reviewers for their vital  
 57 feedback.

## 58 References

- [1] Arik, SO, Chen, J, Peng, K, Ping, W, Zhou, Y. Neural voice cloning with a few samples. In: NIPS. Red Hook, NY, USA: Curran Associates Inc.; 2018, p. 10040–10050.
- [2] Yang, Y, Shillingford, B, Assael, YM, Wang, M, Liu, W, Chen, Y, et al. Large-scale multilingual audio visual dubbing. CoRR 2020;abs/2011.03530. URL: <https://arxiv.org/abs/2011.03530>. arXiv:2011.03530.
- [3] Mukherjee, S. Now the voice dubbing industry is being disrupted by ai. <https://analyticsindiamag.com/now-the-voice-dubbing-industry-is-being-disrupted-by-ai/>; 2022.
- [4] Begau, A, Klatt, LI, Wascher, E, Schneider, D, Getzmann, S. Do congruent lip movements facilitate speech processing in a dynamic audiovisual multi-talker scenario? an erp study with older and younger adults. Behavioural Brain Research 2021;412:113436.
- [5] Zhu, JY, Park, T, Isola, P, Efros, AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE/CVF ICCV. Los Alamitos, USA: IEEE; 2017, p. 2242–2251.
- [6] Isola, P, Zhu, JY, Zhou, T, Efros, AA. Image-to-image translation with conditional adversarial networks. In: CVPR. Los Alamitos, USA: IEEE/CVF; 2017, p. 5967–5976.
- [7] Nirkin, Y, Keller, Y, Hassner, T. Fsgan: Subject agnostic face swapping and reenactment. In: IEEE/CVF ICCV. Los Alamitos, USA: IEEE; 2019, p. 7183–7192.
- [8] Wiles, O, Koepke, AS, Zisserman, A. X2face: A network for controlling face generation using images, audio, and pose codes. In: ECCV. Cham: Springer; 2018, p. 690–706.
- [9] Siarohin, A, Lathuilière, S, Tulyakov, S, Ricci, E, Sebe, N. First order motion model for image animation. In: Wallach, H, Larochelle, H, Beygelzimer, A, d’Alché-Buc, F, Fox, E, Garnett, R, editors. NIPS; vol. 32. Vancouver, BC, Canada: Curran Associates, Inc.; 2019.
- [10] Wang, TC, Liu, MY, Tao, A, Liu, G, Kautz, J, Catanzaro, B. Few-shot video-to-video synthesis. arXiv preprint arXiv:191012713 2019;.
- [11] Blanz, V, Vetter, T. A morphable model for the synthesis of 3d faces. In: ACM SIGGRAPH. SIGGRAPH ’99; USA: ACM. ISBN 0201485605; 1999, p. 187–194.
- [12] Thies, J, Zollhofer, M, Stamminger, M, Theobalt, C, Nießner, M. Face2face: Real-time face capture and reenactment of rgb videos. In: IEEE CVPR. Las Vegas, USA: IEEE; 2016, p. 2387–2395.
- [13] Ma, L, Deng, Z. Real-time hierarchical facial performance capture. In: Proc. of ACM SIGGRAPH I3D. New York, USA: ACM. ISBN 9781450363105; 2019,.
- [14] Kim, H, Garrido, P, Tewari, A, Xu, W, Thies, J, Niessner, M, et al. Deep video portraits. ACM Transactions on Graphics (TOG) 2018;37(4):1–14.
- [15] Nagano, K, Seo, J, Xing, J, Wei, L, Li, Z, Saito, S, et al. pagan: real-time avatars using dynamic textures. ACM Trans Graph 2018;37(6):258–1.
- [16] Ji, X, Zhou, H, Wang, K, Wu, W, Loy, CC, Cao, X, et al. Audio-driven emotional video portraits. In: IEEE/CVF CVPR. Los Alamitos, CA, USA: IEEE Computer Society; 2021, p. 14080–14089.
- [17] Lu, Y, Chai, J, Cao, X. Live Speech Portraits: Real-time photorealistic talking-head animation. ACM Trans Graph 2021;40(6).
- [18] Thies, J, Elgarib, M, Tewari, A, Theobalt, C, Nießner, M. Neural voice puppetry: Audio-driven facial reenactment. In: ECCV. Cham: Springer; 2020, p. 716–731.
- [19] Zakharov, E, Ivakhnenko, A, Shysheya, A, Lempitsky, V. Fast bi-layer neural synthesis of one-shot realistic head avatars. In: European Conference on Computer Vision. Springer; 2020, p. 524–540.
- [20] Fried, O, Tewari, A, Zollhöfer, M, Finkelstein, A, Shechtman, E, Goldman, DB, et al. Text-based editing of talking-head video. ACM Trans Graph 2019;38(4):68:1–68:14.

[21] Zhou, H, Sun, Y, Wu, W, Loy, CC, Wang, X, Liu, Z. Pose-controllable talking face generation by implicitly modularized audio-visual representation. In: CVPR. Nashville, TN, USA: IEEE; 2021, p. 4174–4184.

[22] Han, L, Ren, J, Lee, HY, Barbieri, F, Olszewski, K, Minaee, S, et al. Show me what and tell me how: Video synthesis via multimodal conditioning. arXiv 2022;abs/2203.02573.

[23] Wang, TC, Mallya, A, Liu, MY. One-shot free-view neural talking-head synthesis for video conferencing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 10039–10049.

[24] Zakharov, E, Shysheya, A, Burkov, E, Lempitsky, V. Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9459–9468.

[25] Suwajanakorn, S, Seitz, SM, Kemelmacher-Shlizerman, I. Synthesizing obama: Learning lip sync from audio. ACM Trans Graph 2017;36(4).

[26] Chung, JS, Jamaludin, A, Zisserman, A. You said that? International Journal of Computer Vision 2017;127:1768–1779.

[27] Prajwal, KR, Mukhopadhyay, R, Namboodiri, VP, Jawahar, C. A lip sync expert is all you need for speech to lip generation in the wild. In: Proceedings of the 28th ACM International Conference on Multimedia. MM '20; New York, NY, USA: ACM. ISBN 9781450379885; 2020, p. 484–492.

[28] Xie, T, Liao, L, Bi, C, Tang, B, Yin, X, Yang, J, et al. Towards realistic visual dubbing with heterogeneous sources. In: Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event, China: ACM; 2021, p. 1739–1747.

[29] Yehia, H, Rubin, P, Vatikiotis-Bateson, E. Quantitative association of vocal-tract and facial behavior. Speech Communication 1998;26(1-2):23–43.

[30] Garrido, P, Valgaerts, L, Sarmadi, H, Steiner, I, Varanasi, K, Pérez, P, et al. Vdub: Modifying face video of actors for plausible visual alignment to a dubbed audio track. Comput Graph Forum 2015;34(2):193–204.

[31] Kim, H, Elgharib, M, Zollhöfer, M, Seidel, HP, Beeler, T, Richardt, C, et al. Neural style-preserving visual dubbing. ACM Trans Graph 2019;38(6):1–13.

[32] Deng, Y, Yang, J, Xu, S, Chen, D, Jia, Y, Tong, X. Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019, p. 0–.

[33] Guo, J, Zhu, X, Yang, Y, Yang, F, Lei, Z, Li, SZ. Towards fast, accurate and stable 3d dense face alignment. In: European Conference on Computer Vision. Springer; 2020, p. 152–168.

[34] Feng, Y, Feng, H, Black, MJ, Bolkart, T. Learning an animatable detailed 3d face model from in-the-wild images. ACM Transactions on Graphics (ToG) 2021;40(4):1–13.

[35] Sanyal, S, Bolkart, T, Feng, H, Black, M. Learning to regress 3D face shape and expression from an image without 3D supervision. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019, p. 7763–7772.

[36] Feng, Y, Wu, F, Shao, X, Wang, Y, Zhou, X. Joint 3d face reconstruction and dense alignment with position map regression network. In: Proceedings of the European conference on computer vision (ECCV). Cham: Springer; 2018, p. 534–551.

[37] Reinhard, E, Adhikmin, M, Gooch, B, Shirley, P. Color transfer between images. IEEE Computer graphics and applications 2001;21(5):34–41.

[38] Naruniec, J, Helmingler, L, Schroers, C, Weber, R. High-Resolution Neural Face Swapping for Visual Effects. Computer Graphics Forum 2020;39(4):173–184.

[39] Karras, T, Laine, S, Aila, T. A style-based generator architecture for generative adversarial networks. In: IEEE/CVF CVPR. Los Alamitos, USA: IEEE; 2019, p. 4401–4410.

[40] Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: CVPR. Los Alamitos, CA, USA: IEEE; 2017, p. 1800–1807.

[41] Karras, T, Laine, S, Aila, T. A style-based generator architecture for generative adversarial networks. In: IEEE/CVF CVPR. Los Alamitos, CA, USA: IEEE; 2019, p. 4396–4405.

[42] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 2004;13(4):600–612.

[43] Pérez, P, Gangnet, M, Blake, A. Poisson image editing. ACM Trans Graph 2003;22(3):313–318.

[44] King, DE. Dlib-ml: A machine learning toolkit. J Mach Learn Res 2009;10:1755–1758.

[45] Casiez, G, Roussel, N, Vogel, D. 1 € filter: A simple speed-based low-pass filter for noisy input in interactive systems. In: CHI'12, the 30th Conference on Human Factors in Computing Systems. CHI '12; New York, NY, USA: ACM. ISBN 9781450310154; 2012, p. 2527–2530.

[46] Yang, T, Ren, P, Xie, X, Zhang, L. Gan prior embedded network for blind face restoration in the wild. In: IEEE/CVF CVPR. Nashville, TN, USA: IEEE; 2021, p. 672–681.

[47] Zhou, Y, Han, X, Shechtman, E, Echevarria, J, Kalogerakis, E, Li, D. Makettalk: speaker-aware talking-head animation. ACM Transactions on Graphics (TOG) 2020;39(6):1–15.

[48] Chen, L, Li, Z, Maddox, RK, Duan, Z, Xu, C. Lip movements generation at a glance. In: ECCV. Cham: Springer; 2018, p. 520–535.

[49] Zhang, R, Isola, P, Efros, AA, Shechtman, E, Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR. Los Alamitos, USA: IEEE/CVF; 2018, p. 586–595.

[50] Heusel, M, Ramsauer, H, Unterthiner, T, Nessler, B, Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 2017;30:6629–6640.

[51] Kuster, C, Popa, T, Bazin, JC, Gotsman, C, Gross, M. Gaze correction for home video conferencing. ACM Transactions on Graphics (TOG) 2012;31(6):1–6.