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ABSTRACT:
Dealing with newborns’ health is a delicate matter since they cannot express needs, and crying does not reflect their

condition. Although newborn cries have been studied for various purposes, there is no prior research on

distinguishing a certain pathology from other pathologies so far. Here, an unsophisticated framework is proposed for

the study of septic newborns amid a collective of other pathologies. The cry was analyzed with music inspired and

speech processing inspired features. Furthermore, neighborhood component analysis (NCA) feature selection was

employed with two goals: (i) Exploring how the elements of each feature set contributed to classification outcome;

(ii) investigating to what extent the feature space could be compacted. The attained results showed success of both

experiments introduced in this study, with 88.66% for the decision template fusion (DTF) technique and a consistent

enhancement in comparison to all feature sets in terms of accuracy and 86.22% for the NCA feature selection

method by drastically downsizing the feature space from 86 elements to only 6 elements. The achieved results

showed great potential for identifying a certain pathology from other pathologies that may have similar effects on

the cry patterns as well as proving the success of the proposed framework. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Thanks to advances in both engineering and medical

research, it is now known that pathologic newborns cry

diversely compared with healthy newborns and the cry char-

acteristics could differ across different pathologies.1 These

observations sparked the idea for the design of various new-

born cry diagnostic systems (NCDSs). So far, NCDS archi-

tectures have served the purpose of diagnosing newborns

with a certain pathology from the healthy,2–4 detected

healthy newborns from a collective of pathologies,1,5–7 and

very recently differentiated between two pathology groups.8

In this study, the NCDS was taken one step further to detect

a certain group of pathologies among an ensemble of other

pathologies. For simplicity, we refer to this assemblage of

other pathologies as non-septic.

NCDSs benefit from a vast range of tools that help

enhance their final diagnostic performance by improving

different stages of the NCDS design. A NCDS design entails

three main components, which are namely preprocessing, fea-

ture extraction and manipulation, and finally classification,

which is vital to all of the audio classification applications.

Crying is a manifestation of the newborn’s health since

it is the product of an extensive number of organs working

together in harmony, and malfunction in any of these organs

would be reflected in the generated cry signal.9 Early studies

showed that spectrograms of the healthy newborns followed

consistent patterns, whereas the spectrograms of newborns

diagnosed with pathologies would have certain acoustic

attributes that makes them distinguishable.10 In this regard,

many NCDS designs focused on the extraction and selection

of the features that would effectively capture and represent

these attributes. In the feature extraction step of the NCDS,

a wide range of features from time, frequency, and time-

frequency domains were employed, which include but are

not limited to Mel frequency cepstral coefficients (MFCCs),

gammatone-frequency cepstral coefficients (GFCCs), linear

predictive coding (LPC), F0 contour, auditory amplitude mod-

ulation, resonance frequency, prosodic features such as rhythm

and tilt, entropy-based features (e.g., spectral and approximate

entropy), and features inspired by analysis of music, such as

harmonic ratio, spectral centroid (SC), and spectral flux.

Among these features, Mel-frequency-based features,

more specifically, MFCCs, are the most prevalent and often

used as a baseline in many designs to ensure comparability

with the works of other researchers. The reason behind the

success and prevalence of MFCCs is because of their good

discriminative performance;11 however, the role of cepstral

analysis is often not emphasized enough. Cepstral analysis

facilitates the discrimination between the source and the fil-

tering in audio analysis tasks since it is a homomorphic

transformation. In speech analysis, the basic study of the

speech components includes the segregation of how each

component affects the final outcome, which translates toa)Email: zahra.khalilzad.1@ens.etsmtl.ca
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declaring the functions of vocal tract impulse response, glot-

tal pulse, and vocal cord timing. In the study of cry signal

analysis for different applications, cepstral analysis was

proven highly successful for the mentioned reasons. MFCCs

were used to detect asphyxia,12,13 hearing impairment,14

sepsis4,15 cleft palate,2 respiratory distress syndrome,3 and

hypothyroidism.16 There are also a number of studies that

focus on separating the healthy infants from a collective of

pathologies, where MFCCs have served successfully as

well.1 Another cepstral feature set that has recently gained

attention are the GFCCs, owing to their better noise robust-

ness, cost-efficiency, and better discriminative perfor-

mance.11,17 GFCCs were utilized for speaker

identification,18 emotion recognition based on both newborn

cry signals and adult speech,19,20 and finally detection/

discrimination of pathologies based on newborn cry sig-

nals.11 Inspired by this pattern for combining the psycho-

acoustic frequency warping with cepstral analysis, the idea

of using another scale, named bark, along with the gamma-

tone (GT) was worth exploring. Bark-frequency cepstral

coefficients (BFCCs) were employed to identify the reason

for crying in newborns,21–23 detection of high-risk prematu-

rity in newborns,24 enhanced emotion detection from speech

signal,25 and automatic speech recognition26 and other audio

analysis applications. The SC is derived from the study of

timbre in musical application and tone measurement in

audio signals and utilized for the detection of Alzheimer’s

from an electroencephalogram (EEG),27 and in NCDS appli-

cations it is used to detect pathologies15 and developmental

disorders28 and for understanding the reason for crying.29

Spectral crest is often utilized in feature sets along other spec-

tral features in several studies, with the purpose of visualizing

music emotion,30 detection of hunger from stomach sounds,31

epileptic seizure detection,32 and audio fingerprinting.33

The next step of the NCDS design is classification,

which has been developed with many different methods and

classifiers. The support vector machine (SVM),34 multilayer

perceptron (MLP),8 K-nearest neighborhood (KNN),15 ran-

dom forest (RF),35 decision trees,4 probabilistic neural net-

work (PNN),6 deep feedforward neural network (DFFNN),

convolutional neural networks (CNNs),5 long short-term

memory (LSTM) networks,11 and many other classification

approaches are among the means employed in NCDS

design. Although some of these studies compared the results

of the mentioned classifiers, very few focused on combining

the outcomes of the classifiers to form a final decision, and

to the best of the authors’ knowledge, there is no prior study

in the field of NCDS designs that fulfills this purpose.

Decision fusion (DF) has a wide range of applications in

healthcare,36,37 signal processing,38 image analysis,39 bio-

logical system activities,40 disease monitoring,41 drug-target

interactions,42 and many more. DF is lucrative for its role in

enhancing combination of different data sources and non-

uniform data,43 enhanced decision making,44 better perfor-

mance,45 and finally, diminution of noise, cost, information

drop, and ambiguity.46–48 There are multiple approaches for

combining the outcomes of different classifiers and feature

sets: among them, decision template fusion (DTF) was selected

for this study since it proved to have better performance in

experimental studies, especially on smaller sample sizes. It

was shown that DF by the employment of DTs is independent

of uncertain surmise and more immune to overtraining.49

The contribution of this study can be seen from three

main aspects. (i) Distinguishing a certain group of pathology

from a conglomeration of other pathologies that are closely

related is unprecedented in the study of NCDS. Here, we

distinguished sepsis from 31 other pathology groups such as

respiratory distress syndrome (RDS), meningitis, etc. (ii)

Extracting the crest and SC from bark and equivalent rectan-

gular bandwidth (ERB) spectrum and combining them with

cepstral analysis is novel in NCDS designs. (iii)

Employment of DTF in NCDS to combine the result of a

neural network (NN) classifier and SVM and KNN, which

are all trained on different features, is novel in the decision-

making stage of NCDS designs.

The importance of newborn sepsis is several-fold; it

was among the top 10 mortality causes of newborns world-

wide, accounting for around 3� 106 deaths in children

under 5 yr old.50 The diagnosis of sepsis is complex and

based on studying different medical cues: feeding difficulty,

fever, convulsion, hemodynamic aberrations, apnea lasting

longer than 20 s, and lethargy.51,52 The study and monitoring

of these cues require time and medical equipment; however,

time is the most crucial element in treating sepsis, to the

extent that once a newborn is suspected of sepsis, antibiotic

treatment could be started even without validatory results.53

Furthermore, availability of medical monitoring and test

equipment is not evenly distributed throughout the world,

and sadly, the areas that suffer from higher newborn mortal-

ity rates are struggling with a lack of sufficient professionals

and equipment.50 Therefore, the design of a diagnostic sys-

tem that is non-intrusive and non-complex while being time-

efficient and not requiring high computational power or

state-of-the-art hardware is of high importance. This study

presents a NCDS that while delivering acceptable perfor-

mance, maintains simplicity and non-invasiveness.

This study is composed of four main sections. An intro-

duction (Sec. I) is presented where the problem is

highlighted and a short review of literature presents the nov-

elty of the proposed study. Section II expounds the dataset

and the proposed methodology, including description of fea-

tures, classifiers, fusion technique, feature selection model,

and evaluation measures. After that, Sec. III provides the

results of the experiments and compares and discusses these

results. Finally, Sec. IV presents the conclusion of the study.

II. DATA AND METHODOLOGY

A. Dataset description

Before presenting the details of the dataset, it should be

highlighted that the most challenging factor in developing

the NCDS is data collection and then taking the measures to

gain the ethical approvals regarding those data. Even after

meeting all the requirements, the occurrence of any
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pathology could not be anticipated in any particular time

span, which means, for example, over a 2-yr data collection

phase, one might or might not encounter a newborn diag-

nosed with meningitis. Therefore, any acquired data are

priceless and should be considered for in-depth analysis.

The dataset in this study was collected from newborns

with various origins, races, gestational ages (less than

3 months old), cry stimuli, weights, genders, and patholo-

gies. This was made possible with the collaboration of Saint

Justine Hospital of Montreal, Canada and Al-Raee and Al-

Sahel Hospitals located in Lebanon. The cry signals were

recorded in the presence of noise in both public and private

maternity rooms and neonatal intensive care units (NICUs)

in the hospital environment, with no predefined conditions.

These signals have different lengths from 1 to 4 min, with

an average of 90 s, including both useful and unwanted

information like staff chatter, equipment beeps, and crying

from other newborns. The equipment used for data collec-

tion was a digital 2-channel handheld recorder with a

44.1 kHz sampling frequency and 16-bit resolution. The

recorder was positioned 10 to 30 cm away from the new-

born’s mouth for the recording process. Up to 5 recordings

were collected from each participant. A detailed overview

of the database is represented in Table I.

The reason behind putting a limit on the age of new-

borns is due to the fact that a cry utterance below 53 days of

age is only effectuated due to biological rhythms and the

newborn has no control over it.54 This may be related to the

development of the vocal tract, which takes place after

3 months of age, when the supralaryngeal reconfiguration

occurs, and therefore, no specific incrementing or decre-

menting pattern was observed in the average fundamental

frequency of the cry signals.55,56

The most difficult part in any biomedical problem is

data collection and curation. Obtaining the consent of new-

borns’ guardians to record the cry signals and then achieving

their consent to include that cry signal in the database are

highly challenging. Afterwards, obtaining the ethical and

technical approvals from the relevant regulatory bodies

(e.g., ethical committees) to add samples to a database is an

arduous and toilsome process that might even lead to losing

some of the acquired data. More significantly, even after

obtaining all the requirements, the occurrence of a certain

pathology during the defined course of data collection is

unpredictable. This means that one cannot guarantee or pre-

dict that there will absolutely be one or more newborns suf-

fering from, for example, meningitis, admitted to the same

hospital designated for data collection in a 24-month time

span. Therefore, any acquired data are invaluable, and all

efforts should be made to enable their investigation. For this

study, we decided to include all of the available pathologic

recordings as a large general group of “pathologic” new-

borns for the following reasons. (i) It was observed that each

pathology has a unique pattern that distinguishes it from the

rest, and hence, being able to sketch a methodology that can

identify and candidate the septic newborns beyond these dif-

ferences, seemed very interesting. (ii) Although there seems

to be a limited number of participants from each pathology

group (only 1 baby in some cases), there are other factors in

play that make each recording from the same newborn dif-

ferent from the others to some extent. It should be noted that

we believe that some leakage might be present between the

training and test sets due to the similarities in the acoustic

structures of the test and training sets, but we believe that

there are also sufficient meaningful differences between the

recordings of the same newborn to enable us to further ana-

lyze them. The data collection took place during different

emotional and physical statuses of the newborn, and at the

same time, it should be noted that in addition to the

TABLE I. An overview of the database participants.

Gender Female and male

Babies’ ages Less than 53 days old

Weight 0.98 to 5.2 kg

Origin Canada, Haiti, Portugal,

Syria, Lebanon, Algeria, Palestine,

Bangladesh, Turkey

Race Caucasian, Arabic,

Asian, Latino, African,

Native Hawaiian, Quebec

Cry stimulus Discomfort, sleepiness,

wet diaper, pain,

fear, colic, reflux,

birth cry, hunger

Pathology No. of babies No. of files

Ankyloglossia 1 3

Apnea 1 3

Asphyxia 1 3

Aspiration 1 3

Bronchiolitis 4 12

Bronchopulmonary dysplasia 1 2

Choanal atresia 1 3

Cleft lip and palate 1 3

Complex cardio 1 3

Cyanosis 2 6

Down syndrome 1 3

Duodenal atresia 1 3

Dyspnea 4 10

Fever 1 3

Gastroschisis 2 4

Grunting 2 6

Hyperbilirubinemia 15 43

Hypoglycemia 2 7

Hypothermia 1 3

Intrauterine growth retardation 1 3

Kidney failure 1 3

Meconium aspiration syndrome 2 6

Meningitis 2 6

Myelomeningocele 1 3

Respiratory distress 33 102

Retraction 1 4

Seizure 1 3

Sepsis 17 53

Tachypnea 2 6

Tetralogy of Fallot 1 2

Thrombose 1 4

Vomit 4 12
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diagnostic purposes, newborn cry signals have also been

translated in terms of emotions.21,57 There are numerous stud-

ies and even recent desktop and mobile applications58 that

can take different crying samples of the same newborn and

categorize them based on the emotional needs of the infant:

for example, it was shown that a pain cry is substantially dif-

ferent from the hunger or discomfort cry, and they can be

efficiently distinguished by using the correct methodology. It

should be also noted that we have at least two recordings

from each participant that were used separately for training

and testing purposes. As a final point, it should be pointed out

that, as shown in Sec. III, the attained results in this study fall

within the range of other existing literature and do not show a

surprising increase to suggest any concerns.

B. Pre-processing

In Sec. II A, it was mentioned that there is no guarantee

that a newborn diagnosed with a certain pathology group

would be observed over a prespecified time span. Therefore,

upon acquiring data from a certain pathology group, it is

desirable to make deeper use of the data by any possible

means. The cry signals in our dataset were segmented based

on the physiological differences of the acoustic activities

during a cry utterance, and different labels were assigned to

each segment. The two main acoustic activities, for exam-

ple, are EXP, which refers to an expiratory cry, and INSV,

which refers to a voiced inspiratory cry unit. These labels

for the bounded segments were appointed by the means of

WAVESURFER (version 1.8.8) (WaveSurfer.js, Stockholm,

Sweden) software by the group of researchers in our lab.

Furthermore, the outlier samples and those with a length of

less than 17 ms (equal to the length of two overlapping win-

dows of 10 ms with a 30% overlap) were omitted. This con-

dition was applied to ensure having a reliable analysis of the

dataset.

The number of samples in each group of our study is

presented in Table II; it should be noted that the numbers in

Table II denote the values before selecting an equal number

of samples in order to have an approximately balanced data-

set. In total, 2264 samples (1132 from each class) were

selected, which formed a training dataset with 1585 samples

(789 septic and 796 non-septic) and a test dataset with 679

samples (343 septic and 336 non-septic).

C. Feature extraction

Feature extraction has the highest significance in the

design of a NCDS framework as it can change the course of

the following steps and affect the final decision. Moreover,

the nature of a cry signal is dynamic, non-stationary, and

disparate from both speech and music to some extent, while

including noise. Therefore, the extraction of features that

can represent the cry signal both from the spectral and short-

term perspective and originate from the domains of speech

processing and music analysis would be of the essence.

Moreover, as was previously mentioned, since the cry signal

is emanated in the nature of speech generation, employing

the cepstral analysis would be inevitable. Consequently, this

study combines psychoacoustic-based warping of the spec-

trum with cepstral analysis for the short-term analysis of the

signal and studies the dynamic nature of the signal through

delta and delta-delta coefficients of the bark and GT scales.

Additionally, in order to capture the spectral properties of

the cry signal and explore it from the musical perspective,

SC and crest features were extracted.

The bark and ERB or GT scales were developed as

psychoacoustic-based spectral measures. The bark scale for

frequency f is given by Eq. (1) and the ERB scale by Eq. (2):

Bark fð Þ ¼ 6 ln
f

600
þ f=600ð Þ2þ1

h i0:5
� �

; (1)

ERB fð Þ ¼ 21:4 log 0:00437fþ1ð Þ: (2)

The ERB scale was chosen since it assists the study of lower

frequencies with higher resolution. In addition, it was shown

in several studies that ERB scaling resulted in better perfor-

mance of non-speech classification problems, which is

accompanied by more robustness and lower computational

costs when compared to the triangular bands that are con-

ventionally employed in MFCC feature extraction.59,60 In

order to attain GFCCs, the cry signal is first windowed into

overlapping Hamming filters of 10 ms with 3 ms overlap

length; since windowing enhances the performance of the

feature extraction step and the non-stationarity of the signal

could be neglected in such short frames.

The physiological and psychophysical study of the

peripheral auditory system inspired the design of gammatone

filters (GFs), which represent the modelling of the cochlea.

A bank of 64 filters was utilized for the extraction of the

GFCCs. The magnitudes of the decimated outputs are then

loudness-compressed by a cubic root operation, Eq. (3):

Gm i½ �¼ gj jdecimate
½i;m�

�� ��1=3
; i¼0; 1;N�1;m¼0; 1;M�1:

(3)

N is the total number of GFs, M denotes the number of

frames, and Gm i½ � represent the time-frequency representation

of the input signal. The index m is then removed for simplic-

ity. The GFCCs are then obtained through the application of

TABLE II. Specifications of the dataset.

Sepsis status

No. of

participants

No. of segmented

training files

No. of segmented

test files Available time (s)

Average duration

of samples (s)

No. of samples

selected

Septic 17 789 343 1773.66 0.71 1132

Non-septic 110 796 336 10712.28 0.52 1132
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a discrete cosine transform (DCT) to the GFs, yielding

Eq. (4),

GFCCj ¼
ffiffiffiffi
2

N

r XN�1

i¼1

G i½ � cos
jp
2N

2iþ1ð Þ
� �

;

j ¼ 0; 1; …; N� 1; (4)

where GF[k] denotes the loudness-compressed response of

the GFs, and the number of filters is given by N.17

The width of the critical bands of the human auditory

system equals 1 bark, and hence, a more direct correlation

with the spectral information processing of the human audi-

tory system is achieved when the spectral energy is warped

over the bark scale.59 The process of extracting BFCCs is

identical to GFCC feature set, with only the bark scale being

the difference. Similar to GFCCs, the BFCC feature set is

constituted of 39 elements.

SC is an indicator of how the signal’s spectrum looks

and where the majority of its mass lies. The average of SC

is shown to be a powerful discriminator in audio signals,

especially in the field of musical applications.61 In order to

calculate the SC of a given window i, we should take the

weighted average of the frequency bins, as shown in Eq. (5),

SC ið Þ ¼

XH=2

k¼1

f kð Þ sk ið Þ
�� ��

XH=2

k¼0

sk ið Þ
�� �� ; (5)

where skðiÞ
�� �� is the amplitude at the corresponding bin k, H

is the number of points in the Fourier transform, and f ðkÞ is

the frequency at the kth bin.62 Note that the frequencies

have been mapped to the bark scale prior to the computation

of the SC; therefore, we name this feature set the bark spec-

tral centroid (BSC).

Finally, we extracted the equivalent rectangular

bandwidth-based spectral crest (ERBS crest) which points

out the level of peakiness in the spectrum of the signal.

The crest feature set is a highly informative audio

descriptor in musical applications that represents the har-

monicity of a spectrum. The crest value is associated with

discerning how peaky the spectrum is, where the higher val-

ues correspond to the presence of a loud peak compared to

the overall curvature of the spectrum. It was shown that

crest is rather independent from other pitch-based features

and dynamics. In order to obtain the crest feature set, for the

ith frame of the signal, short-time Fourier transform (STFT)

is applied to yield the power spectrum. The STFT results in

k frequency bins across the signal’s spectrum with sk ampli-

tudes. The crest is calculated by the ratio of the maximum

value (loudest magnitude) to the arithmetic average of the

window’s power spectrum, as given in Eq. (6),

Crest ið Þ ¼ maxfsk ið Þg
1

K

XK

k¼1

sk ið Þ
; (6)

where K denotes the number of STFT bins. In order to form

a compact feature set and ensure the comparability along

samples of different sizes, the average, standard deviation,

H-spread, and median of the crests were calculated to form

a feature set with four elements. The same statistical mea-

sures were applied for construction of the BSC feature set,

which also has four elements.

For higher clarity of the feature space formation, Table

III is presented, which summarizes the information given in

this section.

D. Classification

In the classification step, all of the feature sets were fed

to the three selected classifiers so that their performances

would be tested, and also the best classifier þ feature sets

would be selected for the fusion step. All the classifiers

benefitted from validation. SVM and KNN were validated

using a stratified fivefold cross-validation. The validation

secures the classifiers against overfitting and increases their

reliability. Finally, all of the classifiers were optimized using

random search. As for the MLP classifier, the validation pro-

cess is different from those of the SVM and KNN classifiers.

The validation process for the MLP consists of assigning a

portion of the data for validation and then employing that

data to validate the neural network during the training pro-

cess. For this study, the validation was performed at every

50 iterations and the validation data were shuffled at each

epoch. Shuffling means that we input the data to the system

in a random order. The shuffling of the data is a vital step in

training the classifier and is done with the purpose of vari-

ance reduction, enhanced ability of generalization, and pre-

venting the overfitting. We shuffled the data succeeding

each epoch to lower the possibility of creating batches that

do not correctly represent our dataset.

1. MLP

A MLP classifier has four main components. First, the

extracted features are fed to the input of the network, and

then they are conveyed forward across the layers. A back-

propagation method is employed in order to update the

weights of the network, and an optimization function assists

the tuning of the weights’ update.63 The decision in a MLP

network is made based on having the minimum distance

from the decision boundary hyperplane.64 In this study, the

root mean square propagation (RMSprop) optimization

function updates the backpropagation weights by the means

of minimizing the distance to the decision boundary

TABLE III. Feature space specifications.

Feature set Components Vector size

GFCC 13 coefficients, 13 deltas, 13 delta-deltas 39

BFCC 13 coefficients, 13 deltas, 13 delta-deltas 39

BSC Mean, standard deviation, H-spread, median 4

ERBS crest Mean, standard deviation, H-spread, median 4
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hyperplane.65 In order to further improve this classifier, ran-

dom search hyperparameter optimization was employed.

The number of input layer neurons was set according to the

feature vectors’ sizes. The hidden layer consisted of 128

fully connected neurons, which is accompanied by a normal-

ization layer. In order to specify whether the neurons would

fire during the process of learning, a hyperbolic tangent acti-

vation function was added to the layers. The output layer

was made of a fully connected layer with two nodes that

represent the two classes of septic versus non-septic and a

sigmoid function that is in charge of translating the raw out-

puts of all the layers into class probabilities. Finally, the

classification layer generates the final decision of class

labels based on the class probabilities. The learning rate was

set equal to 0.001, and the number of epochs was a total of

120; validation data included a 15% random share of all

data. Thirty percent of the data were randomly selected for

testing and separated from the dataset, and finally, 55% of

the data were randomly chosen for training.

2. SVM

As mentioned before, SVMs are one of the most well-

known classifiers and have a wide range of applications,

especially in the analysis of the audio signals. SVMs are

precise, versatile, and capable of dealing with linear and

non-linear data. In order to classify data points, the SVM

attempts to build a hyperplane that is able to separate the

data points of the two classes as far as possible, and if the

data are not divisible linearly, the radial basis function

(RBF) kernel, which computes the Euclidean distance, is

chosen.66

3. KNN

KNNs are known for their simplicity and effectiveness.

As the name suggests, the basis of classifying the data points

is measuring the distance from the neighbors, where each

point would be placed in the same class as its neighbors

with the lowest distance. There are three elements in a

KNN: the distance measure (which can be Minkowski, stan-

dard Euclidean, Euclidean, Jaccard, Hamming, cosine,

Chebyshev, and Manhattan), the number of neighboring

data points K, and sets of labeled data for training and

testing.67

E. Fusion using decision templates

Suppose that in a classification problem with l classifiers

fC1; C2; …; Clg and X ¼ ½x1; x2; …; xn�T denotes the

n-dimensional input feature vector, which corresponds to

the m class labels W ¼ fw1; w2; …; wmg. Each ith classifier

will produce an output where CiðXÞ ¼ ci;1ðXÞ;
�

ci;2ðXÞ; …; ci;mðXÞ�T . Here, ci;jðXÞ represents the posterior

probability that the ith classifier suggests that X belongs to

the class xj.

In order to fuse the outputs of the classifiers, an l� m
decision profile (DP) is constructed, as shown in Eq. (7):

DP Xð Þ ¼
c1;1 Xð Þ � � � c1;m Xð Þ

..

. . .
. ..

.

cl;1 Xð Þ � � � cl;m Xð Þ

2
664

3
775: (7)

Each column j shows the possibility that a collective of

l classifiers declare that X corresponds to the class label xj.

Finally, the result of fusion would be in the form of a vector

of length m, as shown in Eq. (8):

C Xð Þ ¼ d1 Xð Þ; d2 Xð Þ;…; dm Xð Þ
� 	T

: (8)

For di Xð Þ denotes the possibility that the result of fusion

declares the input X to belong to class xi. The final decision

is made based on a certain rule of fusion, such as minimum

(min), maximum (max), median, product, and sum operating

each corresponding column of the DP matrix to yield the

decision templates (DTs). Here, the minimum rule was cho-

sen, which is given in Eq. (9):

dj Xð Þ ¼ min
i¼1:l

ci;j Xð Þ; j ¼ 1; 2;…;m: (9)

The reason behind the selection of the min rule was that it

was shown that min/max and product outperformed other

fusion rules and the min/max rule showed the best perfor-

mance for uniformly distributed data. It was also proved that

in case of a binary classification, the performances of the

min and max fusion rules are equal.68 This led us to the

selection of the minimum as the fusion rule.

Thereafter, the DTs are calculated, as shown in Eq.

(10), where zj denotes the samples that are from class xi in

the training set Z and the number of zj is given by Nz:

DTi ¼
1

Nz

X
DP zjð Þ; zj 2 Z; zj 2 xi: (10)

The input’s labels are decided based on a similarity measure

between the DP and different DTs. In this study, the squared

Euclidean distance was selected as the similarity measure.

Equation (11) shows the calculation for determining the out-

put labels based for a given sample, P,

dE ¼
Xm

j¼1

Xl

k¼1

ck; j Pð Þ � dti k; jð Þ

 �2

; (11)

where dE represents the Euclidean distance measure

between the DP and each DTi, and dti k; jð Þ stands for the

element marking the intersection of column j and row k.49,69

Figure 1 shows the design of our NCDS employing the DTF

technique.

F. NCA feature selection

As a final experiment, neighborhood component analy-

sis (NCA) was implemented to determine which elements of

the feature sets contributed the most to the final classifica-

tion results. NCA is non-parametric and aims to enhance the
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accuracy of the classification to its peak performance. The

general performance of the NCA can be explained as a

KNN classifier, where K¼ 1 and neighbors are chosen ran-

domly so that there is a probability for each point in the fea-

ture space to be chosen as the reference point. The goal is to

learn a classifier that predicts the true label y of x based on

the features fed to the input by selecting a random point,

Ref(x), from the training set as the reference point and

deciding the label of the point x based on this reference

point, Ref(x).

The chance of any given point xj to be picked as the ref-

erence point is evaluated based on a weighted distance func-

tion, dw, which is given by Eq. (12),

dw xi; xjð Þ ¼
Xp

r¼1

w2
r xir � xjrj j; (12)

where wr denotes the weight for the r th feature and p
denotes the feature dimension of xi. In order for the nearest

neighbor classifier to perform desirably, one suitable way is

to maximize its leave-one-out accuracy. This would not be

practical since the selection of the nearest neighbor as the ref-

erence point in the leave-one-out accuracy would result in a

non-differentiable function. Therefore, the approximation

where the reference point is in the form of a probability dis-

tribution would be effective. Equation (13) presents the prob-

ability pij that a given point xi gets xj as the reference point,

pij ¼

j dw xi; xjð Þ

 �

X
k 6¼ i

j dw xi; xkð Þ

 � if i 6¼ j;

o otherwise;

8>>><
>>>:

(13)

where j is a kernel function jðzÞ ¼ exp �z=rð Þ that affects

the probability of any given point being selected as the ref-

erence point through the kernel width r; which is deter-

mined by an input. In other words, if r!1, all of the

points in the training set have equal probability to be chosen

as the reference point, and if r! 0; only the nearest neigh-

bor has the chance of being the reference point. Hence, the

probability of the correct classification of the query point xi

is given by Eqs. (14a) and (14b),

pi ¼
X

j

pijyij; (14a)

where

yij ¼
1; yi ¼ yj

0 otherwise:

�
(14b)

Now the leave-one-out classifier’s accuracy can be approxi-

mated by Eq. (15):

F wð Þ ¼ 1

N

X
i

pi ¼
1

N

X
i

X
j

pijyij: (15)

In order to prevent the classifier from overfitting, a positive-

valued regularization term, k, is added to the object function

that can affect the influence of the weights and will be tuned

via cross-validation. The objective function can now be

written as Eq. (16):

F wð Þ ¼
X

i

X
j

pijyij � k
Xp

l¼1

w2
r : (16)

The 1/N term is ignored since it does not affect the solution

vector. Finally, in order to maximize the objective function,

its derivative with respect to the feature weights is taken, as

shown in Eq. (17):

@F wð Þ
@wr

¼
X

i

X
j

yij

"
2

r
pij

 X
k 6¼i

pik xir � xkrj j

� xir � xjrj j

!
wr

#
� 2kwr

¼ 2

 
1

r

X
i

 
pi

X
k 6¼i

pik xir � xkrj j

�
X

j

pijyij xir � xjrj j

!
� k

!
wr

¼ 2

 
1

r

X
i

 
pi

X
k 6¼j

pij xir � xjrj j

�
X

j

pijyij xir � xjrj j

!
� k

!
wr: (17)

The above equation is the basis of the NCA feature selec-

tion.70 In this study, in each of the feature sets, the features

FIG. 1. (Color online) Design of the NCDS employing DTF.
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that accounted for more than 80% of the final classification

results were extracted from the set. Then, these features

were concatenated in a single vector and fed to the classifier

to determine the role of NCA.

G. Evaluation measures

The framework of this study was designed and devel-

oped with the goal of identifying septic infants from a col-

lective of several other pathologies for the first time. The

features and classifiers are used from diverse natures and

origins, and in order to compare their performance several

evaluation measures are introduced in this study. The first

measure that is used in any binary classification problem is

accuracy due to its simplicity of calculation and being

straightforward. Accuracy is computed from the ratio of cor-

rect predictions over all the samples. However, this measure

is not illuminating enough to cover all aspects of system

performance, and more measures are needed to study other

aspects of the problem.71 Therefore, two other measures,

namely precision and specificity were studied alongside

accuracy. Specificity shows the rate of true negative (TN)

cases, which translates to the number of the cases that were

correctly marked as non-septic, and precision, or positive

predictive value (PPV), denotes how well the NCDS pre-

dicts an actual presence of septic cases.72 The F-score mea-

sure is highly instructive as it summarizes these measures

into a single value from calculating the harmonic mean of

the PPV and the true positive rate (TPR).73

These measures evaluate the performance of the system

from the problem-solving perspective; however, the system

can also be assessed with regard to its classification perfor-

mance. Therefore, one final evaluation measure is added to

our evaluation criteria, which is Matthews’ correlation coef-

ficient (MCC). MCC helps elucidate all the information

from a contingency matrix (TN, true positive [TP], false

negative [FN], and false positive [FP]) as they are all taken

into account for the calculation of MCC, as shown in Eq.

(18). The value of MCC can be anything in the range of [

–1, þ1], where the negative value represents a misclassifica-

tion, zero signifies random classification, and the higher pos-

itive values translate into better classification

performance:74,75

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ TN þ FPð Þ TPþ FPð Þ TN þ FNð Þ

p :

(18)

The receiver operating characteristic (ROC) curve assesses

the performance of a binary classification problem. In a

diagnostic test like the presented study, the results should be

classified into a differently diverse category such as the

presence of sepsis or its absence. However, since these

results are rather ordinal or continuous, we should set a ref-

erence (or threshold) to decide the presence of sepsis. An

ROC curve is designed for this purpose. It functions via con-

necting the coordinates where the horizontal axis represents

the FP rate (given by 1 � specificity) and the vertical axis

represents the sensitivity for all threshold values. The ROC

has the benefit of not being altered by pervasiveness, as

opposed to the single evaluation measures such as specific-

ity or sensitivity. Moreover, several experiments can be

observed and compared at the same time.76 Therefore, we

have included the ROC curves for the NCA and DTF experi-

ments in this study.

III. RESULTS AND DISCUSSION

The NCDS in this study was designed and developed

with the purpose of identifying the septic newborns among

an ensemble of other pathologies for the first time in NCDS

designs. The features employed for the NCDS were the

ERBS crest, BSC, GFCC, and finally, BFCC. These features

were fed to three classifiers, namely SVM, KNN, and MLP.

As it was discussed before, in this section, the result of clas-

sifying each feature set with different classifiers will be pre-

sented first in Tables IV to Table VII. In order to fuse the

results of different features fed to various classifiers, the set

of feature þ classifier that resulted in the highest accuracy

measure was selected to form the DPs and DTs. These sets

are highlighted in each of the tables below. As for the fea-

ture sets of BSC and ERBS crest, the low dimensionality of

the feature vectors prevented the MLP classifier from con-

verging, which was expected, and MLP was more suitable

for BFCC and GFCC features sets that had a larger size.8

The results for the classification of data with BFCC fea-

ture set are given in Table IV. The BFCC feature set showed

great potential, with the highest accuracy of 83.51% and an

MCC of 0.67 with the MLP classifier. By taking a look at

Table V, it can be seen that the combination of GFCC þ
MLP was outperformed by the BFCC feature set with the

same classifier. Moreover, Table IV shows that all of the

classifiers had positive values for MCC, and hence, the clas-

sification was performed successfully. The SVM and KNN

classifiers were less efficient in terms of all evaluation crite-

ria; therefore, the set of BFCC þ MLP was chosen for the

DT and DP calculations of the next experiment.

TABLE IV. Results for the classification of the BFCC feature set with

KNN, SVM, and MLP classifiers.

Classifier Accuracy Recall Specificity Precision F1-score MCC

KNN 67.01 61.90 72.01 68.42 65.00 0.34

SVM 70.99 71.73 70.26 70.26 70.99 0.42

MLP 83.51 79.46 87.46 86.13 82.66 0.67

TABLE V. Results for the classification of the GFCC feature set with

KNN, SVM, and MLP classifiers.

Classifier Accuracy Recall Specificity Precision F1-score MCC

KNN 84.09 79.46 88.63 87.25 83.18 0.68

SVM 76.14 75.30 76.97 76.20 75.75 0.52

MLP 82.92 81.25 84.55 83.74 82.48 0.66
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Table V presents the results for the GFCC feature set.

The best evaluation measures were achieved through the

combination of the GFCC and KNN classifier, with 84.09%

for the accuracy and 0.68 for the MCC measure. It is also

worth mentioning that this set remarkably achieved the

highest values across all of the experiments from the first

part. Another point worth highlighting is that not only does

GFCC have the overall best performance among feature þ
classifier combinations, but also it has shown interestingly

higher performance with simpler classifiers (SVM and

KNN) compared to all of the other combinations in this

study. This could signify higher efficiency of the GFCC

compared to other feature sets.

The results of evaluating the NCDS with the BSC and

ERBS crest feature sets are given in Table VI and Table VII,

respectively. It should be highlighted that even though both

feature sets had lower performances compared to the GFCC

and BFCC feature sets, they only have low dimensions of

four elements, which proves their favourable outcomes. The

ERBS crest feature set had better performance than the BSC

feature set overall; however, each of these feature sets

responded better to different classifiers. The highest results

achieved for the BSC feature set was via the KNN classifier,

with 63.18% and 0.29 for the MCC, which was the combina-

tion selected for the next step. The SVM þ ERBS crest com-

bination had the highest values across evaluation measures of

accuracy and MCC, with 77.91% and 0.62, respectively.

In order to fuse the outputs of the highlighted feature

þ classifier sets, the corresponding posterior probabilities of

training and test datasets, as well as the training labels, were

recorded to form the DPs and DTs. The result of the DTF

technique for fusion is presented in Table VIII along with

the best feature þ classifier sets for a clearer interpretation.

Figures 2 and 3 illustrate a comparison of how each fea-

ture set and its corresponding evaluation measures were

impacted by the fusion. As it can be interpreted from Table

VII, Fig. 2, and Fig. 3, the result of the fusion framework

enhanced the results in all cases, with an average of 11.49%

for accuracy and 13.67% for the F-score. There is only one

exception to this conclusion, where the specificity measure

for GFCC þ KNN set was higher by 0.29%, which is negli-

gible. Even the best results of the first step of these

experiments had a 4.57% and 0.09 enhancement in the accu-

racy and MCC, respectively, with the DF method. The DF

method imposes negligible computational cost on the sys-

tem and is very fast since its calculations only take less than

a second. The above results prove the high potential of this

method for the design of multimodal NCDS, as presented in

this study, where both spectral and short-term features were

extracted and employed from musical and speech processing

origins. Moreover, as was mentioned before, the enhance-

ment is consistent across different evaluation measures.

Another experiment was carried out to study the role of

feature selection and to evaluate to what extent the feature

space could be compacted. Each feature set was analyzed

with the NCA method, and the features that had the highest

contribution to the final classification results were selected.

The NCA revealed some details worth explaining here.

The study of both BFCC and GFCC showed that the most

significant information in these feature sets belongs to the

first 13 coefficients and not their deltas; this was shown in

another study on a similar subject,8 where only 13 GFCC

coefficients resulted in around 93% accuracy of classifica-

tion. Furthermore, the BSC and ERBS crest feature sets both

had their 3rd elements selected. The 3rd element in both fea-

ture sets belonged to the H-spread, or interquartile range. It

can be deduced that this statistical measure has high poten-

tial in representing and summarizing spectral data for the

infant cries. As for the BSC feature set, the 4th element was

also selected, which denotes the median statistical measure.

TABLE VII. Results for the classification of the ERBS crest feature set

with KNN and SVM classifiers.

Classifier Accuracy Recall Specificity Precision F1-score MCC

KNN 61.56 36.31 86.30 72.19 48.32 0.26

SVM 77.91 100.00 56.27 69.14 81.75 0.62

TABLE VI. Results for the classification of the BSC feature set with KNN

and SVM classifiers.

Classifier Accuracy Recall Specificity Precision F1-score MCC

KNN 63.18 40.48 85.42 73.12 52.11 0.29

SVM 53.61 63.69 63.69 43.73 52.58 0.08

TABLE VIII. Results for the DTF technique showing the best feature þ
classifier sets selected.

Classifier

Feature

set Accuracy Recall Specificity Precision F1-score MCC

SVM ERBS

Crest

77.91 100.00 56.27 69.14 81.75 0.62

MLP BFCC 83.51 71.73 87.46 86.13 82.66 0.67

KNN BSC 63.18 40.48 85.42 73.12 52.11 0.29

KNN GFCC 84.09 79.46 88.63 87.25 83.18 0.68

Fusion 88.66 88.99 88.34 88.20 88.59 0.77

FIG. 2. (Color online) Average of the accuracy measures across different

experiments selected for the DTF with 95% confidence intervals.
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In order to evaluate the system performance with these

feature sets, the selected elements from each vector were all

concatenated in a single vector and fed to the classifiers of

this study. Once more, due to the low dimensionality of the

feature vector, the MLP classifier did not converge. The

result of the classification of the NCA-selected feature vec-

tor with SVM and KNN classifiers is presented in Table IX.

Although the results are lower than DF method, they

still represent a high potential and the success of the NCA.

In comparison to the GFCC feature set, the accuracy was

enhanced by 2.13% and the MCC by 0.05. The enhancement

suggests several points. First, the use of NCA will not have

a detrimental effect on the final performance of the NCA.

Moreover, it has shown that combination of the features

from the domains of speech and music would improve the

NCDS. Finally, the NCA feature set has only six elements

and could obtain an accuracy of more than 86%, which is

exceptional. Figure 4 shows a comparison between the

results of the two frameworks represented in this study, DF

and NCA feature selection. As can be seen from the graphs,

not only are the results of the two frameworks compatible,

but also the results for specificity and precision measures

show better performance with the NCA feature selection

method. It can be discussed that the feature selection leads

to a more uniform structure of the feature space: extracting

the essence of what each feature set represented and com-

bining these elements formed a more powerful indicator in

terms of these two measures.

Figure 5 and Fig. 6 represent the ROC curves for the

assessment of the two methods’ performance. As can be

deduced, the DTF method outperformed the NCA selection

in terms of the area under the curve (AUC). However, it can

be seen that DTF did not treat both classes in the same man-

ner: the AUCs for the septic and non-septic classes are dif-

ferent. The behavior of the DTF method was expected since

it originated from the fact that we calculated the Euclidean

distances with respect to the DPs of each class, which is not

the case in a KNN classifier.

Through these graphs, we can see that the single evalua-

tion measures did not highlight all the aspects of the results

obtained through our experiments, and thus, employing the

ROC curves is indispensable. In addition, it was shown that

the DTF method does not have a symmetric performance for

both classes as it is based on the DP of each class through

various classifiers to form a final decision. With that in

mind, we can see that the performance of the DTF for both

classes was superior to the NCA method, since the AUC for

the NCA with KNN classifier is 0.9358, whereas the AUCs

for the DTF method are 0.9483 and 0.9377 for the presence

and absence of sepsis, respectively.

This study served three purposes: (i) Assessing the role

of decision-level fusion in NCDS designs for the first time;

(ii) assessing the role of NCA feature selection in forming a

highly compacted feature set while keeping acceptable perfor-

mance, which is novel in NCDS designs; and (iii) distinguish-

ing a certain pathology (sepsis) amid a collective of other

pathologies, which is unprecedented in cry analysis studies.

In addition to the fact that many pathologies remain

unexplored or not well-studied in the field of cry diagnostic

applications, the NCDS itself has a great potential for further

development compared to other audio recognition applica-

tions. One of the main areas that could play a part in this

development is investigating whether a fusion of different

FIG. 3. (Color online) Comparison of the evaluation measures of the selected feature þ classifier sets to the DTF technique.

TABLE IX. Results for the NCA feature selection method with KNN and

SVM classifiers.

Classifier Accuracy Recall Specificity Precision F1-score MCC

KNN 86.22 80.12 92.19 90.94 85.18 0.73

SVM 78.20 99.23 62.10 70.98 81.12 0.60
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modalities would contribute to the enhancement of the final

decision made by the NCDS, which was the purpose of this

study. This framework opens the door for employing features

and classifiers from various modalities without the need for

complicated designs and advanced technology. The impor-

tance of keeping the design simple arises from the fact that,

unfortunately, the regions that are reported as having higher

newborn mortality rates suffer from lack of adequate medical

equipment and professionals and are listed among low-

income and middle-income areas. Therefore, if the NCDS

can classify as candidates the newborns with higher risk of

suffering from certain pathologies, especially sepsis, and rule

out the others, the existing equipment and experts can tend to

the newborns marked with higher risk.

Although sepsis is closely entangled with newborn mor-

tality rates,50 the number of newborn cry studies targeting

sepsis is scant. In order to address this research gap, the

researchers in our lab made efforts to study sepsis from dif-

ferent perspectives. Matikolaie et al.4 utilized prosodic fea-

tures to distinguish between healthy and septic infants and

attained 86% for the best F-score. Khalilzad et al.15 intro-

duced an entropy-based framework by extracting the spec-

tral entropy cepstral coefficients and then having a fuzzy

entropy as the feature selection means for the identification

of septic infants from the healthy group, obtaining 88.51%

for the accuracy regarding the expiratory cries. In another

study, Khalilzad et al.8 differentiated between RDS and sep-

tic cries through the combination of music-derived features

FIG. 5. (Color online) The receiver operating characteristic (ROC) curve

for the DTF experiments.

FIG. 4. (Color online) Comparison of the evaluation measures for the fusion framework and the NCA feature selection method.

FIG. 6. (Color online) The receiver operating characteristic (ROC) curve

for the NCA selection experiments.
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of harmonic ratio (HR) and GFCC features that yielded

95.29% for accuracy.

Up to this point, the NCDS performance was compared

regarding its performance with different features and classi-

fiers, before and after applying the DF method and NCA

feature selection. Also, the studies that scrutinized sepsis via

cry signals were compared in terms of the methods, their

purposes, and their performance with the accuracy or F-

score measures. This framework could also be compared to

the existing literature in terms of the methods employed

here and in other NCDS designs. Table X presents a short

comparison of the proposed framework with other similar

works in the literature.

As can be interpreted through all the aforementioned

studies, each of the tools that was implemented in the pro-

posed framework has shown great performance with differ-

ent applications. The results of our framework also suggest

the promising potential of studying DTF and NCA feature

selection methods for further studies in NCDS development.

In the future, it would be great to explore the role of features

from different modalities and more classifiers with the pro-

posed framework here. Moreover, it would be fruitful to

investigate how fusion at each level would affect the out-

come of the system. Finally, it would be an interesting sub-

ject to compare different fusion rules such as maximum,

product, etc., for the DTF technique.

IV. CONCLUSION

The cry signal is a powerful biomarker for studying the

physical health and needs of a newborn. This study aimed to

introduce a simple yet effective framework that was capable

of capturing different aspects of the septic cry in comparison

to a variety of other pathologies. The study of cry signals

was performed independent of newborns’ race, gender,

weight, and the reason for their crying. The cry signal is dif-

ferent from both speech and music, yet shares so many com-

mon attributes with both. Via implementing features from

different modalities and properties, both aspects of the cry

were studied, and each of the four introduced feature sets of

BSC, ERBS crest, GFCC, and BFCC showed desirable per-

formance individually. Then, through the DTF technique

these feature sets were fused, and the outcome surpassed the

results of all the individual feature sets by an average of

11.49% for the accuracy measure, reaching up to 88.66%,

which marks a notable increment and potential.

In order to achieve a more simplistic design and take a

deeper look at each of the introduced feature sets, the NCA

feature selection method was employed, where each of the

feature sets was analyzed, and the indices that contributed

the most to the final result were chosen. Next, all of the

selected indices were concatenated to form a single feature

vector that achieved 86.22% for the accuracy measure.

This study aimed to design an unsophisticated NCDS

that served as an alert system to the medical experts for pri-

oritizing the newborns with higher risk of being diagnosed

with the fatal pathology of sepsis. The proposed framework

showed that septic newborns could be effectively distin-

guished among a collective of other pathologies only based

on their cries. Therefore, this framework could be employed

as a non-invasive tool for diagnosis of septic from non-

septic.
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TABLE X. Comparison of different works employing fusion and feature selection techniques.a

Study Goal Features

Fusion/feature

selection

Machine/deep

learning methods Best outcome

Dar et al. (Ref. 77) Detecting pulmonary

abnormalities from the

respiration sound

BFCC, SC, and

spectral flux

Simple concatenation

of features

Hierarchical

attention network,

CNN, RF

92.4% accuracy

by HAN

Ebrahimpour et al.

(Ref. 78)

Recognition of hand-written

digits in Persian and English

Characteristic Loci. DTF and PCA MLP, decision

tree, RBF

Accuracy: 97.99%

Fernandes et al.
(Ref. 79)

Identifying underwater targets

based on acoustical recordings

from a hydrophone

GTCC, LPC, and MFCC NCA KNN Accuracy: 83.3%

Khalilzad et al.
(Ref. 15)

Detecting septic newborns from

healthy newborns via their cry

signals

MFCC, spectral entropy

cepstral coefficients, SC

cepstral coefficients

Fuzzy entropy

feature selection

SVM, KNN Accuracy: 91.81%

Khalilzad et al.

(Ref. 11)

Detecting pathologic newborns

based on their cry signal

MFCC, GFCC Canonical correlation

analysis-based feature

fusion

LSTM, SVM Accuracy: 99.86%

Li et al. (Ref. 38) Detecting breast cancer via

microwave breast screening

PCA scores DTF, concatenation,

PCA

SVM Average error: 0.01

This study Detecting septic newborns

among other pathologic

newborns

ERBS crest, BSC, GFCC,

BFCC

NCA feature

selection, DTF,

concatenation

SVM, KNN, MLP Accuracy: 88.66%

aHAN, Hierarchical attention network; PCA, principal component analysis.
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