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Abstract: Crying is one of the means of communication for a newborn. Newborn cry signals
convey precious information about the newborn’s health condition and their emotions. In this study,
cry signals of healthy and pathologic newborns were analyzed for the purpose of developing an
automatic, non-invasive, and comprehensive Newborn Cry Diagnostic System (NCDS) that identifies
pathologic newborns from healthy infants. For this purpose, Mel-frequency Cepstral Coefficients
(MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) were extracted as features. These
feature sets were also combined and fused through Canonical Correlation Analysis (CCA), which
provides a novel manipulation of the features that have not yet been explored in the literature on
NCDS designs, to the best of our knowledge. All the mentioned feature sets were fed to the Support
Vector Machine (SVM) and Long Short-term Memory (LSTM). Furthermore, two Hyperparameter
optimization methods, Bayesian and grid search, were examined to enhance the system’s performance.
The performance of our proposed NCDS was evaluated with two different datasets of inspiratory and
expiratory cries. The CCA fusion feature set using the LSTM classifier accomplished the best F-score
in the study, with 99.86% for the inspiratory cry dataset. The best F-score regarding the expiratory cry
dataset, 99.44%, belonged to the GFCC feature set employing the LSTM classifier. These experiments
suggest the high potential and value of using the newborn cry signals in the detection of pathologies.
The framework proposed in this study can be implemented as an early diagnostic tool for clinical
studies and help in the identification of pathologic newborns.

Keywords: newborn cry; Gammatone Frequency Cepstral Coefficients; Support Vector Machine;
Long Short-term Memory; Hyperparameter optimization; feature fusion

1. Introduction

In 2019, 6700 neonatal deaths occurred every day, and around 75% of these deaths
occurred within the first 7 days after birth; this highlights the significance of expeditious
diagnosis during the first few days of any neonate’s life. Several pathologies associated
with a neonate’s mortality require invasive clinical tests and a high vigilance. Unfortunately,
the regions that suffer the most from high newborn mortality rates are those deficient in
the number of skilled health professionals. The World Health Organization (WHO) states
that two-thirds of newborn deaths could be prevented if diagnosis and treatments took
place before the second week of an infant’s life. Furthermore, in most cases of pathological
studies, if the treatment is initiated expeditiously, the infant may completely heal if given
the right treatments [1].

As early as the 19th century, the cry of neonates was recognized as a cue in identifying
morbidity [2]. The acoustic characteristics of a cry may vary due to various factors such
as air pressure, tension, length, thickness, and shape of the vocal cords and resonators [3].
Experienced parents and caregivers may distinguish types of cries only by listening; how-
ever, even trained nurses could only reach an accuracy of around 33% by relying on their
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auditory system [4]. Healthy newborns have a fundamental frequency of 400–600 Hz, with
an average of 450 Hz [5]; they also show a decreasing or increasing–decreasing melody
shape with super imposed harmonics, and an average duration of 1–1.5 s [6]. The cries
of babies suffering from a specific pathology are associated with low punctuation; they
reflect high irritability and the physiological persistency is low [7]. Some of the features
and attributes in infant cry signals can seldom be observed in healthy infants, though
are commonly seen in pathologic ones [8]. For example, hypothyroidism could result
in low-pitched cries, a lower number of shifts, and a frequent observance of the glottal
roll at the end of phonation. Cries marked with hypothyroidism have been marked as
hoarse [9]. This acoustic structure has enabled us to develop a Newborn Cry Diagnostic
System (NCDS) and take a deeper look into the health status of neonates.

The study of newborn cry signals unveiled that they bear abundant helpful information
about the neonate’s health conditions. Extensive research in this area has demanded an
automatic approach and accurate analysis of the cry spectrographs; hence, newborn cry
analysis systems were designed to overcome this challenge [10–15]. The study of newborn
cry signals has multiple goals.

There are many interesting publications in the literature that analyze cry signals from
aspects other than those used in this study. These studies range from the identification of the
reason for crying, e.g., hunger, pain or boredom [16–18]; emotion detection [19]; detecting
the cry in Neonatal Intensive Care Units (NICUs) and in surveillance systems [20,21];
segmenting the cry signal into its episodes [22,23]; diagnosis of specific pathologies [24] or
general identification of a pathologic infant [25–28], as well as studying how each factor
would affect the cry characteristics. Some of these works have explored the roles of pain
intensity [29–31], gender [32], gestational age [33], and other similar factors in cry signals.
This study focuses on a different type of application, which is diagnosing pathologies in
newborns based on their cry signal. What this study tried to achieve was to exploit features
that could reflect the alterations in the cry signal only as a result of being unhealthy and
independent of other factors. We expected these features (and their fusion) to represent
attributes in the cry signals that were not obvious in simple observations of spectrograms,
and also were not affected by changes in etiological factors across newborns and the
emotional state of the newborns.

Every NCDS comprises three principal stages: pre-processing, feature extraction, and
classification. In the pre-processing stage, the cry signal is pre-emphasized and framed; the
pauses and silences are removed, filtered, and segmented to be ready for feature extraction.
Following pre-processing is the feature extraction step. The features that are capable of
discriminating the healthy cry signals from the pathologic ones are exploited in this stage.
These features pass through dimensionality reduction techniques and are then fed as
inputs into the classifier in the last stage of the NCDS. Finally, the class labels, which were
predicted by the classifier, constitute the result.

The prominent features in the analysis of newborn cry signals include the Mel-
frequency Cepstral Coefficients (MFCC), owing to their good performance in the diagnostic
studies of cries. MFCCs are often employed as the baseline in many experiments concerning
the neonate cry. The MFCC features aid the detection of multiple diseases, such as hy-
pothyroidism, asphyxia [34,35], hyperbilirubinemia [28], respiratory distress syndrome [10],
sepsis [24,36], and cleft palate [37].

Gammatone Frequency features (GFCC) have been employed for the purpose of emo-
tion recognition in the study of newborn cry signals [19], where they have outperformed
MFCCs. GFCCs have a wide range of applications in acoustic scene classification problems,
the recognition of emotions in adult speech [38], and speaker identification [39]. GFCCs
were also employed in recent research identifying septic newborns from those diagnosed
with RDS based on their cry, which proved to be successful [40]. Among the machine
learning architectures used in infant cry analysis, Support Vector Machines (SVM) is one
of the most prevalent approaches. A diversity of features such as temporal, prosodic,
and cepstral have functioned successfully with SVMs [41–43]. Onu et al. [44] concluded
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that SVMs have a practical design for limited samples and data with high dimensionality,
and are the most suitable for the study of asphyxiated neonates. Another classification
approach employed in this work was the Long Short-term Memory (LSTM) neural network.
LSTMs have been successfully paired with MFCC, GFCC, and their fusions; they showed
promising performance in emotion and gender recognition applications [45,46]. However,
their application has been limited in NCDS designs thus far [47]. LSTMs are one of the
best choices when it comes to sequential data, such as audio signals. Nevertheless, like any
other deep learning framework, LSTMs encounter the challenge of fine-tuning hyperpa-
rameters (HP) [48,49]. HP tuning can enhance the performance of a Neural Network (NN)
from medium to state-of-the-art. Although many researchers emphasized the vital role of
Hyperparameter Optimization (HPO) in NN architectures, only a few works have been
published that suggest which and how many HPs should be optimized [50–52].

This study aimed to develop a comprehensive NCDS to distinguish between healthy
and morbid infants as an early alert to medical staff and the guardians of the newborn. In
order to obtain a comprehensive NCDS, the cry signals were analyzed regardless of cry
stimulus, region, and gender. The proposed NCDS utilized both expiratory and inspiratory
cry data sets. In this regard, the priority of this work was to study the role of acoustic
features of the GFCC and MFCC in assessing the acoustic structure of the cry signals.
Additionally, the GFCC and MFCC feature sets were combined by means of conventional
and fusion methods. To the best of the authors’ knowledge, this is the first time that
the Canonical Convolution Analysis (CCA) fusion of the employed feature sets has been
introduced to the assessment of pathologic newborn cries. Furthermore, the discussed
challenges are addressed for both classification methods through two HPO schemes, where
both classifiers have been fine-tuned using the grid search and Bayesian Hyperparameter
Optimization (BHPO) methods. The proposed frameworks were evaluated by several
measures and the results for each one expounded and compared extensively.

This study was proposed to address multiple the challenges and shortcomings of previ-
ous studies, as represented in Table A1. A majority of the NCDS designs focus on studying
a certain pathology group, whereas the aim of our work is to design a comprehensive alert
system to notify the guardians of the newborn and the health professionals that the infant
should undergo more screening tests, as there is a high potential it might be diagnosed with
one or more pathologies from the ensemble of pathologies. Furthermore, the highest infant
mortality rates are unfortunately associated with lower-income countries, where the proper
screening equipment is inadequate and not available to many newborns [53]. This calls for
the design of a non-complex, efficient NCDS that can perform early diagnosis so that the
newborns are examined for an ensemble of pathologies and it can be determined if they
are at risk of being unhealthy. As can be seen from Table A1, the studies of newborn cries,
undertaken for the purpose of differentiating between healthy and pathological infants,
were either performed with a less inclusive set of pathologies or included less details on
how HPO would assess enhancing the NCDS design.

There are an ever-growing number of designs that trade complexity for performance;
however, this study proposes that employing proper feature fusion and HPO techniques
could improve an NCDS from a moderate to a highly desirable state, where all the eval-
uation measures are relatively high and presented. The former studies present fewer
measures for the evaluation; as an example, there are a very limited number of studies that
have investigated the MCC measure. Table A1 also shows that the use of HPO and fusion
methods in the study of pathological newborn cry signals is inadequate. As an example,
most of the presented studies employed the SVM classifier. However, the resulting values
are far lower than those presented in this study (the same explanation applies to the LSTM
classifier, where the results are around 10% lower without the use of HPO methods). The
aim of this study is to highlight the effects and importance of HPO and fusion methods
in all NCDS designs, by explaining run-times and comparing the results before and after
fusion and employing HPO. The role of feature fusion and HP tuning could be crucial and
shed light on many further applications that employ various modalities for developing
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a comprehensive system; thus, we tried to provide a detail-oriented study of how each
step of the NCDS design contributed to enhancing or decrementing the final results, which
distinguishes our study from other research in the field of cry-based diagnostic systems.

2. Methods and Participants
2.1. Cry Dataset and Participants

The first challenge in sketching a pathological study is the acquisition and collection
of data. It is important to note that the priority is obtaining the consent of newborns’
guardians to record the cry signal and then achieving their consent to include that cry
signal in the database. Furthermore, obtaining the ethical approvals to add samples to a
database is an arduous and toilsome process that might even lead to losing some of the
acquired data.

The collection of data was accomplished by collaboration between Al-Sahel and Al-
Raee hospitals in Lebanon and Saint Justine Hospital of Montreal, QC, Canada. All the
signals have been recorded in NICUs or maternity rooms (public and private) in the hospital
environment. The cry of the newborns in our dataset was initiated due to multiple reasons
such as hunger, fear, and wet diapers [54]. The reason for crying was resolved with the
help of medical staff and newborn’s caregivers regarding the conditions resulting the cry.

Cry recordings ranged from 1 to 4 min including silence, hiccups, inspiration cries,
expiration cries, and background noise. They were collected using a digital 2-channel
Olympus handheld recorder with a 16-bit resolution and 44,100 Hz sampling frequency.
The recorder was placed in the 10-to-30 cm vicinage of the newborn’s mouth with no special
consideration in the acquisition process. The mean recording length is 90 s and there were
up to 5 recordings from each newborn. Therefore, unwanted information such as chatter in
the surrounding space, noises, instrument beeps, and cries of other newborns accompanied
the signals, which makes our dataset a real corpus capable of solving the challenge of
comprehensiveness. Moreover, the newborns included in our dataset represent different
races, origins, genders, and weights. A summary of this dataset is represented in Table 1.

Table 1. Description of dataset and participants.

Demographic Factors Specification

Gender Female and Male

Babies’ Ages 1 to 53 days old

Weight 0.98 to 5.2 Kg

Origin Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, Bangladesh, Turkey.

Race Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, Quebec.

Cry Stimulus Discomfort, lack of sleep, wet diaper, pain, fear, colic, reflux, birth cry, hunger.

Healthy/Pathology Group

Healthy, dyspnea, fever, gastroschisis, grunting, hyperbilirubinemia,
hypoglycemia, hypothermia, intrauterine growth retardation, jaundice, kidney

failure, meconium aspiration syndrome, meningitis, myelomeningocele,
respiratory distress syndrome, retraction, seizure, sepsis, tachypnea, thrombosis in

vena cava, vomit.

Newborns do not have any control over their vocalization before 3 months of age
(more accurately, 53 days) [55]. The genesis of vocalizations in advance of this age is merely
affected by biological rhythms. Moreover, it was shown that the mean of fundamental
frequency undergoes no increasing or decreasing trend during the first 53 days of life [56].
Besides this, the supralaryngeal VC is reconfigured towards a human vocal tract after
the 3 months of age [55]. Therefore, newborns over 53 days old were not included in the
current study.
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2.2. Pre-Processing

Corwin et al. [40] described the four types of acoustic units that constitute a cry
signal as expiratory phonation, expiratory hyperphonation, expiratory dysphonation, and
inspiratory phonation. During the phonation, the vibrations of the newborn’s vocal folds
generate sound, which is also referred to as voicing. The inspiratory cries are the “gasping”
inhalation after the onset of crying that has enough power to cause vibrations in the
vocal folds. Since the INSV episodes of the cry represent the laryngeal straitening of
the ingressive air current, these cries have the potential to be a biomarker for diagnosis
purposes [57]. The power needed for driving the expiratory phase of a cry is stored during
the inspiratory phase. Expiration can be interpreted as a moderate decrement in the volume
of the lungs [23]. Usually cries occur during this respiratory phase, so this segment is
considered to contain the main information, while the inspiratory cries remain the less
explored and cognizant type of the cry event by researchers. Although it has been reported
that the restraint of the upper airway may lead to sudden infant death syndrome and
apnea, and the inspiratory cry is believed to contain information leading to pain and
distress [23], this type of cry has been often neglected in the study of NCDS [58]. Concisely,
analysis of both expiratory and inspiratory cries is indispensable regarding the design
of a comprehensive NCDS, and in this study, both expiratory and inspiratory phonation
were included.

The cry samples in our dataset were labeled by a group of researchers. An example of
the assigned cry signal units is depicted in Figure 1. Different segments of the cry signal
have been margined, and matching labels have been attached via WaveSurfer (version 1.8.8,
Stockholm, Sweden), presented in our previous works [10,54].

Figure 1. An example of a labeled cry signal via WaveSurfer. The X axis represents time, and the Y
axis represents amplitude (please see Table A1 for description of the labels).

Table 2 represents the number of samples in each dataset as well as the number of
samples separated for the test and training. In total, 68 newborns with one of the mentioned
pathologies were included in the unhealthy subsection of the data, and 300 healthy new-
borns participated in this study. Each of these participants yielded a different number of
samples in the dataset. An equal number of samples from the healthy group were selected
to ensure a balanced analysis.

Table 2. Number of samples in each dataset for training and test.

No. of Healthy No. of
Pathologic

No. of Train
Samples

No. of Test
Samples

EXP 3005 3005 4207 1803

INSV 3620 3620 5068 2172
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2.3. Feature Extraction

The extraction of appropriate acoustic features capable of pertinent signal represen-
tation plays a vital role in any audio classification problem. As discussed above, for the
effectuation of a cry, glottal impulses proceed through the filtering carried out by the vocal
tract [59]. With the aim of distinguishing between the source and filter of a cry, cepstral anal-
ysis employed, which enables a homomorphic transformation [60]. MFCCs were derived
from the Mel Filter Banks, whereas GFCCs were obtained from the Gammatone Filter Banks,
which are a representation of inner and external middle ear physiological transitions [61]. In
other words, although the two approaches are based on from the human sound perception
model, the GFCCs are coordinated to comprehend the physical alterations more effectively
than the MFCCs, and better delineate the auditory system [62]. Both Gammatone and
Mel-frequency representations of the cry signal were mapped into the cepstrum space for
the feature extraction step. Figure 2 illustrates our framework; the proposed steps for the
acquisition of each of these features are described in the following sections.

Figure 2. Framework of the proposed NCDS.

2.3.1. Mel-Frequency Cepstral Coefficients

The calculation of MFCCs follows several steps. First, the preprocessed cry signal is
pre-emphasized and divided into frames of 10 ms with a 30% overlap using the hamming
window. The Fast Fourier Transform (FFT) then converts these frames to obtain the
signal’s spectrum. In the next step, the spectrum is transformed to the Mel-frequency scale,
which is a representation of perceived pitch. For this purpose, a filter bank consisting
of 13 triangular Mel-spaced filters is employed. As a consequence of the vocal tract’s
uniformity, the adjoining bands in the filter bank are inclined towards having correlated
energy levels. Hence, a Discrete Cosine Transform (DCT) is imposed to decorrelate them
and yield Mel-frequency Cepstral Coefficients. The Mel-scale of the frequency f can be
approximated as Equation (1).

M(f ) = 1125 ln(1 + f /700) (1)

It was shown that the first thirteen coefficients could efficiently track the variations in
the shape of the vocal tract during the generation of a sound by humans [63]. A similar
procedure as in the previous works [10,64] was followed and the average statistical measure
was used. The MFCCs hold information from one individual frame, and are therefore
described as static features. In order to attain information on the fluctuations of the cry
signal across multiple frames, the first and second derivatives of MFCCs are computed.
Equation (2) gives the first derivative of the MFCCs for T consecutive frames (set equal to 2
in this study):

∆cm(n) =
∑T

i=−T kicm(n + i)

∑T
i=−T |i|

(2)

Here, the mth feature for the nth frame is represented by cm(n), and ki denotes the ith
weight. Calculating the first-order derivative of the delta coefficients yields the delta-delta
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coefficients. The total number of features in the MFCC feature set equals 39, including
13 MFCCs, 13 deltas, and 13 delta-deltas [65].

2.3.2. Gammatone Frequency Cepstral Coefficients

Gammatone Frequency Cepstral Coefficients are a variant of MFCCs based on the
biological response of the human auditory system. These features are extracted from the
Gammatone filters with equivalent rectangular bandwidth (ERB) bands. Valero et al. [66]
reported that the GFCC successfully performed non-speech audio classification tasks. It
was also reported that the computation of the GFCCs was cost-efficient and has greater
noise robustness compared to the MFCCs [10]. The procedure for obtaining the GFCCs is
similar to the MFCC. The non-stationary cry signal was windowed into frames of 10 ms
with 30% overlap. The hamming window was applied for this purpose. The Gammatone
filter banks were then applied to the FFT of the cry signals, which was done in order to
amplify the perceptually meaningful sound signal frequencies. Next, the output of the last
step was mapped into the logarithmic space. Finally, the Discrete Cosine Transform (DCT)
was applied to decorrelate the filters’ outputs and better mimic human loudness perception.
The m coefficients from N Gammatone filters were then calculated via Equation (3).

GFCCm =

√
2
N ∑N

n=1 log(Xn) cos
[

πn
N

(
m− 1

2

)]
1 ≤ m ≤ M (3)

where Xn represents the corresponding energy of the nth band. Finally, the GFCC delta
and delta-delta coefficients were derived, and the feature set comprised 39 coefficients
matching the MFCC feature vector [66].

2.4. Features Fusion

By means of feature fusion, multiple feature sets are consolidated to create a single
feature vector more robust than the individual feature vectors. Feature fusion can be
undertaken in four different stages of the NCDS: (1) the data/sensor level; (2) the feature
level; (3) the matching score level, and (4) the decision level [67].

In feature-level fusion, appropriate feature normalization, transformation, and reduc-
tion are employed in order to merge the features extracted from different sources into one
feature set. The main benefit of feature-level fusion is the detection of correlated feature
values generated by multiple algorithms, making it possible to introduce a new compressed
set of salient features that can enhance classification accuracy. Therefore, CCA fusion at the
feature level was utilized as the feature fusion strategy in this study [68].

Canonical Convolution Analysis (CCA)

Canonical convolution analysis handles the mutual statistical association between two
feature sets by constructing a correlation criterion function. Subsequently, the canonical
correlation regarding the criterion chosen in the last step was exploited, and discriminant
vectors were forged so that the surplus information could be suppressed [69].

Suppose we take two feature sets X and Y of p× n and q× n dimensions, respectively.
In other words, for each nth sample of the dataset, p + q features were extracted. In order
to obtain information about all the relations across the feature sets, the overall covariance
matrix, S, can be written as Equation (4):

S =

(
cov(x) cov(x, y)

cov(y, x) cov(y)

)
=

(
Sxx Sxy
Syx Syy

)
(4)

Apprehending the associations among the two sets of features may become challenging
when they do not follow a steady pattern. CCA solves this challenge by finding the
linear combinations, X> = WT

x X and Y> = WT
y Y, and attaining the maximum pair-wise
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correlations, which is facilitated via Lagrange multipliers. The pair-wise correlation is
defined as Equation (5).

corr
(
X>, Y>) = cov( X>, Y>)

var(X>) . var (Y>)
(5)

Finally, feature-level fusion is achieved by the concatenation of the transformed feature
sets as in Equation (6):

Z =

(
X>

Y>

)
=

(
WT

x X
WT

y Y

)
=

(
Wx 0
0 Wy

)T(X
Y

)
(6)

Z represents the Canonical Correlation Discriminant Features (CCDFs) [70]. The GFCC
and MFCC feature sets’ fusion results, constituting 39 features each, yielded a feature vector
with 60 features representing the cry signals. In this study, the performance of the fused
features was compared to the individual feature sets, as well as their concatenation.

2.5. Classification

Classification assigns class labels to the given data points. The evaluation of the
extracted feature sets was performed by classification. Two different classifiers were
implemented in the current study. The first classification method was SVM, which is
conventional in NCDS research. Moreover, the LSTM neural network was also employed.
These classifiers and the HPO methods associated with each one are introduced in the
following sections.

2.5.1. Support Vector Machine (SVM)

SVMs are prevalent in the analysis of audio signals. SVM is known as a supervised ML
classification method that draws a hyperplane to maximize the marginal distance between
the classes of data. The support vectors represent boundary feature points and form the
basis for classification. A kernel function handles the nonlinearity of the data [71]. A
Gaussian Kernel was implemented, which assumes that similar feature points were located
in close vicinity and considers the Euclidean distance between x and xi. In this study, the
box constraint and kernel scale were tuned as the HPs of the SVM model.

2.5.2. Hyperparameter Optimization (HPO)

In any classification problem, the goal is to achieve high performance while keeping
the errors to a minimum; therefore, HPO methods have been introduced. The several
approaches to the HPO of an ML classifier include grid search, random search, and BHPO,
which have omitted the need for human intervention to tune the classifier’s HPs. The
significance of the HPO is that each configuration is designed to fit its corresponding
task. The main function of any given HPO method is to attain an optimum value for each
HP from a set of finite values that minimizes the loss or maximizes the objective function.
However, there are always downsides to each method, such as the high computational costs
associated with the NN HPO and the probability of facing the curse of dimensionality [72].

The acquisition function and probabilistic surrogate model are the basis of the BHPO.
The acquisition function enables a BHPO model to be updated in correspondence to it
iteratively, defined as Equation (7) [73]:

x∗ = argmin
x∈X

f (x) (7)

In every iteration, the model is updated based on new HPs and the corresponding
model performance. Once the predefined number of iterations is reached, the best observed
HPs are announced, as are the optimal observed values for the objective function. As will
be seen in the following sections, BHPO often achieves better results than the other two
HPO methods introduced.
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2.5.3. Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) have been shown to be propitious in the analysis
of both single data points and sequential data, such as acoustic inputs. A feedback loop
connects the input of RNN to its output, allowing them to model the dependencies in
time series. Long Short-Term Memory (LSTM) networks are a type of RNNs with memory
cells capable of learning, keeping, and forgetting data. By means of this memory cell,
LSTMs function well with both short-term and long-term features [74]. Since the generation
of the cry signal is intrinsically dynamic, RNNs may prove functional in their acoustic
modeling. However, the challenge arises from the complexity of the training and tuning of
hyperparameters of these networks. In order to overcome this challenge, the HPO methods
were implemented to find and choose the optimal HPs. As mentioned above, Bayesian
optimization requires fewer iterations than the grid search method to achieve the optimal
values for the HPs in neural networks. The general task of HP acquisition by the BHPO is
depicted in Figure 3.

Figure 3. General Bayesian hyperparameter optimization process.

The range of each hyperparameter was pre-determined in order to exploit the full
potential of the HPO methods, as is shown in Table 3.

Table 3. Predefined ranges for the hyperparameter optimization of the LSTM.

Parameter Selected Range

Initial learning rate [0.001, 1] (logarithmic steps)

Number of hidden units [2, 39]

Number of Epochs [100, 500]

Depth [1, 3]

The activation function for this LSTM configuration is the hyperbolic tangent function
(tanh). The hyperparameters included in this set of experiments were initial learning
rate, number of hidden units, maximum epochs, and the depth of the LSTM architecture.
Increasing the depth of the network was accompanied by higher computational costs, and
all the best results were achieved when using only one layer. The loss and root mean
squared errors were calculated for each run of the optimization process. The optimization
was performed in 30 evaluations for each set of features, and the parameters that maximized
the overall accuracy were chosen for each configuration.

3. Evaluation

This study aimed to differentiate pathologic infants from healthy infants and employed
the GFCC and MFCC features with the LSTM and SVM classifiers. A wide range of
pathologies were included in these experiments in order to achieve a comprehensive NCDS,
which is able to act as an early alert given the lack of medical experts and access to expensive
and extensive laboratory experiments. Different experiments were conducted with the
proposed feature vectors, their combination, and their CCA fusion. Following the feature
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extraction step is classification. There are two approaches to validating the classifier’s
performance after training: holdout and cross-validation. The data were split into 70%
training and 30% unseen testing data for both classifiers. For the SVM classifier, a 5-fold
cross-validation was conducted on the training data, whereas for the LSTM classification, a
holdout validation approach was chosen with 20% of the training data with a frequency of
once every 10 iterations, because of the different natures of the classifiers. For the k-fold
cross-validation, the data were split into k partitions, k−1 folds of which were used for
training and one fold for testing in each iteration. This procedure was repeated up to the
point at which each of the k folds was marked as the test fold. Finally, the results of grid
search and BHPO for each architecture were compared.

The discriminatory performance of an NCDS in a binary problem can be represented
by a contingency matrix, as shown in Table 4. The task of the NCDS in our paper was to
detect the pathological neonates amid the healthy. In order to appraise how well the system
performed its role, the evaluation measures were introduced and computed. Practically, the
most convenient evaluation measure is the accuracy, which is equivalent to the proportion
of correctly predicted samples over all the observations. The accuracy measure benefits
from both calculation and apprehension simplicity; however, the lack of informativeness as
well as the fewer concessions towards the minority calls for the implementation of more
evaluation measures [75].
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One solution is to evaluate the NCDS performance without considering the true
negative case, which will introduce a measure named precision. Precision, or Positive
Predictive Value (PPV), is the ratio of true pathologic cases among the samples predicted
as healthy. Another measure is recall, or sensitivity, which refers to the probability of
recognizing a truly pathologic case by NCDS. The F-score and Matthews’ Correlation
Coefficient (MCC) were reported to be more instructive in binary classification problems.
F-score is a function of both recall and precision, and indicates the inclusive performance
of the system and is equal to the harmonic mean of precision and recall [76]. The specificity
measure denotes the true negative rate, and it indicates the true healthy samples correctly
identified by the NCDS [77].

The MCC is a highly informative evaluation measure when used in problems such as
NCDS designs, since it accounts for all the information in a contingency matrix. The MCC,
Equation (8), gives a value in the range of [−1, +1], where the misclassified performance
results in negative values, and the higher values in the positive range signify better perfor-
mance in terms of classification [78,79]. In this study, a high acceptance value of +0.50 was
set to evaluate the classification.

MCC =
TP× TN − FP× FN√

(TP + FN)(TN + FP)(TP + FP)(TN + FN)
(8)
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4. Results

This section presents the results of evaluating different architectures with multiple
measures in Tables 5–12. Regarding the evaluation measures introduced, higher values for
each measure translate into the better performance of the system. In this study, four sets of
experiments were conducted: 1. Evaluate the NCDS performance with default/random
search hyperparameter configuration of the classifiers. 2. Evaluate the NCDS performance
with grid search HPO. 3. Evaluate the NCDS performance with BHPO. 4. Compare the
performance of the system with different iterations of HPO for each method, ranging from
30 iterations to 100 iterations for SVM and different numbers of neurons for the LSTM.

Table 5. Results of evaluating the MFCC feature set classification with SVM.

MFCC Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 72.16 62.93 81.26 76.80 69.17 0.45

Grid Search 86.34 88.09 84.63 84.97 86.49 0.73
Bayesian 87.37 82.55 92.11 91.17 86.64 0.75

INSV
Default 79.38 78.36 80.45 80.73 79.53 0.59

Grid Search 88.90 90.09 87.65 88.40 89.24 0.78
Bayesian 89.05 88.72 89.40 89.74 89.23 0.78

Table 6. Results of evaluating the GFCC feature set classification with SVM.

GFCC Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 67.42 57.59 77.11 71.27 63.70 0.35

Grid Search 83.75 86.06 81.48 82.08 84.02 0.74
Bayesian 84.49 86.39 82.62 83.05 84.69 0.69

INSV
Random Search 76.57 73.53 79.74 79.14 76.23 0.53

Grid Search 85.26 86.23 84.24 85.12 85.67 0.71
Bayesian 85.51 86.25 84.73 85.52 85.88 0.71

Table 7. Results of evaluating the concatenation feature set classification with SVM.

Concatenation Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 75.49 68.58 82.29 79.25 73.53 0.51

Grid Search 87.85 87.93 87.78 87.64 87.78 0.76
Bayesian 88.41 88.13 88.68 88.47 88.30 0.77

INSV
Random Search 81.06 81.03 81.09 81.75 81.38 0.62

Grid Search 88.59 88.40 88.79 89.19 88.79 0.77
Bayesian 89.07 89.57 88.55 89.10 89.33 0.78

Table 8. Results of evaluating the CCA fusion feature set classification with SVM.

CCA Fusion Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 81.43 81.59 81.28 81.11 81.35 0.63

Grid Search 85.31 87.20 83.46 83.86 85.49 0.71
Bayesian 87.71 90.35 85.11 85.68 87.95 0.76

INSV
Random Search 88.09 88.43 87.74 88.29 88.36 0.76

Grid Search 88.28 89.14 87.38 88.07 88.60 0.77
Bayesian 89.96 91.14 88.74 89.43 90.27 0.80
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Table 9. Results of evaluating the MFCC feature set classification with LSTM.

MFCC Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 76.59 95.98 57.49 69.00 80.28 0.58

Grid Search 97.78 95.53 100.00 100.00 97.71 0.96
Bayesian 99.33 98.66 100.00 100.00 99.33 0.99

INSV
Random Search 95.17 96.58 93.69 94.12 95.33 0.90

Grid Search 96.09 92.34 100.00 100.00 96.02 0.92
Bayesian 99.03 98.56 99.53 99.55 99.05 0.98

Table 10. Results of evaluating the GFCC feature set classification with SVM.

GFCC Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 84.53 75.20 93.72 92.19 82.83 0.70

Grid Search 96.56 93.07 100.00 100.00 96.41 0.93
Bayesian 99.45 98.88 100.00 100.00 99.44 0.99

INSV
Random Search 96.09 92.34 100.00 100.00 96.02 0.92

Grid Search 97.88 97.66 98.12 98.19 97.92 0.96
Bayesian 97.51 95.14 100.00 100.00 97.51 0.95

Table 11. Results of evaluating the concatenation feature set classification with SVM.

Concatenation Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 89.24 97.54 81.06 83.54 90.00 0.80

Grid Search 96.23 92.40 100.00 100.00 96.05 0.93
Bayesian 98.34 96.76 99.89 99.88 98.30 0.97

INSV
Random Search 98.48 97.21 99.81 99.81 98.49 0.97

Grid Search 98.85 97.75 100.00 100.00 98.86 0.98
Bayesian 98.99 98.11 99.91 99.91 99.00 0.98

Table 12. Results of evaluating the CCA fusion feature set classification with SVM.

CCA Fusion Accuracy Recall Specificity Precision F-Score MCC

EXP
Random Search 96.73 93.74 99.67 99.64 96.60 0.94

Grid Search 97.34 97.65 97.03 97.00 97.33 0.95
Bayesian 99.00 98.55 99.45 99.44 98.99 0.98

INSV
Random Search 96.09 92.61 99.72 99.71 96.03 0.92

Grid Search 98.16 97.57 98.78 98.81 98.19 0.96
Bayesian 99.86 99.73 100.00 100.00 99.86 1.00

Each of the feature vectors were evaluated with the SVM classifiers, which are shown
in Tables 5–8. In this step, the evaluation of system performance was undertaken by three
different settings of the classifier: 1. Default settings. 2. Grid search optimization. 3. BHPO.
The same procedure was repeated for the LSTM classifier, and 30 iterations of each HPO
method were performed.

First, the results related to using the SVM classifier as a baseline to compare the results
of the next steps are discussed. Table 5 represents the results for the MFCC feature set for
the INSV and EXP datasets. The use of HPO similarly increased the evaluation measures
across both datasets. Moreover, BHPO achieved a very similar or better performance except
for in the recall measure. The highest accuracy and F-score for the EXP dataset were 87.37%
and 86.64%, respectively; both were obtained through BHPO. This experiment yielded a
better performance with the INSV dataset, and yielded 89.05% for the accuracy measure,
which was again achieved through BHPO. However, grid search had a slight superiority in
terms of the F-score, and achieved 89.24%.
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Table 6 presents the results of evaluating the GFCC feature set with the SVM classifier.
By briefly looking at Tables 5 and 6, it can be seen that the MFCC feature set outperformed
the GFCC feature set across both datasets. Similar to all the other feature sets, the best
results in terms of F-score and accuracy in relation to the EXP dataset for the GFCC feature
set were achieved through BHPO. In a general sense, the combination of the GFCC with
the SVM yielded better results with the INSV dataset compared to the EXP dataset. The
GFCC features’ highest accuracy and F-score were 85.51% and 85.88%, respectively; both
were achieved with BHPO and INSV dataset.

In the next step, the GFCC and MFCC feature sets were combined to evaluate the
NCDS performance under these conditions. As for the EXP dataset, the concatenated
feature set could increase the accuracy and F-score measures by 1% and 1.7%, respectively,
compared to the best results of the last two feature sets. The highest results for the EXP
dataset were 88.41% and 88.30% for accuracy and F-score, respectively. The performance
of the NCDS with this configuration for the INSV dataset was very similar to that for the
MFCC feature set used individually, and there was a slight improvement in the evaluation
measures (Table 7).

As a final experiment with the SVM classifier, the GFCC and MFCC feature sets—each
containing 39 elements—were fused, and the feature vector was reduced to 60 elements,
which was a more than 25% reduction in the size of the feature space. Since the size of
the feature space was reduced, it might be expected that we see a rather small drop or a
similar performance across the evaluation measures with this experiment compared to
with the EXP dataset. However, as can be seen from Table 8, not only were the overall best
results in terms of accuracy and F-score maintained, but they were also increased by about
1%. The results for the INSV dataset show the new highest accuracy and F-score across
all the experiments with the SVM classifier, with 89.96% and 90.27%, respectively. For the
EXP dataset, compared to the best results in terms of accuracy and F-score in previous
experiments, the fusion of the features decreased the performance of the NCDS by 0.7%
and 0.35%, respectively.

After evaluating different aspects of the NCDS with the SVM classifier, the study
proceeded to design an LSTM configuration to differentiate pathologic newborns from the
healthy group. The same procedure of the experiments as with the SVM classifier was
followed, and the system was evaluated with each feature configuration separately. The
performances of all feature sets were improved considerably by using the LSTM classification
method. The MFCC feature set achieved the highest accuracy and F-score of 99.03% and
99.05%, respectively, with the LSTM classifier for the INSV dataset, which is a nearly 10%
improvement compared to the SVM method. As can be seen from Tables 9 and 10, the
performance of the GFCC feature set was slightly better than the MFCC feature set with
the LSTM classifier for the EXP dataset, and vice versa for the INSV dataset. Both HPO
methods worked marvellously with the LSTM classifier; however, they were not efficient
in terms of run-time, which will be compared in the Discussion section.

The best accuracy and F-score achieved by the GFCC feature set were 99.45% and
99.44%, respectively, whereas the MFCC obtained 99.33% for both measures. The mentioned
results were accomplished for the EXP dataset. It is noteworthy to mention that both feature
sets attained 100.00% for specificity and precision measures. Moreover, the MCC measure
has acquired a high value for the BHPO with EXP dataset for both feature sets, which
indicates close to perfect classification quality (Table 10).

Even though the state-of-the-art performance of both individual feature sets through
HPO methods leaves little room for improvement, it is still beneficial to study the behavior
of the system by the combination of the two feature vectors to assess their efficacy compared
to the SVM classifier. As can be deduced from Table 11, the performance of the NCDS
was degraded by simply concatenating the feature sets, which may translate to lower
uniformity of the feature space. The highest accuracy and F-score achieved with this
experiment belonged to the INSV dataset, which reached 98.99% and 99.00%, respectively.
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Table 12 constitutes the results of the next experiment with the LSTM classifier. The
system’s performance was better than the concatenation framework since the CCA fu-
sion removes the redundant features and helps improve the uniformity of feature space.
This experiment showed the best performance in assessing the INSV dataset among
all the previous experiments for all of the evaluation measures, specifically reaching
99.86% for both F-score and accuracy and 1.00 for the MCC measure. As for the EXP
dataset, the GFCC feature set outperformed both combinational feature sets in terms of all
evaluation measures.

In the previous section, the evaluation results regarding each feature set and classifier
combination were extensively discussed; now, the discussion is undertaken from the
perspective of the computational cost. For this matter, the run-time was selected as an
indicator. It should be noted that in the case of the joint feature sets, namely, concatenation
and CCA fusion, the given run-times include the process of concatenation and fusion, and
not only the time corresponding to the HPO process. The elapsed times for the extraction
of the GFCC and MFCC feature sets were 558.31 and 836.16 s, respectively, which suggests
the GFCC feature set requires lower computational costs; other researchers have also
mentioned the same results [66]. Figure 4 compares the run-times of the grid search HPO
and BHPO methods for different iterations of each one when applied to the SVM classifier.

Figure 4. Elapsed time (seconds) regarding the different iterations of hyperparameter optimization
methods for the SVM classifier.

The comparison between run-times regarding each feature set firstly confirms that the
CCA fusion method results in a more homogenous feature space, and reduces run-times
until they are lower than the run-time for the individual feature sets, which is consistent
in both HPO methods. As can be seen, BHPO resulted in the higher performance of the
system and required longer run-times. In order to better illustrate this comparison, Figure 5
presents the average run-times of the two HPO methods for each NCDS configuration for a
more detailed evaluation.

Figure 6 shows the elapsed times (in seconds) for the grid search and BHPO methods
for the LSTM classifier. Since the process of HPO for the NNs is highly time-consuming
compared to the machine learning models, only 30 iterations of HPO were performed
for this experiment. The results show that CCA fusion requires the shortest run-time out
of all other feature sets for the grid search HPO, similar to the SVM HPO methods; the
run-times regarding the grid search method were lower than for BHPO. It should be noted
that the number of trials for both methods was limited to 30; BHPO can achieve satisfactory
results with this number of iterations, whereas grid search often requires a much greater
number of trials. In summary, the proposed NCDS in this study accomplished desirable
results across all the experiments in terms of performance and computational costs, and
the longest elapsed time was less than 1700 s simultaneously.
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Figure 5. Average run-times for evaluating different iterations of hyperparameter optimization for
the SVM classifier.

Figure 6. Comparing run-times for the two HPO methods of LSTM for different experiments.

5. Discussion

The design of the NCDS is a challenging problem for every researcher aiming to
study newborn cry characteristics, regardless of the purpose the NCDS aims to serve. This
challenge is even more significant regarding the sensitive subject of detecting pathologic
newborns. The NCDS designs are not developed enough compared to the other acoustic
scene recognition systems or speech analysis applications; there is still a need for further
studies in this field, which is mainly due to the fact that datasets are very limited in terms
of the number of samples. This is due to certain limitations, such as the fact that the
chances of having a newborn diagnosed with a specific pathology in any given duration
of conducting a clinical study are not predictable. Therefore, there may not be sufficient
samples from each given pathology group; ensuring the ethical and technical standards
required to collect and use the cry samples in a database calls for extreme measures. In
this regard, by segmenting each cry recording into multiple expiratory and inspiratory
episodes, two datasets of EXP and INSV were formed. As mentioned above, the areas of
the world that suffer the most from infant mortality are less developed and lack a sufficient
number of expert physicians. Thus, it is vital to keep the design as simple as possible so
that expensive hardware would not be required to achieve high performance.

One other aspect of the proposed study is that by employing MFCC and GFCC
features, the cry signal is investigated both from the speech processing and non-speech
audio processing perspectives. As was previously discussed, MFCCs have proved to be
powerful discriminators, especially in speech processing tasks, while GFCCs have shown
even better performance and robustness in non-speech audio applications. For the first
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time in newborn cry analysis a CCA fusion at the feature level was performed in order to
make the feature space homogenized and omit redundant information. By looking at the
results of run-times in the previous section, it can be seen that CCA fusion homogenized
the feature space in a way that the fused feature vectors required less time for optimization,
even when compared to the single feature vector of GFCC. This shows that although the
fused vector had 60 elements, it was still optimized faster than a 39-element feature vector,
even with the time required for fusion included. This is rather an interesting finding that
shows potential for many further applications with the inclusion of features from various
modalities in this field. Not only were the HPO run-times reduced, but also, the results
were improved by reducing the number of features by about one fourth.

Since the challenge is to detect a pathologic newborn and alert the newborn caregivers
and medical experts, it is worth tolerating higher run-times in order to obtain a more
accurate diagnosis and benefit from the HPO methods. The other important factor here
is that the NCDS cannot afford to misdiagnose a pathologic newborn as a healthy one,
so the focus should be on achieving a high hit rate (recall) and F-score measure, which
are the indicators of a low miss rate. This study proposed two different designs with
respect to the runtime and performance trade-off. Firstly, using the SVM classification
method, a simplistic design was proposed, which requires minimal run-time and could
work with commercial hardware. It was shown that by implementing the HPO methods,
a similar performance to the complex state-of-the-art designs with up to 90% F-score for
the SVM could be achieved. Moreover, our LSTM design, which only has a one-layer
depth, was able to achieve better F-scores than similar or more complex works in the
literature using the proper HPO, with improvements of 99.86% and 99.45% for INSV and
EXP datasets, respectively. This study also offers an extensive evaluation of the HPO
factors and methods in addition to the primary goal, achieving high diagnostic power.
Additionally, the powerful discriminatory role of inspiratory cries, which are neglected
in most NCDS studies, is highlighted here, as is the success of our design with the EXP
dataset, which worked even better with this dataset.

Finally, the high number of pathology groups included in this study makes it a
comprehensive framework capable of a more reliable diagnosis, since the medical staff
could suggest that the newborn does not suffer from the given list of pathologies. Figure 7
gives a visual summary of the best results achieved by each experiment in terms of F-score
and accuracy. These results imply the similar performances of the NCDS in terms of both
F-score and accuracy measures, which indicates that discussing the F-score measure alone
would be sufficient.

Figure 7. Summary of the best results achieved with the conducted experiments in terms of accuracy
and F-score measures.

In order to evaluate the results from another perspective and further explore the
potential of both HPO methods and CCA fusion, another experiment was designed wherein
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the performance of the NCDS could be investigated with different HPO iterations of 30
to 100 (rising by steps of 10) on the EXP dataset. The average of all evaluations (eight
experiments) across all measures is reported in Table 13. As can be inferred from the results,
both HPO methods enhanced the system performance in terms of accuracy, recall, F-score
and MCC measures. Several patterns were observed when conducting these experiments.
Firstly, the performance of the BHPO method was superior to that of the grid search method
across all the measures, except for the recall measure. Even though the recall measure
represented an exception to the mentioned pattern, the highest recall was achieved through
the BHPO method with the fusion of features, which was 90.25%. Secondly, the best
performance in terms of accuracy, MCC, and F-score was achieved using the CCA fusion
framework. Finally, it can be deduced that although CCA fusion slenderized feature space,
the performance of the NCDS was not considerably aggravated, and was even increased in
terms of the F-score measure.

Table 13. Results for the average of the evaluation measure for different iterations of hyperparameter
optimization ranging from 30 iterations to 100 iterations.

Accuracy Recall Specificity Precision F-Score MCC

GFCC Bayesian 84.50 85.09 83.91 83.91 84.49 0.69
Grid Search 83.75 86.06 81.48 82.08 84.02 0.68

MFCC Bayesian 86.86 83.43 90.24 89.89 87.77 0.74
Grid Search 86.34 88.09 84.63 84.97 86.49 0.73

Concatenation Bayesian 88.18 87.90 88.46 88.25 88.07 0.76
Grid Search 87.67 87.95 87.38 87.31 87.62 0.75

Fusion Bayesian 87.92 90.25 85.63 86.10 88.12 0.76
Grid Search 85.41 87.08 83.76 84.10 85.56 0.71

As was previously discussed in the Results section, the evaluation measures showed
exceptional performance with the LSTM classifier. Therefore, to better demonstrate the
power of LSTM in the NCDS design and validate the surprisingly high performance of
the system, a final experiment was mapped out. In this experiment, the LSTM classifier
was manually tuned for only one HP: the number of hidden neurons. For each feature
set, the number of hidden neurons was changed from 2 neurons to half the size of each
feature vector, e.g., 30 neurons for the fusion feature set with 60 elements for each sample.
Table 14 presents the average of each evaluation measure used in the successful attempts
with manual search methods for each feature set. Therefore, if the only parameter being
tuned is the number of hidden neurons, the system’s performance undergoes a bearable
decline in exchange for lowering the computational costs. Moreover, as can be seen from
the results, the best evaluation measures belonged to the CCA-fused feature set (except for
the recall measure), which are 96.62% and 96.58% for accuracy and F-score, respectively.
Therefore, by manually tuning only one HP, the system was capable of achieving up to
a 96.58% average F-score, which translates to the high classification power of the LSTM
classifier compared to the SVM, and the potential for an even better performance if other
HPs are tuned as well.

Table 14. The averages of evaluation measures for the manual tuning of the hidden neurons for the
LSTM classifier with each feature.

Accuracy Recall Specificity Precision F-Score MCC

MFCC 89.02 94.23 83.89 89.16 90.54 0.80
GFCC 89.79 88.00 91.56 94.05 90.01 0.81

GFCC + MFCC 95.33 95.95 94.72 95.79 95.59 0.91
CCA Fusion 96.62 95.89 97.34 97.34 96.58 0.93

So far, the experiments in this study have been discussed and compared in terms of
performance, classification power, and run-times. There are various tools and frameworks
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for the study of audio signals, which have resulted in many different applications and pub-
lications. Among these frameworks, many different machine learning and deep learning
methods have been explored. It is worthwhile to compare the performance of the proposed
NCDS with other similar works or architectures that analyze either newborn cry signals or
other audio signals. In a recent study [80], environment sounds were classified through
different models including SVM, LightGBM, XGBoost (XGB) nd CatBoost classification
frameworks, employing time and frequency domain features and their combination. They
were able to get 87.3% as their highest accuracy measure when using the LightGBM frame-
work, and through the alteration of the gain factor, whereas their baseline classifiers yielded
66.7% for KNN, 67.5% for SVM, 72.7% for baseline Random Forest (RF), and 81.5% for their
joint feature set with RF classifier. In another study [81], speech signals were employed to
diagnose Parkinson’s with the use of RF, Decision Tree (DT), KNN, XGB, and Naïve Bayes
(NBC) classifiers. The results show that the classifiers’ performances ranked as follows:
XGB achieved 96.61% for the accuracy measure, and KNN, RF, DT and NBC achieved accu-
racies of 94.91%, 88.13%, 86.44%, and 67.79%, respectively. The study of Singhal et al. [82]
classified music genres with Logistic Regression (LR), KNN, SVM, XGB, and RF classifiers.
They also explored the effect of HPO on the RF classifier only, where the results were
enhanced about 13% for accuracy and reached 98.8%. However, they did not discuss the
HPO methods and trends. The highest result was achieved when using both RF and XGB
classifiers—99.6% for both frameworks. The study of Kim et al. [83] explored a very similar
framework to the one presented in this study for the analysis of beehive sounds through
MFCCs, a Mel spectrogram and constant-Q transform features, with RF, XGB, CNN, and
SVM classifiers. The highest accuracy was achieved through the combination of MFCC
features with the XGB classifier, reaching 87.36%. Their VGG-13 classification showed
very promising results, with 96% for the F-score measure. Lahmiri et al. [47] designed
an NCDS for the purpose of detecting pathologic newborns with cepstrum features and
multiple NN classifiers. By implementing LSTM classification, they were able to achieve
an accuracy of 83.89% and 80.18% for the EXP and INSV datasets, respectively. Another
work worth mentioning in this field is that by Matikolaei et al. [84], wherein the proposed
NCDS served the same purpose as in our study. The authors combined the MFCC with
the auditory-inspired amplitude modulation features, and fed them into an SVM classifier;
they attained 80.50% for the accuracy measure. Kumaran et al. [45] focused on the recog-
nition of emotions; they combined the GFCC with the MFCC feature sets and employed
C-RNN classification. They used a different architecture of LSTM than in our study, with
the addition of a convolutional network, and the highest F-score yielded by their design
was 79%. In another emotion recognition study, the MFCC features were employed with a
combined CNN-LSTM architecture, and the highest accuracy of 87.4% was reported with
the use of HPO methods, wherein they tuned learning rate and batch size [46]. Given the
results of the mentioned studies, our NCDS designs proved to be successful and introduced
novelty to the study of newborn cries with the purpose of detecting pathologic infants.
Our study proposed a simplistic design using the SVM classifier that benefits from BHPO;
we showed it could achieve results similar to (and even better than) the state-of-the-art of
NCDS employing NNs, which in the literature reached 90.27% for the F-score measure. Our
second framework of LSTM classification with BHPO obtained up to 99.86% for the F-score
measure, which is remarkable in the study of pathologic newborn cry signals. However,
our system was outperformed by a design that implements DFFNN, since it was able to
achieve 100% for both datasets of EXP and INSV [85].

In the design of the LSTM, the main concern was to prevent the model from becoming
complex, and it employed only one hidden layer with a low number of hidden units. Both
these achievements owe their success to the CCA fusion of the GFCC and MFCC feature
sets, which not only enhances the overall performance, but also lowers the run-time by
homogenizing the feature space and marks out the optimal feature set.

In summary, the presented results of this study suggest that a fusion of MFCC and
GFCC features fed to deep and machine learning classifiers attains a higher performance
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compared to previous studies on detecting pathologic newborns. This framework is
proposed as a non-invasive tool for aiding the expeditious detection of pathologic infants.
There is still a vast ocean of unexplored ideas and architectures to be implemented in
the study of pathological newborn cry signals, which is beyond the scope of this study.
In future works, exploring more deep learning and machine learning designs such as
DCNNs, and further exploring fusion techniques, especially at the decision level, such as
the matching score method, would be of interest. Furthermore, studying more acoustic
features and combining them with different classifiers would be worthwhile in order to
highlight the efficacy of existing research on pathologic newborn cry signals.

6. Conclusions

The cry of infants has been recognized as a biomarker in the detection of pathologies
for the purpose of early diagnosis. The presented study aimed to propose a comprehensive
NCDS that distinguishes between healthy and pathologic cries regardless of the reason
for crying, race, and gender. Our proposed system outlines the feature of the GFCC and
its delta coefficients, which efficiently capture the dynamic nature of the cry signal and its
periodic pattern. Moreover, the feature set used in this study includes the MFCC, which
is well-known for its strong performance in many acoustic applications. These features
were fed individually and fused into the LSTM and SVM classifiers, which belong to
two different families of classifiers. In the next step, an extensive study of HPO methods
for grid searching and BHPO for both classifiers was performed in order to improve the
performance of NCDS. The LSTM was able to achieve a very high performance metric
of 99.86% when applied to inspiratory cry signals in terms of both accuracy and F-score,
owing to its capability to learn from sequential data. Furthermore, LSTM outperformed
the optimized SVM when applied to both the studied datasets. All of the results obtained
by the two proposed classifiers show potential for use in the investigation of pathologic
infant cries.

This study contributed to the development of NCDS with the aim of designing a first
alert for medical experts; it showed that healthy and pathologic infants have different
cry patterns, which can be used as biomarkers. Regarding the results of this study, the
proposed framework can be used as a non-invasive diagnostic tool without the need for
high-end hardware and technologies.
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Appendix A

Table A1. A comparative overview of selected NCDS designs for pathological newborn cry diagnostics.

Study Pathologies Evaluation Measures HPO Feature Fusion Machine/Deep
Learning Methods Outcome

Matikolaie et al. [10,36,84]

RDS vs. healthy,
septic vs. healthy,
collection of
pathologies vs. healthy.

Recall, precision,
F-score, accuracy. — Concatenation PNN, SVM, DT,

Discriminant Analysis.

F-score
Sepsis: 86%.
Multi-Pathology: 80%.
RDS: 68.40%

Kheddache et al. [28]

Hyperbilirubinemia, vena
cava thrombosis, meningitis,
peritonitis, asphyxia, lingual
frenum, IUGR-microcephaly,
tetralogy of fallot,
gastroschisis,
IUGR-asphyxia, RDS.

Accuracy. — Concatenation PNN. Accuracy: 88.71%.

Lahmiri et al. [47,85,86]

Central nervous system
complications, chromosomal
abnormalities, congenital
cardiac anomalies,
blood disorders.

Accuracy, recall, specificity. — Concatenation CNN, LSTM, DFNN,
SVM, NBC.

Accuracy:
CNN: 95.28%, DFFNN:
100%, LSTM: 83.89%.

Pusuluri et al. [87] Asphyxia and deaf vs. healthy. Accuracy, false positive count Grid search – SVM, KNN, RF. Accuracy: 98.48%.

Farsaie et al. [64]

Central nervous system
complications, chromosomal
abnormalities, congenital
cardiac anomalies,
blood disorders.

Average accuracy, recall,
specificity, equal error rate,
classification error rate.

– – SVM, PNN, MLP.

Accuracy:
MLP: 91.68%.
PNN: 89.93%.
SVM: 89.85%.

Onu et al. [88] Prenatal asphyxia vs. healthy. Recall, specificity, unweighted
average recall. Random search. – ResNet, SVM. Specificity: 88.9%
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Appendix B

Table A2. Definition of different cry segment labels of the database.

Unit Definition

EXP Voiced expiratory segment during a period of cry.
EXPN Unvoiced expiratory segment during a period of cry.
INS Unvoiced inspiratory segment during a period of cry.
INSV Voiced inspiratory segment during a period of cry.
EXP2 Voiced expiratory segment during a period of pseudo-cry.
INS2 Voiced inspiratory segment during a period of pseudo-cry.
PSEUDOCRY Any sound generated by the newborn that is not a cry, such as whimpering.
Speech Sound of the nurse or parents talking.
Background A low noise characterized by a low-power silence affected with little noise.
Noisy cry Any sound heard with a cry (BIP, water, diaper changing, etc.).
Noisy pseudo-cry Any sound heard with a pseudo-cry.

Noise Sound originating from the surrounding environment, such as microphone movement, diaper
movement, door squeaks, staff chatter, background noise, or speech with BIPs.

BIP Sound of the medical equipment surrounding the newborn.
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