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Identifying Septic Newborns
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Summary: Background and Objective. Processing the newborns' cry audio signal (CAS) provides valuable
information about the newborns' condition. This information can be used to diagnose the disease. This article
analyzes the CASs of newborns under two months old using machine learning approaches to develop an auto-
matic diagnostic system for identifying septic infants from healthy ones. Septic infants have not been studied in
this context.

Methodology. The proposed features include Mel frequency cepstral coefficients and the prosodic features of
tilt, rhythm, and intensity. The performance of each feature set was evaluated using a collection of classifiers,
including Support Vector Machine (SVM), decision tree, and discriminant analysis. We also examined the major-
ity voting method for improving the classification results and feature manipulation and multiple classifier frame-
work, which has not previously been reported in the literature on developing an automatic diagnostic system
based on the infant's CAS. We tested our methodology on two datasets of expiration and inspiration episodes of
newborns' CASs.

Results and Conclusion. The framework of the concatenation of all feature sets using quadratic SVM resulted
in the best F-score with 86% for the expiration dataset. Furthermore, the framework of tilt feature set with qua-
dratic discriminant with 83.90% resulted in the best F-score for inspiration. We found out that septic infants cry
differently than healthy infants through these experiments. Thus, our proposed method can be used as a noninva-
sive tool for identifying septic infants from healthy ones only based on their CAS.

Key Words: Sepsis—Infants’ cry—Mel frequency cepstral coefficient—Prosodic feature—Principal component
analysis—Feature manipulation—Support vector machine—Decision tree—Discriminant analysis—Classifiers

fusion.

INTRODUCTION

In recent years, the infant mortality rate in developed coun-
tries has decreased. However, this rate is still high in devel-
oping countries. Moreover, saving newborns' lives and
promoting their health is of particular importance in the
health of any nation and for further providing health serv-
ices. This paper set out a Newborn Cry Diagnostic System
(NCDS) to see if we can apply machine learning techniques
to categorize newborns' cry audio signal (CAS) as septic or
healthy. This section discuss what the CAS is, the types of
NCDSs proposed by researchers, the problems they faced,
and how we can apply them to sepsis pathology, which has
not been studied before.

The act of crying for infants is their most prominent com-
munication activity. Infants produce cry by pushing airflow
from their lungs to the vocal tract,’ and then airflow
vibrates the vocal cords, which generates the sound. Lungs
work like power and provide patterns. This explanation is
called source-filter theory. In general, the CAS results from
the altered sound of source (vibrating larynx) by the vocal
tract. The set from vocal cords to the lips forms the vocal
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tract.” The vocal tract adjusts the vocalization and works as
a filter. It attenuates or amplifies some frequencies.

Crying is the infants’ only weapon against the inconven-
iences like hunger, pain, discomfort, and infection that hap-
pen to them. Hence, crying is a natural warning method to
call on those around to help. Not responding correctly to
these warning signs can cause harm to the infant and their
parents. A fair number of researchers indicated that infants'
CAS holds information that, if properly analyzed, can be
used to access messages sent from the newborns’ brain.” We
also know that mothers and hospital staff who are con-
stantly in contact with infants can distinguish several
infants’ needs only based on their CAS."

Further investigations on infants' CAS even revealed its
reliability for diagnostic purposes.” In the study presented
by, they anecdotally explained the characteristics of the
CAS of infants affiliated with specific diseases such as
asphyxia, deafness, etc., versus healthy ones. There are pat-
terns in a CAS that warn about the menacing pathology for
the infant's health, which may be clueless even in physical
examinations by doctors.’

The infants' CAS has been studied for decades.” Tradi-
tional popular approaches were based on visual inspections
of the spectrogram of infants' CASs.> However, manually
sorting the patterns in the CAS and categorizing accord-
ingly are not practical for human beings due to the vast
amount of information for processing.® Thus, this short-
coming has led to various automatic classification systems.
There have been works on developing an automatic system
for recognizing the infants' CASs from other surrounding
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FIGURE 1. Block diagram of the NCDS.

sounds,” detecting different parts of CAS (such as episodes
of expiration and inspiration),*'" identifying the need of an
infant (hunger, diaper, sleepy, etc).®'""'> The very recent
one is the pathology detection task.'”~'” In our work, we
also focused on developing an automatic pathology detec-
tion task which we call it the NCDS in this reading.

Figure 1 shows the block diagram of the NCDS. The
NCDS framework, like any identification system, includes
the phases of pre-processing, feature extraction, and a phase
of training a model based on the obtained features for classi-
fication. The pre-processing step aims to help better feature
extraction. It includes applying various applications such as
reemphasizing, windowing, and finding the Fundamental
frequency (Fy). In the feature extraction phase, methods
such as Mel Frequency Cepstral Coefficient (MFCCs),'*~
auditory-inspired amplitude modulation,” Linear Predic-
tion Coding (LPC),””IR"W patterns of Fj contour,' > reso-
nance frequency'’ are the most common ones.
Furthermore, extra analysis such as combining different fea-
ture sets such as MFCC and LPC'® and MFCC, rhythm,
and tilt features'> were studied in this phase. Besides, techni-
ques for identifying the most relevant features such as F-
ratio and binary particle swarm optimization,”' and orthog-
onal least square algorithm®' for improving the classifica-
tion performance were suggested.

In the classification phase a variety of pattern recognition
models have been studied including Support Vector
Machine (SVM),'*">  multilayer ~perception neural
network, ' probabilistic neural network,'*!7-?? decision
tree,'® forest'® and k-nearest neighbor algorithm.'® The
CAS:s of pathologies that were yet investigated by machine
learning approaches to automatically identify sick infants

: 23,2 .
from healthy ones includes cleft palate,”** hearing
. 3 9.2 o . . . 2
disorder,'!13:16:19:25 hyperblhrubmemla,z(‘ autism,”’
. 11,16,19,21,26,28—30 L3 .
asphyxia, hypothyroidism™" and respiratory
. 23
distress.'>*

In this study, our contribution is twofold. One contribu-
tion is how we evaluate and manipulate features and how
we use these features to make a final decision. The second
contribution is to look at the unstudied pathology of sepsis.
We performed four sets of experiments. We considered each
expiration episode and inspiration episode of infants' CAS

in the first experiment as a sample. The expiration episode
and inspiration episode are perceivable sounds during exha-
lation and inhalation of infants during crying, and the
silence episode is the soundless gap between inspiration and
expiration episodes of CAS.?*** We refer to this experiment
as the Single Episode (SE) experiment. In the second experi-
ment, we used the predicted labels for episodes within each
CAS from the SE experiment to predict each CAS label
using the majority voting technique. We call this experiment
the All Episode (AE) experiment. We borrowed this idea
from the automatic environmental sound classification pre-
sented by.** Accordingly, in the SE experiment, we evalu-
ated the performances of prosodic features of intensity,
rhythm, tilt, and the commonly used feature of MFCCs
using three sets of classifiers of SVM, discriminant analysis,
and decision tree. Next, in the AE experiment, we used
majority voting to predict the CAS group using the labels
obtained from the SE experiment. In the third experiment,
we examined the idea of the concatenation of all feature sets
of MFCC and the three prosodic feature sets of tilt, rhythm,
and intensity and then fed them to the classifiers. In the
fourth experiment, we set up a framework to aggregate the
prediction of the most competent classifiers for each set of
features and then predict the CAS label using the majority
voting technique. We explain these methods later in the
methodology section.

Regarding our second contribution, according to our
knowledge, despite the frequent infants’ death due to
sepsis, disappointingly, so far, there is no investigation
on the connection between the CASs of infants with sep-
sis and this pathology. Previously in our research lab,
sepsis pathology in newborns was investigated in a multi
pathology group; however, there is no study on the
unique pathology group of sepsis when investigating the
symptoms in the infants’ CAS. In Canada alone in 2019,
among the newborns' cause of death, sepsis is reported
on rank six.”” The rank of sepsis among leading to death
has increased in recent years, as shown in Table 1. Thus,
it would be beneficial to have an NCDS to classify septic
from healthy ones. Sepsis is a severe disease that is usu-
ally caused by bacteria. Infants under two months are
more prone to sepsis because their immune systems are
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TABLE 1.
The Leading Cause of Newborns’ Death Related to Sep-
sis Pathology in Canada®®

2015 2016 2017 2018 2019

Sepsis rank 9 8 6 8 6
Number of infant 31 32 43 47 38
deaths

not yet developed enough to fight off some sources of
infection. In clinical findings, a set of specific symptoms
are reported for sepsis. However, newborns have few
apparent symptoms; these may vary from child to child.

Perhaps the reason that this critical pathology of septic
remained unstudied is that enough data did not exist. Con-
sequently, having this dataset available in our lab lends sup-
port to delivering this work. An NCDS is a valuable tool in
saving lives and promoting newborns' health levels, specifi-
cally in developing countries suffering from the lack of
pediatricians. The NCDS would address this issue as its
installation cost is relatively low.”'* Practical applications
of the NCDS include its use for infant screening,”® infancy
education,’’ robot nursing,’ and as a medical assistant for
pediatricians. Moreover, NCDS is a non-intrusive tool.

The paper is prepared as follows: Section 2 describes the
collection of dataset, information of the dataset, the partici-
pants, feature sets definition, and explanations of the exam-
ined classifiers in this work; Section 3 reports the results of
the four implemented experiments including the SE experi-
ment, the AE experiment, and the effects of feature manipu-
lation and use of multiple classifier framework. Section 4
concentrates on the discussion of the research developed,
including the usefulness of each feature set, the feature
reduction schemes, the majority voting technique, and the
computation cost of each framework. Lastly, a complete list
of acronyms introduced in this article is given in Table 14 in
section Appendix.

MATERIALS AND METHODS

Dataset Description

This section describes the data collection procedure, the
dataset details, the participants in our experiments, and the
dataset preprocessing procedures.

Data Collection and Recording

The research group in our laboratory collected the CASs of
infants at Hopital Sainte-Justine in Montréal, Canada, and
hospitals of Al-Sahel and Al-Raee in Lebanon. The hospital
staff of mentioned hospitals recorded the CASs in the clini-
cal medium. A 2-channel digital hand-held WS-650M
Olympus digital voice recorder was posed at 10—30 cm
from the infants. The sampling frequency of the recordings
is 44.1 kHz, and the sample resolution is 16 bits. In the

recording procedure, careful attention was given to main-
taining the surrounding noise at the minimum level. Thus,
every newborn’s CAS was recorded independently, and
whenever the environmental noise would rise, they would
stop the recording procedure.'* For more information about
the procedure of recording, the author suggests reading.'*

Alongside the recordings phase, they collected details of
infants, including the reason for crying, gestational age,
birth weight, Apgar' result, gender, name of the hospital,
type of disease, infants’ age during the recording, and pre-
maturely state of the infants.

In our study, our dataset includes the CASs of infants ini-
tiated by various reasons of crying, and were recorded at
different times in a day.” The reason for crying includes
CAS:s initiated by hunger, discomfort, diaper, blood tests,
shower, birth, collection of urine, etc. The term "reason for
crying" refers to the stimuli that caused the newborns start
crying. This term "reason for crying" is irrelated to the new-
borns' health condition. The staff would note why the new-
born started crying in the CAS collection procedure.

Participants

The age range of infants in our dataset is from one day to
208 days. However, in the current experiment, similar to
our previous ones,'*'>!” we excluded the CASs of infants
whose ages were more than 53 days. This is because infants
above this age can control their voices.’

The female and male newborns of ethnic groups of half
Caucasian and half Haitian, African, Arabic, Caucasian,
Latino, Native Hawaiian, and Quebecois were included in
our experiments. The CASs of infants studied in this experi-
ment are either healthy or affected by sepsis pathology. The
pathology dataset consisted of 53 recordings of 17 infants
with sepsis whom pediatricians diagnosed through medical
examinations. Each infant in our dataset has one or more
recordings. For the healthy dataset, there were 108 infants’
CASs. We only used an equal number of expiration and
inspiration of the CASs in our experiment to observe the
balanced dataset for precise diagnosis by the classification
models. Table 4 shows the number of episodes in each data-
set of expiration and inspiration in our experiments.

To increase the credibility of our proposed model, we
imposed criteria for our system similar to our previous
work.'>?" Our dataset was variable in conditions. First, we
included all reasons for crying initiated for various reasons,
while reason for crying affects the durational feature of the
CAS."” Second, we considered a wide variety of newborns
whose parents are from different linguistic groups. This is
important as we know that the unborn infants start learning
the prosodic features such as rhythm, intensity, and melody
from the last three months of pregnancy, which affects the
prosodic aspect of the CAS production as discussed in.*’
Lastly, the CASs were recorded in hospitals, including

"The very first test taken from newborns for measuring the newborn’s general
health state.
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ambient noises such as human speech, the instrument's
sound, etc.

The recording condition was the same for all infants,
including healthy ones and those with sepsis. Moreover, to
ensure that the NCDS is only learning the pathologically
informed patterns, we only used the vocal segments of expi-
ration and inspiration episodes of the CAS that do not
include noise, which are explained in Table 2 as "EXP" and
"INSV". Other segments of the newborns' CAS, including
"Background, BIP, noisy Crying, noisy pseudo-Crying,
Noise," are noisy, and thus we excluded them in our study.
The segments of the CAS are listed in Table 2.

Methodology

This study used two datasets of expiration and inspiration
episodes of infants' CAS. We extracted features from several
levels in the SE experiment, including tilt, rhythm, intensity,
and MFCCs from each episode of expiration and inspiration
datasets. Then we fed them to different models for classifica-
tion. We examined each dataset separately. Figure 2 illus-
trates the scheme of the SE experiment for a portion of CAS.
In the AE experiment, we used all predicted labels of every
single episode in the CAS from the SE experiment to indicate
the label of the single CAS using the majority voting tech-
nique. Figure 3 shows the scheme of the AE experiment.

In another set of an experiment similar to the method in
our previous study,’” we concatenated all feature sets
together, and in this study, we also added the intensity fea-
tures.

In the last experiment, we used the best classifiers for each
set of features and labeled the CAS based on the most pre-
dicted labels. The aim was to choose the framework which
results in the most accurate recognition for identifying the
CAS:s of septic infants.

The CAS Feature Description
The extracted features are in the temporal, spectral, and
both domains. The feature sets include MFCC and the

TABLE 2.
Example Description of Some CAS Labels
Label Description

EXP Voiced expiration segment
during a period of crying

EXPN Unvoiced expiration segment
during a period of crying

INS Unvoiced inspiration segment
during a period of crying

INSV Voiced inspiration segment
during a period of crying

EXP2 Voiced expiration segment
during a period of pseudo-
crying

INS2 Voiced inspiration segment
during a period of pseudo-
crying

PSEUDOCRY Any sound generated by the
baby and it is not crying

Speech Sound of the nurse or parents
talking

Background Low noise characterized by a
very low power-silence
affected with little noise

BIP Sound of the medical instru-
ments next to the baby

Noisy Crying Any sound heard along with

Noisy pseudo-Crying

Noise

the crying: machine’s beep,
water, diaper, etc.

Any sound heard along with
the pseudo-crying

The sound caused by the mic
being moved, diaper, a door,
speech + background,
speech + beep, etc.

prosodic features of tilt, intensity, and rhythm. In the fol-
lowing, we bring the description of each of these feature sets
and the details of the parameters we used.

Features Extraction:
MFCC, Tilt, Rhythm, Intensity|

Classifiers: SVM, Decision Trees
algorithm, Discriminant analysis
algorithm

Lable N

Features Extraction:
MFCC, Tilt, Rhythm, Intensity|

algorithm, Discriminant analysis
algorithm

Lable N+1

Features Extraction:
MFCC, Tilt, Rhythm, Intensity

Classifiers: SVM, Decision Trees Classifiers: SVM, Decision Trees

algorithm, Discriminant analysis

algorithm

Lable N +2

FIGURE 2. Illustration of procedure of the SE experiment in a portion of an infants” CAS visualized using WaveSurfer software.
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FIGURE 3. Tllustration of procedure of the AE experiment in a portion of an infants” CAS visualized using WaveSurfer software.

Mel Frequency Cepstral Coefficients (MFCC)
Among several algorithms introduced in speech processing
for characterization, the MFCC feature set is the most
widely used method in adult and infant voice processing.'”
Mel frequency cepstrum shows the power spectrum of an
audio signal using the linear cosine transform of the power
spectrum logarithm at the Mel scale. The Mel scale is
defined as Equation 1.

M(f) = 1125 ln(l +%) (1)

Where f is the frequency value, and M (f) is the corre-
sponding Mel value. The MFCC coefficients can be defined
as the logarithmic cosine conversion of the energy obtained
by applying the Mel Bank filter to the windowed signal
spectrum. The steps for calculating the MFCC coefficients
are shown in Figure 4.

The coefficients extracted from each frame contain only
the static information of the frame, which causes the effect
of adjacent structures not to be considered, and due to the
nonstationarity of the newborns' CAS, the feature vector of
each frame should also reflect changes in spectral character-
istics. Thus, the feature vector of each frame also includes
the time derivatives of the extraction coefficients. For fur-
ther information on MFCC, the authors suggest reading.*!

In this study, we only analyzed the information less than
the frequency of 4 kHz according to the result of our experi-
ment in'* for infants' CASs. In the windowing stage, we
used a hamming window with a frame size of 10 ms, with a
30% overlap between each consecutive frame. Our previous
work'* showed that the frame length of 10 ms performs bet-
ter than 30 ms. Moreover, we set the number of filter bank
channels to 24. These adjustments that suit infants' CAS
processing are based on our previous experiments.'*'?

Tilt Feature
The F, is defined as the harmony of the oscillation of the
vocal folds.”” The pattern of changes in F, repeatedly has

been described as relevant with some pathology” in new-
borns. The tilt feature represents changes in F; of the voice.
The tilt feature is based on the F and was initially presented
by* in an automatic speech recognition system and also
was successfully used in our previous study'” for developing
the NCDS for infants with RDS. Tilt parameters capture
the changes of the F| using parameters called 4, and D,. In
the present study, we followed the method provided by.*’
The parameters 4, and D, are presented respectively by
Equations 2 and 3:

Al - |4,

I T 2)
A+ |4,
D,| - ’Df

p— |1 1 3)
D,| + ’Df

Considering the contour of F in a portion of CAS, 4, is
the amplitude of the F, when it rises to reach the peak of F,
and A, is alternatively the amplitude when it is declining.
Correspondingly, D, and D, respectively measure the dis-
tance between the rising and falling parts of the F, contour.
This feature set is described in detail in.*?

For extracting the tilt features, the requirement is to find
the accurate F contour. Finding the F; in newborns' CAS is
hindered by the high instability of the infants' CAS.” Among
the popular software for extracting Fj, the most precise one
is Praat software.*” Therefore, we extracted the F, using
Praat software. Table 3 shows an example of the result of K
extracting using Praat software.

The values of 4,, D, and the F; of each episode of the
CAS were computed. Finally, the statistical measures of
the range, mean, standard deviation, median and inter-
quartile range of these values were put in the feature
vector.
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FIGURE 4. The block diagram of MFCC features extraction.

TABLE 3.

The Evaluated Values of F, and Intensity by Praat Soft-
ware For a Portion of CAS Within the Period of 0.014 to
0.0.17 Seconds

Time F, Intensity
0.0140 0 -undefined-
0.0280 373.3105 -undefined-
0.0420 376.4588 -undefined-
0.0560 379.6858 77.751
0.0700 370.2263 77.362
0.0840 361.8400 76.333
0.0980 362.1973 75.891
0.1120 367.0559 75.978
0.1260 364.5674 76.924
0.1400 363.7566 78.619
0.1540 365.9141 79.855
0.1680 369.2621 80.186

Rhythm Feature
In this study, we also investigated the usefulness of the dura-
tion feature, which is a subset of the rhythm feature. We cal-
culated the duration of expiration and inspiration episodes
within each CASs.

Intensity Feature

This feature was already used to automatically identify expi-
ration and inspiration episodes of infants' CASs.*” Intensity
is the measure of the loudness of the signal. It measures the
quantity of energy that the signal conveys per unit area. The
intensity magnitude is calculated by Equation 4:

Intensity = 10loglog ( A*(n)w(n)) (4)

In this equation, w and A respectively refer to the window
function and the amplitude of the CASs. We used Praat
software to precisely estimate the intensity of infants' CAS.
Table 3 shows the results of extracting this feature from a
portion of CAS in our dataset. Like tilt feature extraction,
the statistical measures of the range, mean, standard

deviation, median and interquartile range of the values of
intensity features were put in the feature vector.

Feature Reduction: Principal Component Analysis
(PCA)
Feature selection is used for reducing the dimensionality size
of measuring space by eliminating the low effect or useless
features. The PCA method is one of the best methods for
decreasing feature dimensionality linearly. It can identify
key components and help the classifier analyze a set of fea-
tures that are more valuable in conveying specific group
information than just examining them all. This algorithm
tries to represent the features in a way that highlights their
similarities and differences. This technique defines new axes
for the features, and these new axes display the features.
The first axis should be placed in a direction, which maxi-
mizes the data variance. In other words, in a direction in
which the distribution of features is highest. Then the sec-
ond axis is perpendicular to the aforementioned axis. For
more information on PCA, the authors suggest reading.**
Besides the favored method of PCA, we experimented
with the statistical metrics as a feature reduction method.
The statistical metrics include the range, mean, standard
deviation,”"® median and interquartile range'> for com-
pressing the size of MFCCs vectors. In the evaluation sec-
tion, we compare the results and the cost of processing time
of each method of PCA and statistical measures.

Classifiers
The classification approaches taken in this study are classifi-
cation by a single episode called SE experiment shown in
Figure 2 and classification by the whole episodes in CAS
called AE experiment shown in Figure 3. In the SE experi-
ment, each episode of CAS, including expiration or inspira-
tion (referred to "EXP" and "INSV" in Table 2) is
considered a sample, and the model is trained to assign a
label. While in the AE experiment, we used the majority
voting technique to vote based on the number of the most
predicted label in each CAS.

To develop a comparison, we investigated the perfor-
mance of 14 classifiers from three families to investigate the



Fatemeh Salehian Matikolaie and Chakib Tadj

Machine Learning-Based Cry Diagnostic System

963.e7

most credible functional one in identifying the CASs of
unhealthy infants suffering from sepsis from healthy ones.
In the following, we describe the three families of classifiers.

Support Vector Machine (SVM) Algorithm: Five
Classifiers

The SVM learning algorithm is known as one of the best
classifications and outlier detection methods. The basis of
the SVM classifier is the linear classification of data. The
SVM approach selects the decision boundary to maximize
the minimum distance between the particular classes. This
selection mechanism makes the classifiers' decisions in prac-
tice well tolerable to noise conditions. The border selection
in SVM is based on support vector points.”” In this study
the linear, cubic, quadratic, fine Gaussian, and medium
Gaussian SVM classifiers are included.

Decision Tree Algorithm: Six Classifiers

This algorithm develops a set of conditions in tree construc-
tion to predict the class of a feature. The tree algorithm is
based on minimizing the diversity at nodes. The lack of uni-
formity in the nodes is measurable using the criteria of
impurity measure. The difference between tree classifiers is
due to the impurity measure, splitting method, and pruning
tree nodes.*® This paper evaluated the performance of six
tree classifiers, including simple, medium, complex, bagged,
boosted, and RUSBoost trees.

Discriminant Analysis Algorithm: Three Classifiers

In this algorithm, the assumption is that different classes
generate data based on different Gaussian distributions. In
other words, every class is assumed to be a normally distrib-
uted cluster of data points. In this survey, we constructed
the linear, quadratic, and subspace discriminant analysis
algorithm.

After performing the SE and AE experiments using the
explained method, we put together the most competent
classifiers for each feature set. These classifiers' predicted
labels were then fed to a majority voting block to predict
the CAS class as healthy or septic. This idea is based on
the assumption that the classifiers perform in a comple-
mentary way to enhance the predictive result. We also

TABLE 4.

concatenated all feature sets together and fed them to all
classifiers to compare the results.

MODEL EVALUATION AND RESULTS

All the feature extraction, classification, and evaluation
stages were performed using Matlab. We utilized features
from several domains and different classifiers with several
kernels to capture the best result. For measuring each
frameworks' ability to identify the CAS of infants with sep-
sis disease from healthy ones, we used the standard metrics
in the pathology diagnostic field, including specificity,
recall, and F-measure.”’ The followings are the definitions
of our evaluation measures.

TruePositives
Recall = 5
ecd TruePositives + FalseNegatives (5)

Precisi TruePositives (6)
recision =
TruePositives + FalsePositives

2 X Precision x Recall )
Fscore =
Precision + Recall

In our case, a "True Positive" would be correctly identify-
ing an infant with the septic pathology. The performance of
the classifiers was measured with 5-fold cross-validation. To
ensure the validity of our model, we designed the distribu-
tion of CASs between the folds to guarantee the indepen-
dence of the folds. In other words, there are no samples of
the same infants in more than one fold. Accordingly, in
each iteration, the models learn on four folds (called trained
folds) on the CASs of some infants and then test the one
fold (called test fold) which does not include any sample of
the infants in the training folds. In each iteration, one fold
becomes the test fold. We used two datasets in our research.
The dataset includes the expiration and inspiration episodes
of CAS. These episodes are called EXP and INSV in
Table 2. Table 4 presents the number of samples in each
fold for each dataset of expiration and inspiration. There
are more expiration samples than inspiration samples
because there were some inspiration segments that we could
not determine its FO values or they were very short inter-
vals.

The Number of Samples From Healthy and Septic Newborns in Each Fold

Class Healthy (EXP)

Class Sepsis (EXP)

Class Healthy (INSV) Class Sepsis (INSV)

Fold One 507 507
Fold Two 517 517
Fold Three 524 524
Fold Four 523 523

Fold Five 453 453

140 140
141 141
139 139
132 132
109 109
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TABLE 5.
The Classification Results of Discriminant Analysis Family Classifiers Using Statistical Measure and PCA for MFCC
Features
EXP Dataset INSV Dataset

PCA Statistical Measures PCA Statistical Measures
Linear Discriminant (SE experiment) 54.60% 65.50% 54.70% 65.20%
Linear Discriminant (AE experiment) 70.20% 77.30% 74.60% 80.85%
Quadratic Discriminant (SE experiment) 59.20% 65.10% 65.60% * 64.30%
Quadratic Discriminant (AE experiment) 72.40% 78.10% 83.00% * 79.20%
Subspace Discriminant (SE experiment) 54.50% 68.10% 54.20% 57.10%
Subspace Discriminant (AE experiment) 70.40% 81.00% 72.80% 73.20%

Percentages refer to F-score. The results of the best frameworks are bolded. The * sign indicates the results of the classification frameworks in which the PCA
method resulted in a better recognition power than the statistical measure reduction method.

Evaluation of MFCC Features

In this study, we decided to investigate further the MFCC
features from the previous study that we presented in.'> We
evaluated the results of dimension reduction techniques for
MFCC features, including statistical measures and PCA.
These results are presented in Tables 5, 6, and 7, respectively,
showing the classification results by families of discriminant
analysis, decision tree, and SVM models. We also compared
the results of SE and AE experiments. As explained in the
previous section, in the AE experiment, a majority voting
technique was used to label the CAS based on the labels of
its episodes resulting from the SE experiment.

Regarding Tables 5—7, the AE experiment consistently
outperformed the SE experiment in all evaluations, except in
the case of using fine Gaussian SVM classifier using PCA
reduction method. We highlighted this result using & sign in

Table 7. Meanwhile, the statistical measure resulted in better
recognition power in all cases except in cases of using fine
Gaussian SVM for the SE experiment, cubic SVM in the SE
experiment, and quadratic discriminant analysis for both AE
and SE experiments. We highlighted these results using * sign
in Tables 5 and 7. Notably, these mentioned exceptional cases
are related to the inspiration dataset.

In discriminant analysis family classifiers, as it shows in
Table 5, the best method for feature reduction for MFCC in
the expiration dataset is the use of statistical measures,
which resulted in 81% F-score using subspace discriminant
analysis classifier. However, in inspiration datasets, the best
result is 83% F-score which belongs to using PCA techni-
ques using the quadratic discriminant analysis classifier.
Tables 6 and 7 illustrate the results obtained from decision
tree and SVM classifiers. In Table 6, for the expiration

TABLE 6.
The Classification Results of Decision Tree Family Using Statistical Measure and PCA For MFCC Features
EXP Dataset INSV Dataset

PCA Statistical Measures PCA Statistical Measures
Simple Tree
SE experiment 55.30% 65.60% 55.50% 55.60%
AE experiment 74.10% 85.00% 70.60% 74.60%
Medium Tree
SE experiment 54.90% 62.80% 55.60% 60.60%
AE experiment 72.50% 82.30% 71.90% 81.80%
Complex Tree
SE experiment 50.10% 50.10% 55.40% 60.40%
AE experiment 63.00% 63.00% 71.20% 81.80%
Bagged Tree
SE experiment 56.60% 66.60% 62.60% 62.80%
AE experiment 80.10% 85.50% 77.30% 80.60%
Boosted Tree
SE experiment 58.10% 67.10% 56.40% 59.30%
AE experiment 80.60% 81.30% 68.10% 77.20%
RUSBoost Tree
SE experiment 55.20% 63.40% 56.90% 59.60%
AE experiment 74.60% 82.30% 76.20% 81.10%

Percentages refer to F-score. The results of the best frameworks are bolded.
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TABLE 7.

The Classification Results of SVM Classifiers Using Statistical Measure and PCA Method for MFCC Features

EXP Dataset

INSV Dataset

PCA Statistical Measures PCA Statistical Measures
Linear SVM
SE experiment 54.20% 68.70% 56.50% 62.00%
AE experiment 73.60% 85.30% 74.20% 79.80%
Cubic SVM
SE experiment 56.80% 66.30% 59.50% * 56.90%
AE experiment 77.30% 85.70% 77.10% 78.20%
Quadratic SVM
SE experiment 55.60% 67.40% 57.00% 59.30%
AE experiment 77.60% 82.60% 75.70% 78.00%
Fine Gaussian SVM
SE experiment 56.60% 64.00% 61.60% @ * 56.60%
AE experiment 80.10% 81.50% 57.10% 63.60%
Medium Gaussian SVM
SE experiment 53.90% 68.90% 59.60% 63.20%
AE experiment 76.40% 84.20% 71.30% 81.10%

Percentages refer to F-score. The results of the best frameworks are bolded. The @ sign indicates the classification framework in which the SE experiment out-
performed the AE experiment. The * sign indicates the results of the classification frameworks in which the PCA method resulted in a better recognition power

than the statistical measure reduction method.

dataset and inspiration dataset, the best F-score results are
85.50% for the bagged tree and 81.80% for both complex
tree and medium tree classifiers. For SVM classifiers, as
shown in Table 7, we see that the cubic SVM and medium
Gaussian SVM outperformed others respectively in the
expiration dataset with 85.70% F-score and the inspiration
dataset with 81.10% F-score.

Evaluation of Prosodic Features
Regarding the results obtained using tilt and intensity fea-
ture sets shown in Tables 8§ and 9. In every case, the method

of the AE experiment resulted better than the SE experi-
ment. Among the classifiers for the tilt feature set, the expi-
ration dataset and inspiration dataset, boosted tree with
79% F-score and quadratic discriminant analysis with
83.9% F-score defeated other classifiers.

In intensity feature set investigation, as shown in Table 9
we observed that cubic SVM is the best classifier for both
expiration dataset and inspiration dataset with the F-score
of 70.9% and 74.60%.

Table 10 shows the efficacy of the rhythm feature using
different classifiers. This durational feature only was

TABLE 8.
The Classification Results of Different Classifiers Using Tilt Features
EXP Dataset INSV Dataset
SE experiment AE experiment SE experiment AE experiment

Linear Discriminant 54.60% 67.00% 65.00% 76.00%
Quaderatic Discriminant 47.00% 49.40% 66.90% 83.90%
Subspace Discriminant 54.90% 70.00% 58.70% 73.30%
Simple Tree 38.80% 45.80% 60.20% 69.20%
Medium Tree 53.70% 68.60% 52.40% 70.30%
Complex Tree 54.90% 74.70% 54.00% 68.70%
Bagged Tree 59.30% 78.70% 60.80% 76.50%
Boosted Tree 57.70% 79.00% 58.90% 74.30%
RUSBoost Tree 56.30% 74.80% 56.20% 70.20%
Linear SVM 55.50% 69.00% 61.30% 72.40%
Cubic SVM 55.90% 78.50% 60.80% 75.90%
Quadratic SVM 54.50% 74.20% 61.20% 74.10%
Fine Gaussian SVM 56.00% 75.60% 61.20% 71.60%
Medium Gaussian SVM 55.10% 70.10% 63.70% 71.70%

Percentages refer to F-score. The results of the best frameworks are bolded.
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TABLE 9.

The classification results of different classifiers using intensity features.

EXP Dataset

INSV Dataset

SE Experiment

AE Experiment

SE Experiment AE Experiment

Linear Discriminant 51.00%
Quaderatic Discriminant 45.80%
Subspace Discriminant 52.40%
Simple Tree 47.10%
Medium Tree 50.60%
Complex Tree 53.80%
Bagged Tree 53.10%
Boosted Tree 48.80%
RUSBoost Tree 48.30%
Linear SVM 50.30%
Cubic SVM 58.70%
Quadratic SVM 46.60%
Fine Gaussian SVM 48.00%
Medium Gaussian SVM 49.10%

62.90% 44.10% 59.00%
50.60% 49.30% 71.40%
61.50% 48.90% 59.560%
57.10% 38.80% 60.90%
60.50% 47.60% 66.00%
68.00% 45.00% 58.30%
65.70% 45.80% 62.20%
60.10% 48.30% 65.20%
58.20% 43.90% 61.70%
58.90% 52.30% 66.30%
70.90% 53.20% 74.60%
56.70% 53.40% 69.50%
58.70% 44.50% 58.00%
60.20% 43.90% 52.60%

Percentages refer to F-score. The results of the best frameworks are bolded.

measured for the AE experiment as it requires a longer
length of CAS. In the expiration dataset and the inspiration
dataset, the cubic SVM with 75.60% F-score and quadratic
SVM with 77.70% F-score were the best classifiers.

TABLE 10.
The Classification Results of Different Classifiers Using
Rhythm Features

EXP Dataset (AE INSV Dataset

experiment) (AE experiment)
Linear 41.80% 62.80%
Discriminant
Quadratic 20.40% 77.00%
Discriminant
Subspace 41.80% 62.80%
Discriminant
Simple Tree 64.40% 58.30%
Medium Tree 62.40% 64.30%
Complex Tree 70.70% 65.50%
Bagged Tree 65.50% 62.70%
Boosted Tree 62.40% 61.30%
RUSBoost Tree 61.70% 63.10%
Linear SVM 55.30% 44.40%
Cubic SVM 75.60% 15.50%
Quadratic SVM 55.20% 77.70%
Fine Gaussian 37.20% 48.40%
SVM
Medium Gauss- 17.30% 55.40%
ian SVM

Percentages refer to F-score. The results of the best frameworks are
bolded.

Evaluation of Feature Set Manipulation and Use of
Multiple Classifiers

After acquiring the results of different classifiers using
MFCC features and the prosodic features of intensity, tilt,
and rhythm, we inspected the performance of two other
frameworks. The first approach was to concatenate all fea-
tures and see the best result was obtained by which classifier.
The second approach was the use majority voting technique
which inputs were the results of the most capable classifiers
for each feature set that outperformed in the AE experi-
ment. Table 11 and 12, respectively show the results of men-
tioned frameworks for the expiration dataset and the
inspiration dataset. We only included the feature sets of
MFCQC, tilt, and rhythm in the majority voting framework
as they consistently outperformed intensity features in both
datasets.

In Table 11, it is shown that the feature set concatenation
framework using quadratic SVM classifier outperformed
the majority voting model, which respectively resulted in
the F-scores of 86% and 83.30%. However, there was no sig-
nificant difference between these two methods in the inspira-
tion dataset as both methods resulted in about 82% F-score.

DISCUSSION
In this research, we examined machine learning techniques
to develop an NCDS for investigating the potential of new-
borns' CASs for diagnosing septic infants from healthy
ones. The sepsis pathology has not been studied while it is
ranked as the 6th cause leading to the death among new-
borns in Canada on 2019.% Several evaluations were carried
out to develop a comparison between the performance of
each framework. In total, four feature sets of MFCC, tilt,
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TABLE 11.
Best Classifiers for the Expiration Dataset

Feature Set Classifier

Recall Precision F-score

MFCCs Cubic SVM

Tilt Boosted Tree
Intensity Cubic SVM
Rhythm Cubic SVM

All feature Concatenation Quadratic SVM
All feature Majority Voting

best classifiers in the AE experiment

85% 86.44%
78.30% 79.70%
71.50% 70.30%
68.70% 83.90%
83.90% 88.10%
71.80% 99.10%

85.70%
79.00%
70.90%
75.60%
86.00%
83.30%

Percentages refer to F-score. The results of the best frameworks are bolded.

rhythm, and intensity were supplied to three families of clas-
sifiers, including SVM, discriminant analysis, and decision
tree. We also assessed the performance of the concatenation
method of all feature sets together and the method of col-
lecting the votes of the most accurate classifiers for each fea-
ture set, and then labeled the test sample using the majority
voting method. The input data of our proposed NCDS were
two datasets of expiration and inspiration of infants' CASs.

As the results of the experiments show from Tables 5 to
10, the technique of majority voting in the AE experiment
enhanced the performance of the model in all cases by far,
except in the case of classification of inspiration episode
dataset using the framework of MFCC and fine Gaussian
SVM classifier with the PCA feature reduction technique as
shown in Table 7 (highlighted by @ sign). In Figure 5, we
brought the minimum, maximum, and mean of the increase
using the majority voting technique in the AE experiment in
datasets of expiration and inspiration.

Consequently, the successive classification of episodes in
the CAS and then use of majority voting to predict the CAS
(AE experiment) resulted quite assuring in enhancing the
performance of NCDS rather than classifying the single epi-
sode (SE experiment). This idea was inspired by’* which
was also successful in the domain of environmental sound
classification.

Regarding the MFCC features, we analyzed the compari-
son of the use of two methods of feature reduction, includ-
ing PCA and statistical measures. These results are
presented in Tables 5 to 7. The results consistently show the
superiority of using statistical measures over the PCA
method in feature reduction in all classifiers in both datasets
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FIGURE 5. The minimum, maximum and mean of the improve-
ment using the majority voting technique in the AE experiment in
datasets of expiration and inspiration.

except in some cases for classification of the inspiration
dataset. These cases include quadratic discriminant for both
experiments of SE and AE (Table 5) and cubic SVM and
fine Gaussian SVM in the SE experiment (Table 7). These
cases are marked using * in mentioned tables.

The importance of feature selection is based on the prob-
lem, dataset properties and number, the interconnection
condition among samples in the dataset, the desirable run-
ning time, and the considered classifier scheme. Through

TABLE 12.

Best Classifiers for Inspiration Dataset

Feature Set Classifier Recall Precision F-score
MFCCs Quadratic Discriminant 78.80% 87.60% 83.00%
Tilt Quadratic Discriminant 74.10% 96.60% 83.90%
Intensity Cubic SVM 65.80% 82.00% 74.60%
Rhythm Quadratic Discriminant 69.40% 86.50% 77.70%
All feature Concatenation Quadratic Discriminant 76.20% 89.90% 82.80%
All feature Majority Voting best classifiers in the AE experiment 71.70% 96.60% 82.30%

Percentages refer to F-score. The results of the best frameworks are bolded.
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TABLE 13.
Elapsed Running Time for Extracting Each Feature Set

Feature Set Elapsed Time (Minutes)

MFCC + PCA 23.20
MFCC + stats 15.80
Tilt 10.30
Intensity 10.60
Rhythm 0.08
TABLE 14.

List of Acronyms Used in the Manuscript

Abbreviation Full Name

CAS Cry Audio Signal

NCDS Newborn Cry Diagnostic System
MFCC Mel Frequency Cepstral Coefficient
LPC Linear Predictive Coefficient

SVM Support Vector Machine

SE Single Episode

AE All Episodes

PCA Principal Component Analysis

these examinations, we found out that in all experiments for
expiration dataset, and most cases for inspiration dataset,
the statistical measures are more powerful in terms of their
discriminatory properties to represent the features that are
most relevant to the classifiers experimented within this
work, including classifiers of discriminant, decision tree,
and SVM, compared to the use PCA algorithm. Moreover,
as a feature reduction method, we noticed that statistical
measures are a more low-cost approach in terms of compu-
tational resources compared to PCA. Table 13 shows the
running time of feature extraction for each feature set.
Thus, the statistical measures feature reduction method
saves the execution time and, in the majority of cases, it ele-
vates the model's predictive power. The statistical method
was applied successfully in'>* *>* * in the domain of auto-
matic emotion recognition in speech, and developing
NCDSs for infants with deafness, asphyxia, and respiratory
distress.

Regarding the prosodic features, by the present study we
learned that the inspiration dataset (labeled as INSV in
Table 2) as a strong predictor for sepsis compared to healthy
infants which is consistent with our previous study.'” From
computation point of view the assessment of tilt and inten-
sity features took nearly the same amount of time. However,
tilt features showed better distinctive properties. The rhythm
feature had the lowest computational cost. Rhythm feature
was effortless and fast to extract, while it had better F-score
results than intensity features. According to”’ an authorita-
tive classifier has an error rate lower than the random guess-
ing on an untrained dataset, therefore the present study

shows that septic infants of less than two months cry differ-
ently than healthy ones in terms of spectral features, dura-
tion feature, the pattern of changes of the F, and the energy
of their CAS, which makes this method promising as a pos-
sible diagnostic tool. For further analysis, we concatenated
all feature sets together and fed them to each classifier.
Unlike the promising results in our previous study in which
we concatenated tilt, rhythm, and MFCC,"” the results of
the concatenation of MFCC with tilt, rhythm, and intensity
in both episodes were not improving in the present study. In
a previous study, the control group was infants with respira-
tory distress. Thus, the idea of feature manipulation for
diagnosing septic infants from healthy infants did not repro-
duce the good results of training based on the individual fea-
ture set. We also examined the idea of aggregating the
results of the best classifiers for each feature set extracted
from the same dataset and voting for the most recurred
label. The intuition was to generate a framework in which
the classifiers would complement their errors, thus would
enhance the diagnostic power of the NCDS. Accordingly,
the predicted labels achieved from the most competent clas-
sifiers for each feature set shown in Tables 11 and 12 were
collected and aggregated to predict the final result. In prac-
tice, this framework could not enhance the performance of
the NCDS and had a more computational cost; however, in
the expiration dataset, it could improve the precision mea-
sure up to 99% (Table 11).

The unexpected performance of the multiple classifiers
scheme might be explained by the fact that the integration
of best classifiers was chosen globally. We generalized the
model to predict for all test samples. However, in the case
of noise existence around some test samples in the feature
space, this scheme probably would not guarantee the best
prediction for those test samples. Thus, we have to employ
an approach that selects the outperforming classifiers
locally. In every region of feature space, the competency of
classifiers is estimated based on local information. This
approach is called the dynamic selection of the classifier.
We hope to address the shortcoming of our proposed multi-
ple classifier scheme in future work by experimenting with
the scheme of dynamic selection of classifiers, and the
stacked classifier scheme. The method should handle the
feature sets that do not degrade the feature space or the sys-
tem performance. In the future extraction phase, we also
expect to examine the performance of other feature sets,
such as the auditory inspiration modulated feature set in the
NCDS.

In our study, we generalized that the CASs are initiated
by any reason, which in practice makes the task of diagnos-
ing is difficult as newborns cry rhythmically different for
their different needs.’' Moreover, the CASs in our dataset
belong to infants from different geographical regions.
Infants in a linguistic group was proven to have a similar
pattern of Fj contour.”” Thus, the state of a more uniform
database in terms of rhythmicity and melody by experience
would probably help the overall performance of the NCDS.
However, the motivation was to develop an NCDS to make
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a precise decision under different situations, be unbiased by
reason for crying, the surrounding noise, and be flexible
with the length of the sample.

As a final point, it is worth explaining why we did not use
pervasive deep learning techniques in our study. While the
use of deep learning techniques is becoming rapidly prevalent,
there are yet classification problems that have the limitation
of dataset shortage which massively hinders the use of such
techniques.”” Notably, there are fewer applications of deep
learning in the infant diagnostic task based on CASs due to
the absence of enough CASs dataset. The number of infants
and their CASs for each disease is often inadequate. Thus, in
the case of enough dataset, it is worth attempting deep learn-
ing techniques; however, there is no certainty that they work
better than other classifiers,”” as the choice of a classifier is
dataset-based.

CONCLUSION

The experiments presented here evaluate the functionality of
our proposed NCDS for the unstudied disease of sepsis
which is one of the most common leading to death factors
in infant mortality. In our suggested NCDS, we used the
well-known MFCC features and the prosodic features of
tilt, rhythm, and intensity in a configuration with different
families of classifiers, including SVM, decision tree, and dis-
criminant analysis. These parameters were applied on CASs
of groups of healthy and septic newborns. The obtained
results show the vital contributions of the proposed features
and classifiers to distinguish the septic infants from healthy
ones, only based on their CASs. The best accomplished F-
score results are for the framework of the concatenation of
all feature sets using quadratic SVM with 86%, and the
framework of tilt feature set with quadratic discriminant
analysis with 83.90% respectively for the two datasets of
expiration and inspiration episodes of newborns' CAS.
Hence, we conclude that septic infants cry differently than
healthy infants from the spectral and temporal views. The
scheme proposed in this study is promising to be used as a
tool to assist pediatricians and address the lack of pediatri-
cians in deprived areas.
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