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Figure 1: Our approach deforms a template to match the shape of a scan by aligning and deforming in a smooth domain space.

ABSTRACT

Ears are complicated shapes and contain a lot of folds. It is difficult
to correctly deform an ear template to achieve the same shape as
a scan, while avoiding the reconstruction of noise from the scan
and being robust to bad geometry found in the scan. We leverage
the smoothness of the spectral space to help in the alignment of the
semantic features of the ears. Edges detected in image space are
used to identify relevant features from the ear that we align in the
spectral representation by iteratively deforming the template ear. We
then apply a novel reconstruction that preserves the deformation
from the spectral space while reintroducing the original details. A
final deformation based on constraints considering surface position
and orientation deforms the template ear to match the shape of the
scan. We tested our approach on many ear scans and observed that
the resulting template shape provides a good compromise between
complying with the shape of the scan and avoiding the reconstruction
of the noise found in the scan. Furthermore, our approach was robust
enough to scan meshes exhibiting typical bad geometry such as
cracks and handles.

Index Terms: Computing methodologies—Computer graphics—
Shape modeling—

1 INTRODUCTION

Virtual head models are extremely important in many fields ranging
from game and entertainment industries to medical and cosmetic
industries. Thus, new acquisition methods, striving to improve the
accuracy and detail of 3D models, increase the level of capturing
automation and decrease the overall cost and time of the acquisition.
Despite the great efforts that have thus far been invested and the
considerable research progress obtained, there are still areas that
require exploration.

The first breakthrough in human head acquisitions was light
stages [37] that could capture both the static geometry of the head
as well as the appearance model. While the 3D reconstructions were
impressive, due to the complexity and variability of the human face,
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it soon became evident that a one size fits all acquisition pipeline is
not the best approach and many special methods have been devel-
oped targeting the different components of the human head such as
lips, jaws, teeth, eyes, etc.

One component that has received little attention are human ears.
For example, ears are important to recreate a faithful avatar. They
are also of particular importance for visual effects, video games, and
virtual reality, where we aim for believable characters with specific
visual traits. Acquisition of human ears is difficult as ear geometry
comes with a richer anatomical structure with many components
that exhibit complex folds. Moreover, the ear geometry exhibits a
large degree of self-occlusion, which leads to missing geometry in
the scans. Furthermore, hair is often found in the way, occluding the
ear, which is also detrimental to the reconstruction of the fine details
found in the ears. All these challenges make ear reconstruction
difficult and many of the general purpose reconstruction methods
available may yield undesirable artifacts.

There are two main steps to virtual head model acquisition: a
geometric reconstruction step where an unstructured scan is obtained,
and a registration step where a template is deformed to match the
shape of a scan. Typical registration methods first compute a set of
3D feature matches between the template and the scan followed by
a deformation step where the template is deformed to match the 3D
features. Unfortunately human ears are pretty smooth and do not
contain easily identifiable local features. Moreover, the variance of
the human ear shape is high and the fold structure is complex.

In this work we propose a non-rigid template registration method
tailored to the specific geometric characteristics of human ears such
as the long folds exhibiting long ridges and valleys. Our approach
uses an input that is noisy and a potentially incomplete irregular
mesh of an ear, and it deforms a template to match the geometry
of the ear. We frame the non-rigid registration as an optimization
problem in a smooth domain where the ear geometry is simplified.
Point correspondences are obtained using edge detection in the im-
age space. Fine details of the scan are matched in a way that strikes
a balance to avoid reconstructing noise while still reconstructing
legitimate ear details. Our method preserves the semantic structure
of the human ear and it is robust to the wide natural variations of the
ear shape.

2 RELATED WORK

Digital human modeling has seen a great level of improvement
towards human facial scanning [16, 37]. That level of quality came
through complex capture setup and equipment. Scans from standard
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Figure 2: These ear scans demonstrate the diversity of ears with
respect to their shape.
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Figure 3: External ear anatomy is composed of many different
components adding to the complexity of the ear shape.

photogrammetry remain noisy and the noise is even harder to deal
with when considering the intricate details found in the ear geometry.
We will first present methods tailored to specific parts of the face.
We will then review the methods specific to ears. We will end by
discussing registration methods.

2.1 Facial Parts
General-purpose methods quickly showed their limits and re-
searchers introduced methods specialized to specific parts of the
face. Berard et al. focused on capture of eyes using a parametric
model [10] and further improved on capture with a multi-view imag-
ing system that can reconstruct poses of the eye [11]. Bermano et
al. [12] present a method that works towards the reconstruction
of eyelids including folding and wrinkles. For a realistic facial
appearance it is important to consider the lips [19, 20] and jaw
regions [42, 43]. For the teeth, it is important to capture their appear-
ance and to fit them with respect to the mouth region [36, 38].

2.2 Ear Tailored Methods
Arbab-Zavar and Nixon [8] proposed a method that detects ears
using elliptical Hough transforms. Ansari and Gupta [7] proposed a
method that also detects ears in image space by detecting edges and
segregating them into concave and convex edges, thus finding the
outer helix region. Cummings et al. [17] detect ears in the images by
modelling light rays and finding the helix regions. Other methods
work in both image and depth space. Yan and Bower [39] proposed
a method that detects the ears by combining both RGB and depth
images. Chen and Bhanu [15] proposed a method that detects the
helix region by analyzing discontinuities in the hills and valleys of
a depth image. Zhou et al. [41] proposed a method that introduced
histograms of categorized shapes for 3D ear recognition by adopting
a sliding window approach and a support vector machine classifier.
Ears are detected by analyzing the 3D features like saddles and
ridges, and based on connectivity graphs in the depth images [32].
While the methods above are interesting, they are limited to ear
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Figure 4: Ear scans often exhibit noise and have poor geometry,
making them challenging for template matching. On top of noise,
meshes often exhibit erroneous handles as seen in (b).
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Figure 5: Example of scans from the Faust [13] (a)-(b) and Face-
warehouse [14] (c)-(d) data sets. The ears in (a) and (b) show
that standard template fitting methods perform poorly on ears. For
the Facewarehouse examples in (c) and (d), while the geometry is
smooth, it does not represent the ear anatomy fully. Details are
missing from the anatomy such as the tragus, anti-tragus, anti helix.
Furthermore, the ears are almost identical, probably because the
template matching method “preferred” to reconstruct the scan to
avoid picking up noise.

detection and do not provide solutions to the 3D ear reconstruction
problem.

For the purpose of reconstruction, Guler et al. [6] proposed a
method that computes a dense registration between an image and
a 3D mesh template. It works based on convolution networks that
learn a mapping from image pixels into a dense template grid. While
the method is interesting, it considers images as inputs instead of
3D scans.

2.3 Dense Registration and Reconstruction in General
A dense registration can be a potential avenue in reconstructing
a template to match the shape of a scan. Here we will focus on
specific registration methods. For a more comprehensive list of
dense registration methods the reader is referred to the survey of van
Kaick et al. [35]. Ovsjanikov et al. [30, 31] proposed the functional
maps framework to express dense registration. Lähner et al. [25]
proposed a method that works by formulating the problem as match-
ing between a set of descriptors, imposing a prior continuity on the
mapping. A major limitation to this approach is that the difference
in vertex density between meshes can be problematic. Furthermore,
the choice of descriptors affects the results in the case of a noisy
scan.

The Blended Intrinsic Maps (BIM) [24] method produces multi-
ple low-dimensional maps that get blended in a global map. BIM
suffers from distortion and discontinuities in its mappings. A ma-
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Figure 6: (a) Our inputs are a template and scan meshes T and S. (b) T and S are transformed to a smooth domain and the template is rigid
aligned to the scan. (c) Edges detected in the image space are transferred in 3D on the smooth meshes. (d) Smooth meshes are iteratively
deformed through three sub steps of rigid alignment of constraints, constraints injective mapping, and non-rigid deformation of the smooth
template. (e) Spectral reconstruction is used to reintroduce details to the template. This is followed by a last non-rigid deformation phase based
on similar surface orientation constraints. (f) After these deformation phases, the template exhibits the shape of the scan without the noise and
semantic regions are in correspondence.

jor limitation of this method is that it is difficult to be adapted for
meshes with problems such as holes and noise.

Parametrization-based methods for dense registration work by
transforming the meshes into a simpler space where finding a map-
ping between the meshes is easier. Athanasiadis et al. [9] proposed a
geometrically-constrained optimization technique to map 3D genus-
zero meshes on a sphere. Then, they morph the meshes with struc-
tural similarities by applying feature-based methods. Mocanu and
Zaharia [29] proposed a two step spherical parameterization method
1) by analyzing the Gaussian curvature to align feature correspon-
dences between the meshes, 2) by applying a morphing step to
establish the mapping.

Another category of deformation methods work with user-given
landmarks. Some methods [3, 4, 33] use the landmarks to cut the
meshes, flatten them, and extract the dense registration from the
planar domain or improve [22] an already provided registration
in the planar domain. In addition to spherical and planar domains,
other domains such as hyperbolic orbifolds have been proposed [1,2].
Landmark-based methods require a very carefully chosen and, in
some cases, large set of corresponding landmarks.

Other methods deform the given meshes until their respective
shapes match with each other; however, most of the methods are
limited to near-isometric deformations [5]. Some methods [23, 26]
overcome this limitation by trying to extend the range of objects to
handle non-isometric pairs. However, these methods face practical
challenges when dealing with scans that can contain noise and cracks
in the mesh.

A practical limitation for most of the dense registration methods
is the mesh quality of the scans. Moreover, a full-fledged dense
registration also implies the picking up of noise from the scans thus
leading to a bad reconstruction. One main goal of our approach is
to achieve the conflicting goals of acquiring geometric detail while
avoiding the reconstruction of the noise.

3 TEMPLATE DEFORMATION

An ear shape has a lot of variability as illustrated in Fig. 2, and its
anatomy (Fig. 3) contributes to a shape that is complex in nature.
Out of the box scanning methods struggle to reconstruct a good mesh

as can be seen in Fig. 2. Current methods work by either deforming
a template or by dense registration, but they still fail on human ears
largely owing to its complex anatomy and practical problems such
as the mesh quality (Fig. 4). This is also exemplified in widely used
data sets of faces. Fig. 5(a)-(b) shows heads from the Faust [13] data
set. We can see that the mesh is of very poor quality in the ear region.
Fig. 5(c)-(d) presents heads from the FaceWarehouse [14] data set.
In this case, the ear geometry is good, but this is at the expense of
not reconstructing a faithful ear (the ears are almost identical in the
whole data set). These examples demonstrate that it is necessary to
develop a novel approach specific for ears. Our approach fills the
gap between methods picking up too much noise (Fig. 5(a)-(b)) and
methods avoiding the noise at the expense of not reconstructing a
faithful ear (Fig. 5(c)-(d)).

The inputs to our approach are two meshes uniformly scaled to
fit in a unit cube: a template T and a scan S (Fig. 6(a)). Scan S
is a high-density mesh with holes, noise, and bad polygon quality
(Fig. 4). We conduct a series of deformation phases to align the
coarse and fine details of the template T to the scan S. The input
meshes are first converted to a smooth domain as Tk and Sk. Tk
is rigidly aligned to Sk and becomes Tk (Fig. 6(b)). Constraint
points CT and CS are found on the input meshes T and S using edge
detection. Constraint points CT and CS are transferred on Tk and
Sk as CTk

and CSk (Fig. 6(c)). Tk is iteratively deformed to match
the shape of Sk by aligning the constraints CTk

with CSk (Fig. 6(d)).
At the end of the iterations, Tk becomes T̂k that approximates the
coarse shape of Sk. With a spectral reconstruction T̂k is deformed
as T̃ that reintroduces the fine details lost in the smooth domain,
but preserves the deformation undergone in the smooth domain. A
closest location approach between similarly oriented areas results in
new constraints used for the final deformation of T̃ to T ′ to match
the scan S (Fig. 6(e)).

3.1 Smooth Domain Transformation

In this section we explain our first deformation phase where we
align the coarse features of the ear (Fig. 6(b)). This phase uses
spectral processing to transform our template and scan meshes into
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Figure 7: Canny edge detection in image space (a, d) and its projec-
tion (b, e) on the meshes T and S. The edges are then transferred to
Tk and Sk (c, f). The canny edge detection is effective in identifying
the sematic regions of the ears such as the helix, tragus, anti-tragus,
etc.

a smooth domain where non-rigid registration is easier to perform.
This spectral processing takes advantage of the eigenvectors of the
Laplacian matrix of the mesh. Given the n× 3 matrix of vertex
positions, we compute the positions in the smooth domain as follows:

V ′ =Uk ·U
ᵀ
k ·V, (1)

where V ′ are the resulting vertex positions of the eigensubspace
projection and Uk is a n×k matrix containing the first k eigenvectors.
It can be noticed that with a full eigendecomposition, i.e,., k = n,
Uk=n ·U

ᵀ
k=n results in an identity matrix. By reducing k, Uk<n ·U

ᵀ
k<n

removes less important details, but maintains the global shape of
the mesh. For the purpose of eigendecomposition, the Laplacian
matrix based on the cotangent weights [28] is used. Applying this
transformation to T and S using their respective eigenvectors Uk(T )
and Uk(S), they become Tk and Sk. Mesh Tk is then rigid-aligned [40]
with Sk and is now Tk.

3.2 Ear Features and Constraints
This section describes how we extract meaningful features of the
ears that we will use as constraints for the deformation in the next
section. Our constraints are automatically computed using Canny
edge detection on renderings of the 3D ears. An edge detection
on 2D renderings of the original ears (S and T ) proved to be quite
robust in systematically detecting meaningful edges. To achieve this,
an orthographic camera view was used for the rendering where the
camera is facing the ears such that the view covers the bounding
box of the ears. Each rendered image is 600px in height and the
width varies between 400px to 500px based on the width of the ear.
As it can be seen in Fig. 7(a) and (d), the edge detection identifies
important semantic features of the ears. The detected edges (2D

Iteration1 Iteration2 IterationN

Tk Sk

Figure 8: The figure shows how Tk deforms in a non-rigid fashion
based on its constraints CTk

. As the iterations progress the movement
becomes marginal and hence the iterations are terminated when the
average of vertex movements reaches a threshold.

pixel locations) are then projected back to the mesh (Fig. 7(b) and
(e)). These constraints CT and CS are 3D locations on the surface
T and S respectively. The constraints are then transferred to Tk
and Sk (Fig. 7(c) and (f)) as CTk

and CSk . The transfer relies on
barycentric coordinates on the triangles of T /Tk and S/Sk.

3.3 Iterative Coarse-Level Deformation
This deformation phase is done by iterations consisting of two sub-
steps: 1) constraints alignment and 2) non-rigid deformation. These
iterations deform the smooth domain mesh Tk to match the shape of
Sk using the constraints CTk

and CSk . A rigid alignment is applied
from CTk

to CSk . After rigid alignment, for each of the constraints in
CTk

a closest correspondence in CSki
is found. Tk is then deformed

to align the constraints CTk
on corresponding constraints from CSk .

Each of the following iterations uses the updated Tk and CTk
. As the

iterations progress the mesh Tk is deformed to match the shape of
Sk.

Constraints Alignment and Mapping The first step of the
iteration is the alignment of constraints CTk

to CSk using Go-ICP [40].
An injective map is found between the two sets of constraints CTk

→
CSk based on closest locations.

Non-Rigid Deformation In the second step, the mesh Tk is
deformed in a non-rigid fashion through an energy minimization
composed of two terms. One term maintains the shape through
Laplacian surface editing (LSE) [27], while the other term mini-
mizes the distance between the constraints. Both terms are equally
weighted with a value of 1.0.

The iterations end when the average movement of the constraints
in one iteration, ad , is within a threshold t (Fig. 8). The examples
shown in this paper rely on a threshold of t = 10−6 (we can rely
on an absolute threshold as we unitize the input meshes). The final
version of Tk is referred to as T̂k.

3.4 Spectral Reconstruction

Once the iterations are finished, T̂k will look similar (at a coarse
level) to Sk. The template fitting is improved at the fine level with
a reconstruction process that reintegrates the surface details while
preserving the deformation undergone in the smooth domain. Rein-
troducing details and using surface orientation to create deformation
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Figure 9: Results showing the deformation of the template ear mesh for 16 scans. Rows (a) and (c) are the original high-density ear scans of
real people. Rows (b) and (d) are the results of template deformation using the pipeline of the presented approach.

constraints are important since unrelated mesh features can overlap
in the smooth domain. Our spectral reconstruction is an important
contribution of the presented approach. The idea is to express the
deformation made in the smooth domain back to the original space.
A similar idea has been proposed by Dey et al. [18]. In their method,
they calculate a displacement vector between the vertex position of
the original shape and the smooth domain. They then add this dis-
placement vector back to the deformed smooth domain. Instead of
using local displacement vectors, our approach strives for a smooth
surface by globally enforcing the original surface Laplacians while
preserving the smooth domain deformation.

In our approach we reconstruct using the Laplacians of T com-
bined with the spectral coefficients from T̂k. The goal is to recon-
struct a surface that maintains the details of mesh T while keeping
the transformations of T̂k. This is done by solving for vertex posi-
tions under two constraints. The first constraint tries to maintain the
Laplacian coordinates of the original mesh T :

L(T )V (T̃ ) = L(T )V (T ), (2)

where V (T̃ ) is a n× 3 matrix representing the vertices after re-
construction. For the second constraint, we want to maintain the
transformation undergone in the smooth domain. To do so, we work
in the low dimensional space of the eigenvectors Uk(T ). In that
space, we try to maintain the same coordinates as those of T̂k:

Uk(T )
ᵀV (T̃ ) =Uk(T )

ᵀV (T̂k), (3)

where V (T̂k) are the vertex coordinates of T̂k.
We then solve for the vertex positions V (T̃ ) that meet these two

constraints in a least-squares sense:

argmin
V (T̃ )

n

∑
i=1

∥∥∥Li(T )Vi(T̃ )−L(T )V (T )
∥∥∥2

2
+

n

∑
i=1

∥∥∥U i
k(T )

ᵀVi(T̃ )−U i
k(T )

ᵀVi(T̂k))
∥∥∥2

2
.V (4)

Solving Equation 4 applies the changes made in the smooth domain
back to the original domain thereby deforming T̂k to T̃ , a shape that
is similar to S at the coarse level.

Our spectral reconstruction strategy (Equation 4) is composed of
two parts. The LSE alone through the L(T ) matrix is rank deficient
resulting in an underconstrained system. Our second term involving
Uk contains k additional constraints. The eigenvectors of Uk are
orthogonal to each other and the resulting system can be solved in a
stable way.

3.5 Fine-Level Constraint Based Deformation
Given the previous deformation steps, the shape of T̃ is similar to S,
but only at a coarse level. By exploiting the spectrally reconstructed
surface with more details, the template is further deformed with
positional constraints based on similar surface orientation. The goal
is to deform the template to match the shape of the scan without
inheriting the surface noise from the scan. Hence, we use LSE to de-
form T̃ while maintaining a smooth surface. We identify constraints
as closest locations on the surface of S for each vertex of T̃ . We
reject some of the closest location correspondences based on surface
orientation. We keep only those correspondences that have an angle
between the vertex normal on T̃ and the normal at the closest loca-
tion on S is less than a threshold (we used d = 45°). The selected
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Figure 10: (a) Template with its features colored. (b) A scan from
our data set. (c) Deformation using mapping without reconstruction
from spectral shape. The semantic correspondence is wrong at
various places that can be identified on areas showing incorrect
lateral sliding and bad reconstruction. (d) Deformation after spectral
reconstruction. Both the surface quality and the semantic region
correspondences greatly improved.

locations are used as anchor locations for the LSE deformation. As
in Sect. 3.3, both terms are equally weighted with a value of 1.0.
This deforms T̃ to the final template shape T ′.

4 RESULTS AND DISCUSSION

The scans in our data set were acquired using a multi-view stereo
setup. Each scan consists of a dense polygonal mesh that has be-
tween 90k to 120k vertices. Note that we plan to release a subset of
our data set for other researchers. Fig. 9 shows the scans (a and c)
and the deformed template (b and d) using the presented pipeline.
The scans exhibit a lot of diversity in their shape and hence the de-
formation of the template to match the shape was quite a challenge.
These meshes are irregular, can have erroneous or missing geome-
try, degenerate triangles as well as topological errors as illustrated
in Fig. 4. The helix region of the scans were the worst affected
during the capture due to the presence of interfering hair strands. We
can see that our approach is robust against noise while being able to
match the shape of the ears.

Our implementation uses OpenCV for edge detection in image
space, Python packages SciPy and NumPy for linear system solu-
tions, and Blender for mesh handling and the LSE system.

4.1 Spectral Reconstruction Benefits
We tested our approach with and without the spectral reconstruc-
tion. Without spectral reconstruction, we apply the deformation
of Sect. 3.5 directly on T̂k, skipping the reconstruction phase of
Sect. 3.4. While the iterative deformation finishes with T̂k that ex-
hibits a shape globally similar to Sk, the lack of detail is problematic
for the deformation of the template to match S. Fig. 10 shows a
scan and the template with semantically important features high-
lighted with colors. Fig. 10(c) shows a typical example of incorrect
lateral sliding when the final deformation is done directly from T̂ .
When the final deformation is conducted from T̃ to S based on
similarly oriented locations, we observe a significant improvement
in fidelity of the shape as well as the correspondence of semantic
regions (Fig. 10(d)). Furthermore, our spectral reconstruction ap-
proach is general. For example, like the method of Dey et al. [18],
our approach could be applied to animation.

4.2 Selection of k Eigenvectors
The selection of k for the eigen decomposition is crucial as it plays a
major role in the pipeline. The idea behind the selection of k impacts
a) how simple the shape will be in the smooth domain (Sect. 3.1)
and b) the number of constraints available for spectral reconstruc-
tion (Sect. 3.4). Fig. 11(b) shows a smaller selection of k = 3 that

(a) Template (b) k = 3 (c) k = 20 (d) k = 100

Figure 11: Different selection of k and the resulting shapes. (a) The
original template ear. (b) Smooth domain transform using k = 3
results in a planar shape that is too simple to allow the alignment of
any features. (d) Smooth domain transform using k = 100 results in
a more detailed shape, but it contains a lot of folds that hinder the
alignment. (c) A value of k = 20 results in a shape that is simple but
detailed around the helix region, which is an important feature we
want to align in the smooth domain.

results in a simpler shape that does not contain any features, pre-
venting the alignment of coarse features in the smooth domain. It
also results in a very small number of constraints for spectral re-
construction. Fig. 11(d) shows a higher selection of k = 100 that
results in higher number of constraints for spectral reconstruction,
but the shape also reintroduces a lot of folds from the original sur-
face (Fig. 11(a)). We observed that aligning both the coarse and
fine details in a single step is very difficult. A selection of k = 20
(Fig. 11(c)) was balanced for both being a simpler shape with im-
portant coarse features, and also sufficient in terms of the number of
constraints for spectral reconstruction.

4.3 Comparison to Mapping Method
Many mapping methods require manual landmarks, and as such
cannot be used for comparison with our fully automatic approach.
Furthermore, many methods do not work with meshes such as our
ear scans, which contain boundaries and bad geometry. Lähner et
al. [25] propose a mapping method using SHOT descriptors [34].
Their approach fails with high density scans to produce dense map-
ping, however it is able to produce a sparse mapping of around 3000
vertex-to-vertex correspondences. We tested if we could use this
sparse mapping to directly deform template T to the shape of the
scan, thus avoiding the use of the smooth domain. This sparse map
was evaluated by deforming the template with the 3000 registrations
points employed as constraints using LSE, an idea similar to the
deformation phase explained in Sect. 3.5. The deformation using
the constraints from Lähner et al. is compared with our final re-
sult T ′. Fig. 12 shows the comparison of results for two different
ears. From the results we can see that our approach from Sect. 3.5
performs better.

4.4 Limitations
Fig. 13 shows the worst results from our experiments. In most cases,
the edge detection constraints (Sect. 3.2) and non-rigid deformation
(Sect. 3.3) steps align the features of the ears quite well, but as can
be seen in Fig. 13 the helix occasionally does not align completely.
The region of the helix close to the crux of the helix is another region
where the registered template and the scan are sometimes not in a
very good correspondence.

5 CONCLUSION AND FUTURE WORK

We presented an approach to fit a template ear mesh to scans of real
ears. The template and the scan are first transformed to an eigenspace
smooth domain where we begin by conducting a rigid alignment



(a) Template (b) Scan (c) Lähner et al. (d) Ours

(e) Template (f) Scan (g) Lähner et al. (h) Ours

Figure 12: We compare (c) and (g) the results skipping the smooth
domain by deforming the template directly using constraints derived
from the method of Lähner et al. [25], to (d) and (h) using our
pipeline involving the smooth domain. We can observe that the
results skipping the smooth domain produce lateral sliding (indicated
by red arrows) of the corresponding semantic regions.

on the smooth meshes. Features of the ears are detected in image-
space with a Canny edge detection. The smooth domain eases the
alignment of the coarse scale features of the meshes. The next phase
iterates upon three sub steps of aligning the edge detection features,
computing an injective mapping of the features from the template
to the scan, and conducting a non-rigid deformation of the template
through Laplacian surface editing with the features as constraints.
We then reintroduce the details of the template mesh through a
spectral reconstruction. Our spectral reconstruction optimizes for the
spectral coordinates and for surface smoothness through Laplacian
constraints. This generates a smooth surface with the details of the
original template, while preserving the deformation from the smooth
domain. The detailed template mesh is finally deformed through
Laplacian constraints and constraints based on closest location of
surface regions with similar orientation. One notable advantage of
our approach is that it is robust against bad mesh quality and is also
completely automatic. Moreover, we are convinced that our spectral
reconstruction approach is general and could be used outside of
the ear reconstruction pipeline. We will investigate this avenue as
in future research work. The fixed template used in our approach
could be replaced by a 3D Morphable Model (3DMM) of ears. In
a similar fashion to the work of Donya et al. [21], we could adjust
the 3DMM parameters to have a template ear that is already much
closer to the geometry of the scanned ear. Finally, the current choice
of constraints is limited to ears, but we believe that our series of
deformation phases could be applied to other types of shapes. In this
sense, deriving other types of constraints is an interesting direction
for future work.
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problem is apparent right at the spectral reconstruction step (a) and
(d), Sect. 3.4) and originates from the edge detection constraints
(Sect. 3.2) and the deformation in the smooth domain (Sect. 3.3).

it for comparison. We also want to thank the anonymous reviewers,
and all the participants for the facial scanning.
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