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ABSTRACT

We address 3D human pose and shape estimations from multi-
view images. We use the SMPL body model, and regress the
model parameters that best fit the shape and pose. To solve
for the parameters, we first compute 3D joint positions from
2D joint estimations on images by using a linear algebraic
triangulation. Then, we fit the 3D parametric body model
to the 3D joints while imposing a bone orientation constraint
between the 3D model and the corresponding body parts de-
tected in the images. We do so by minimizing a new set of
objective functions through a two-step optimization process
that provides a good initialization for the refinement of the
shape and pose parameters. Our approach is evaluated on the
Human3.6M and HumanEva benchmarks, showing superior
results with respect to state-of-the-art methods.

Index Terms— 3D reconstruction, shape and pose esti-
mation, body model, multi-view

1. INTRODUCTION

3D body reconstruction benefits many applications like vir-
tual reality, healthcare, human tracking, and video games.
The emergence of realistic human body models, such as the
Skinned Multi-Person Linear (SMPL) model [1], has resulted
in substantial improvements in human pose and shape esti-
mations. Many methods focus on estimating the shape and
pose from images by trying to fit the SMPL 3D model to 2D
features, such as silhouettes and 2D joint locations.

3D human pose estimation. Two paradigms stand out in
the literature: the direct regression of 3D joints from images
or the estimation of 2D joints followed by their lifting to 3D.
Direct 3D joint regressions is mostly achieved by training a
Convolutional Neural Network (CNN) in an end-to-end man-
ner [2, 3, 4]. In two-stage methods, 2D pose estimation [5] is
first performed, after which 2D estimates are lifted to 3D. To
this end, various strategies have been applied, such as: neu-
ral networks [6], dictionary [7], pictorial structure models [8],
triangulation [9], and 3D-aware 2D pose estimation [10].

Simultaneous shape and pose estimation. Most of these
methods are based on a statistical human body model which
encodes and parametrizes human shape and pose spaces.
SMPL [1] is the leading body model used for this task. The

main methods can be classified [11] as either optimization-
based [12, 13] or CNN-based [14, 15, 16, 17]. Because end-
to-end training data is lacking, CNN methods are generally
less accurate than optimization-based methods [11, 17]. In
addition, they do not generalize well either [11].

Optimization-based solutions require human-made priors
and constraint terms to relax the objective function. SM-
PLify [13] uses an iterative optimization process to find the
optimal shape and pose. The energy function is constructed
from estimated 2D joint positions by means of a 2D pose esti-
mator. SMPLify suffers from depth ambiguity issues since it
relies on a single view. Rhodin et al. [18] adopt a multi-view
setting using 2D optimization costs. MuVS [12] also adopts a
multi-view setting to reduce depth ambiguity. It is built upon
SMPLify [13] and uses a similar optimization process. The
main difference is that the objective function considers 2D
pose estimation through all views.

We also address the problem of 3D shape and pose esti-
mation using multiple views. Rhodin et al. [18] use 2D op-
timization costs and MuVS [12] aggregates the 2D pose es-
timations from all the views into a single objective function.
Conversely, we rely on two objective functions both directly
integrating 3D joint positions. We triangulate these 3D joints
from 2D joint estimations by weighting the contribution of
each view to the final 3D joint position. To determine the
influence of each view, we rely on the 2D pose estimator’s
confidence values. This leads to better estimates for the 3D
joints which are later injected in our shape and pose objective
functions. Furthermore, we design a different optimization
process with a novel objective function. This function aims to
achieve bone orientation consistency between the 3D skeleton
and the SMPL model. Thanks to our bone orientation con-
straint (BOC), we are able to closely approximate the SMPL
pose parameter and take advantage of this information when
conducting the final optimization stage (simultaneous shape
and pose refinement). We demonstrate that the semantic po-
sition of joints in SMPL and in the validation data sets do not
exactly match. To account for this discrepancy we introduce,
for each joint, a shift vector computed in the joint local space.
Results on widely used benchmark data sets (HumanEva and
Human3.6M) show that our approach has a higher accuracy
than the state-of-the-art methods. We summarize the main
contributions of our approach as: (1) a bone orientation con-



straint (BOC) to recover the pose parameter independently
from the shape parameter, (2) a more precise initialization for
the simultaneous optimization of pose and shape parameters
thanks to the BOC, and (3) a two-step optimization process
that improves the accuracy of the pose and shape estimations.

2. MULTI-VIEW 3D BODY RECONSTRUCTION

Given multi-view images of a human subject taken at the
same time, together with camera parameters for each view,
our goal is to generate a precise 3D body model. Like in other
work [12, 13, 15, 19], we use the SMPL body model [1]. The
challenge is to find the 3D shape and pose of the individual
from the images. As in other work [12, 14, 17, 20], we use
the 2D pose estimation to infer an accurate 3D pose and 3D
shape. We first estimate 2D joints on each view. We then tri-
angulate 3D joints (from estimated 2D joints using joint con-
fidence values) to reduce the weight of incorrectly detected
joints (Sec. 2.1). For instance, in Fig. 1, this allows us to
correctly converge despite the inaccurate left elbow. Finally,
we introduce a two-step optimization process (Sec. 2.2) with
a new objective function to determine the SMPL pose and
shape parameters with the aid of the triangulated 3D joints.

2.1. 3D pose triangulation

We first estimate the 2D pose on each view v ∈
{1, 2, 3, ..., V }, where V is the number of views. We use
OpenPose [5] which provides 25 joint locations and a confi-
dence value for each joint j. We then use the linear algebraic
triangulation from Iskakov et al. [9] with OpenPose’s joint
confidence values to lift the 2D joints to 3D. Given a joint j,
its 2D estimated position on each view v, and the camera pa-
rameters (intrinsic and extrinsic) of each view, the algebraic
triangulation consists in solving the following system of equa-
tions:

((wj · J ) ◦Aj)ỹj = 0 , (1)

where ỹj is the unknown location of the 3D joint j and
Aj ∈ R2V×4 is a matrix that allows to calculate, for all
V views, the difference between the estimated 2D joint lo-
cations and the projected 3D joint locations. The weights
wj = (w1,j , w1,j , ..., wV,j , wV,j)

⊺ ∈ R2V×1 correspond to
confidence values. The weight wv,j ∈ [0, 1] denotes the con-
fidence in the estimate of joint j on view v. These weights
are multiplied (matrix product) by the all-ones row vector
J ∈ R4 and operator ◦ denotes the Hadamard product. The
idea behind Eq. 1, is to recover the homogeneous coordinates,
ỹj ∈ R4, of the joint j knowing its projection on the V im-
ages. The 3D joint J3Dj

∈ R3 is computed from the ho-
mogeneous coordinates. The system is solved independently
for each joint using a differentiable singular value decompo-
sition. We refer the reader to the original paper [9] for full
details. Iskakov et al. [9] use their own 2D pose estimator
(and confidence values) trained to map Human3.6M joints.

We use OpenPose instead because its joints are at the same
semantic positions as in the SMPL model, which is not the
case with Human3.6M (or HumanEva-I) joints (Fig. 2).

The weights wj are crucial since they adjust the contribu-
tion of each view in the triangulation. When a joint is likely
to be occluded in one of the views, the weight for this view
is low, ensuring that other views with larger confidences will
drive the convergence to the right location. Thus, the emanat-
ing 3D joint contains less uncertainty than the 2D ones.

2.2. Two-step optimization process

We now describe our process to infer SMPL parameters.
SMPL has two vectors of parameters (shape β⃗ and pose θ⃗).
As it does not constrain invalid parameters, one may con-
verge to a non-human pose or shape if the problem is not
constrained enough. Furthermore, SMPL joint locations af-
ter posing, J(β⃗, θ⃗) ∈ R3×23, depend on SMPL joint loca-
tions J(β⃗) which are a function of the shape. This means that
each modification of the shape β⃗ leads to a change in J(β⃗, θ⃗),
even if the pose θ⃗ remains unchanged. In SMPLify [13] and
MuVS [12], the shape and pose are estimated simultaneously.
Therefore, the cost functions used are complex and result in
multiple local optima. That is the reason why optimization-
based methods are sensitive to the initialization point. In our
approach, we overcome these obstacles in a novel fashion.
The triangulated 3D joints allow us to provide a robust initial-
ization for θ⃗. The proposed optimization process is decom-
posed into two steps: SMPL mesh bone orientation, followed
by simultaneous posing and shaping.

First, β⃗ is initialized to the mean shape and θ⃗ to the “A”
pose. The first step (bone orientation constraint) estimates
only the pose parameter. We want the 3D mesh to be posed as
in the multiple views. To that end, we designed a new objec-
tive function. Let B be the set of bones of the triangulated 3D
skeleton. A bone b ∈ B is defined by two consecutive joints
(child-parent) in the skeleton’s kinematic tree. We name these
joints child(b) and parent(b). Given a bone b and a 3D pose J
(3D joint locations), the function Φ(J, b) returns the normal-
ized orientation vector of the bone b in J :

Φ(J, b) =
Jchild(b) − Jparent(b)

||Jchild(b) − Jparent(b)||2
. (2)

Then, our objective function is:

Epose(θ⃗) = λθEθ(θ⃗)+

λbone

∑
b∈B

||Φ(J(β⃗, θ⃗), b)− Φ(J3D, b)||22 , (3)

where J3D denotes the triangulated 3D joints, J(β⃗, θ⃗) de-
notes the SMPL mesh 3D joints, λθ = 1 and λbone = 100
are weights, and Eθ(θ⃗) is a pose prior [12, 13]. The pose
prior prevents convergence to non-human poses. During the
optimization, β⃗ is kept fixed to the mean shape. With Eq. 3,



Fig. 1: The first three images correspond to 2D joint estimates. Note that in the third image, the left elbow (pink) is incorrect
because of the occlusion. We automatically detect that this joint is likely to be inaccurate, and thus decrease its contribution to
the triangulation process, resulting in an accurate 3D joint location thereafter (right-most image).

we are constraining the bones to have orientations consistent
with the triangulated 3D joint positions. We are able to get
a close approximation of θ⃗ alone, without caring about the
shape β⃗, because we get rid of the bone lengths by normal-
izing. Whatever the individual’s shape, by minimizing Eq. 3,
we are able to obtain bone orientations (e.g. θ⃗). This strategy
resolves concerns arising from the simultaneous optimization
of shape and pose used in previous works [12, 13]. One im-
portant advantage with our technique is that we can then use
this estimation of θ⃗ to initialize the final optimization step.

In the final step, we also want to recover the shape, there-
fore, the bone lengths matter. Our energy function is then:

Efinal(β⃗, θ⃗, γ⃗) =λθEθ(θ⃗) + λβEβ(β⃗)+

λJ ||J3D − J(β⃗, θ⃗) + γ⃗||22 ,
(4)

where γ⃗ ∈ R3 is the SMPL mesh global translation, λθ =
5, λβ = 300 and λJ = 1 are weights, and Eβ(β⃗) is the shape
prior learnt from the SMPL shape training data [1]. Contrary
to MuVS, we use 3D rather than 2D joints data in this last
stage. Furthermore, the objective function of MuVS contains
joint projection operations and its number of terms is a func-
tion of the number of views. In our case, the number of views
comes up when triangulating 3D joints. However, the trian-
gulation is solved for each joint independently, and through a
singular value decomposition, which is simpler to solve than
the minimization of the final MuVS energy function.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate our approach on two widely used multi-view data
sets: HumanEva-I [21] and Human3.6M [22, 23] (both con-
tain ground-truth 3D joint locations). As others [12, 13], we
use HumanEva-I to make design choices and validate our ap-
proach, whereas Human3.6M serves to gauge the solution’s
generalization. We measure the performance with the Mean
Per Joint Position Error (MPJPE) metric. No Procrustes anal-
ysis is used unless stated. We manually set all cost function
weights on the training data set of HumanEva.

Since HumanEva-I and Human3.6M joints differ from the
SMPL joints (Fig. 2), we compute one shift vector (in the lo-
cal bone coordinate) for each of the SMPL joints. Among

Fig. 2: Despite the fact that the SMPL mesh and its silhouette
(green contour on the left image) match the individual on the
image, there is a shift between the groundtruth Human3.6M
joints (blue squares) and the SMPL joints (green squares).

Method Walking Box Mean
MuVS 58.32 68.41 63.37
MuVST 56.68 67.79 62.23
Ours 48.59 61.45 55.02
OursSV 47.22 59.88 53.55
OursBOC 42.63 53.75 48.19
OursBOC, SV 41.96 51.12 46.54

Table 1: MPJPE (mm) comparison. Numerical results for
MuVS were directly transcribed from the original paper [12].

the first 1000 frames of each video for Human3.6M, we took
every 100th frame and computed the shift between the result
of our optimization and the groundtruth. We then apply the
mean of the shift vectors before computing the MPJPE for
all of the other frames. For HumanEva-I we took every 20th
frame among the first 300 frames. Shift vectors are only ap-
plied when computing the MPJPE for our approach since for
the other methods (in Tables 1 and 2), the MPJPEs report the
values found in the respective papers. For fairness of compar-
ison, we also report our MPJPE without shift vectors.

We carry out a first validation on the HumanEva-I data
set. Following common practice [12, 13], we report results for
subjects S1, S2, and S3 on the “Walking” and “Box” actions
of the validation set. We use all three views and the ground-
truth camera parameters. Table 1 compares our approach with
MuVS. The first row (“MuVS”) refers to the MuVS optimiza-



Fig. 3: Qualitative results on Human3.6M’s subjects 9 (left) and 11 (right). Body mesh silhouette in green and mesh in pink.

Method Shape PA MV MPJPE
Kanazawa et al. [14] Yes Yes No 66.65
Trumble et al. [24] No No Yes 62.50
Kolotouros et al. [11] Yes Yes No 62.00
Pavlakos et al. [3] No No Yes 56.89
MuVST Yes Yes Yes 47.09
Ours Yes Yes Yes 54.86
OursSV Yes Yes Yes 39.56
OursBOC Yes Yes Yes 46.37
OursBOC, SV Yes Yes Yes 30.13
Iskakov et al. [9] No Yes Yes 20.80
He et al. [10] No Yes Yes 19.00

Table 2: Quantitative comparison on Human3.6M (subjects 9
and 11). “Shape” indicates if the method estimates the shape
besides the pose. “PA” indicates if Procrustes analysis is ap-
plied before computing the MPJPE (mm). “MV” states if the
method uses multiple views. Values for the compared meth-
ods were directly transcribed from the respective papers.

tion process using 2D joint error terms, silhouette consistency
term, shape prior, and pose prior. The second row (“MuVST”)
corresponds to MuVS when adding temporal information as
described by Huang et al. [12]. “Ours” refers to our approach
without the BOC step in the optimization process. We notice
that using 3D joints triangulated with OpenPose’s confidence
values significantly improves the MPJPE as compared to us-
ing 2D joints. Superscript SV means using the shift vectors
when computing the MPJPE. We notice a slight improvement
with the shift vectors. Finally, “OursBOC” illustrates the ef-
fectiveness of our BOC in further decreasing the error. Our
approach outperforms MuVS even without taking advantage
of temporal nor silhouette information.

We now look at the generalization of our approach with
Human3.6M. The poses in this data set are more challenging
than in HumanEva-I because of asymmetric and other com-
plex poses. As others [3, 12, 24], we use subjects 9 and 11
for the evaluation. We use all four views and the ground-

truth camera parameters. Table 2 compares our approach with
other state-of-the-art methods. All are multi-view methods
except Kanazawa et al. [14] and Kolotouros et al. [11]. We
notice that almost all the multi-view methods perform better
than the single-view ones, highlighting the fact that multiple
views significantly improve the accuracy. Note that among
the multi-view methods, only MuVS and our approach re-
turn a complete 3D human body mesh. The other methods
optimize only for joint locations, which is a less constrained
problem than simultaneously optimizing for shape and joint
location. Unlike these methods, we compute the parameters
for a full data-driven body shape, which incurs a trade-off be-
tween the accuracy of the pose and the body shape. Even so,
our approach outperforms all methods that compute only joint
locations except the methods of Iskakov et al. [9] and He et
al. [10]. Finally, on Human3.6M our approach significantly
outperforms the temporal version of MuVS, and the shift vec-
tors significantly reduce the MPJPE.

Figure 3 shows some examples of the application of our
approach to non-trivial poses from Human3.6M. Our ap-
proach is effective in recovering both shape and pose in these
challenging situations with a very good correspondence be-
tween the projection of the 3D mesh and the images.

4. CONCLUSION AND FUTURE WORK

We have presented an approach to accurately estimate 3D hu-
man shape and pose in a multi-view setting. We have intro-
duced several improvements in our proposed approach. First,
we use 3D instead of 2D joints to infer the SMPL pose and
shape parameters. We achieve this by triangulating 3D joints
from 2D joints with a weighted algebraic triangulation. Sec-
ond, we designed a new optimization process from the 3D
joints to regress the SMPL parameters. This process incor-
porates a new bone orientation constraint (BOC) step which
consists in solving a novel objective function to recover the
SMPL pose parameter, independently from the shape. This
results in a better initialization and leads to a better final mesh.
Evaluation on benchmarks demonstrated the effectiveness of
our approach compared to state-of-the-art methods.
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