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A B S T R A C T   

Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns 
has been significantly increasing. Various works have already reported encouraging classification results; how-
ever, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of 
newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the 
hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest 
neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral 
coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square 
test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. 
The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10- 
fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn 
cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms 
of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ±
0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with 
ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 
sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same 
database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as 
the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier 
trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy 
newborns.   

1. Introduction 

The analysis of voice acoustics was considered in various biomedical 
engineering applications; including analysis of cry records and classifi-
cation by using machine learning models to discriminate between full- 
term and preterm infants [1], assessment of voice quality recovery in 
patients suffering from cysts and polyps treated with micro- 
laryngoscopic direct exeresis [2], characterizing neonatal disease; 
namely, hypoxic-ischemic encephalopathy; based on spectral features 

[3], and investigating the effect of vowel context on voice quality 
measured by cepstral peak prominence smoothed and sample entropy 
[4]. 

Besides, the medical diagnosis of newborn diseases based on cry 
signal analysis and classification is a cost-effective and non-invasive 
solution that may provide promising accurate performance. Indeed, 
newborn cry signal analysis and classification is an up-to-date approach 
to build computer-aided diagnosis (CAD) systems used to distinguish 
between healthy and unhealthy newborns. In this regard, several CAD 
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systems have been proposed and evaluated by biomedical engineering 
researchers as the topic is attracting a growing interest. 

Indeed, most of the existing works used standard audio processing 
features typically estimated in frequency, time and cepstral domains to 
train machine learning (ML) classifiers to distinguish between healthy 
and unhealthy cry signals of newborns [5–15]. Very early studies 
include detection of hypoxia-related disorder using Radial Basis Func-
tion Neural Networks (FBFNN) with 85 % accuracy [5] and detection of 
asphyxia with a classification accuracy of 95.86 % by combining prin-
cipal component analysis and support vector machines [6]. Relevant 
studies found in the last decade were also interesting. For instance, the 
authors employed the Multiple Mixtures of Gaussian (MMG) algorithm 
to segment newborn cry records; then, Mel Frequency Cepstral Co-
efficients (MFCC) are estimated from the segmented records and used to 
train Hidden Markov Models (HMM) which achieved 83.79 % accuracy 
[7]. In [8], the authors examined the association between acoustic 
measurements (resonance frequencies; for instance) and pathologies to 
identify the most relevant ones. They found that the distributions of 
acoustic cry acoustics statistically and significantly vary with the pa-
thology of newborn. In another study, dynamic and static features 
derived from Mel-Frequency Cepstral Coefficients (MFCC) of both 
expiratory and inspiratory cry vocalizations were used to train various 
classifiers; namely, multilayer perceptron (MLP) using the back- 
propagation algorithm, probabilistic neural networks (PNN) and a 
support vector machine (SVM) [9]. The MLP, SVM with MLP kernel and 
PNN achieved respectively 91.68 %, 90.41 %, and 89.93 % maximum 
accuracy rate depending on the Gaussian Mixture Model adaptation 
method used in experiments. In [10], the authors considered the prob-
lem of cry signal segmentation and classification to distinguish between 
expiratory and inspiratory phases. In this regard, the original cry signal 
is decomposed in time and frequency domains from which features are 
extracted and used to train Gaussian mixture models (GMM) and HMM. 
They respectively achieved 8.9 % and 11.06 % error classification rates. 
The effectiveness of acoustic features (fundamental frequency glide and 
resonance frequencies dysregulation) and conventional features (mel- 
frequency cestrum coefficients) on the performance of PNN when used 
to classify healthy and pathological cry signals was examined in [11]. 
The best result obtained is 88.71 % for the correct classification of 
healthy preterm newborns and 82 % for correct classification of un-
healthy full-term newborns. 

In recent studies, short-term and long-term features from different 
timescales were combined to train SVM to distinguish between healthy 
newborn and those suffering from respiratory distress syndrome to 
achieve 68.40 % correct classification rate [12]. In an interesting study 
[13], deep learning feedforward neural networks (DFFNN), linear SVM, 
Naïve Bayes (NB), and PNN were trained with cepstrum-based co-
efficients of the original newborn cry signals and validated on expiration 
and inspiration sets using ten-fold cross-validation protocol. The 
DFFNN, SVM, NB, and PNN respectively yielded to a correct classifica-
tion rate of 99.92 % ± 0.00, 61.15 % ± 0.04, 58.11 % ± 0.01, and 56.71 
% ± 0.01 on expiration set. Besides, when validated on inspiration set, 
the DFFNN, linear SVM, NB, and PNN respectively obtained 100 %, 
59.57 % ± 0.01, 55.46 % ± 0.02, and 52.63 % ± 0.05 correct classifi-
cation rate. 

Very recently, the authors in [13] extended their work to compare 
the performance of various deep learning neural networks; including the 
DFFNN, long short-term memory (LSTM) neural networks, and con-
volutional neural networks (CNN) under various neural networks ar-
chitectures [14]. The highest accuracy was respectively obtained by 
CNN, DFFNN and LSTM. In [15], PNN and linear SVM were trained by 
three different feature sets including MFCC set, auditory-inspired 
amplitude modulation (AAM) set, and prosody set composed of tilt, in-
tensity, and rhythm features. The linear SVM outperformed the PNN in 
terms of accuracy under MFCC (76.50 % versus 68.90 %), AAM (75.75 % 
versus 70.70 %), and prosody (61.50 % versus 52.10 %). The fusion of 
MFCC and AAM yielded to the best correct classification rate obtained 

by linear SVM (78.70 %) and PNN (77.90 %). In another very recent 
study, the authors in [16] compared the performance SVM under various 
kernels, different models of decision trees, and variants of discriminant 
analysis by using data in [14] and principal component analysis for 
dimension reduction of MFCC features set. The SVM with quadratic 
kernel and trained with all features achieved the highest F-score (86 %) 
on expiration set whilst the quadratic discriminant analysis trained with 
tilt features set yield to the highest F-score (83.90 %) in inspiration set. 

Besides the design of CAD systems for analysis and classification of 
newborn cry signals, other recent studies focused on use of statistical 
mechanics methods for analysis and characterization of healthy and 
unhealthy cry signals of newborns [17,18]. Indeed, statistical 
mechanics-based measures are useful to describe nonlinear dynamics in 
the underlying cry signal for better understanding of its physiology 
[17,18]. For instance, approximate entropy (AppEn) and correlation 
dimension (CD) were estimated in cepstrum domain of the original 
newborn cries [17]. Then, Student t-test, F-test, and two-sample Kol-
mogorov-Smirnov test were applied to estimated populations of AppEn 
and CD to check whether they are different across healthy and unhealthy 
cries of newborns. It was found that AppEn and CD are statistically 
different across healthy control and unhealthy newborns for both 
expiration and inspiration sets. In [17], bootstrap wavelet leaders 
method was employed to examine multifractals in newborns and Stu-
dent t-test was applied to check presence of differences between cries of 
healthy and unhealthy subjects. It was found that newborn cry signals 
show strong evidence of high complexity under healthy conditions than 
under unhealthy conditions and that the distributions of multifractal 
features are statistically dissimilar across healthy and unhealthy new-
borns. To sum up, the authors in [17,18] concluded that complexity 
measures derived from statistical mechanics greatly help understanding 
oscillations in cries of healthy and unhealthy newborns under expiration 
and inspiration conditions. 

Bring in mind that most recent studies [15,16] have already reported 
encouraging classification results; however, accuracy still needs to be 
improved. One of the approaches to achieving a more effective CAD 
system for newborn cry signal analysis and classification is to adopt an 
efficient algorithm for fine-tuning of the classifier. Indeed, the main goal 
of implementing an optimization algorithm is to determine the values of 
the optimal training parameters to faster and improve the learning 
ability of the classifier. Thus, the optimal values of the hyper-parameters 
have a positive impact on the performance of the classifier. 

In this regard, the main purpose of the current study is to design 
various CAD systems to distinguish between healthy and unhealthy 
newborns based on analysis and classification of the acoustics of their 
cries. Specifically, we propose to use Bayesian optimization (BO) 
method to optimize the hyper-parameters of the SVM with radial basis 
function (RBF) kernel and k-nearest neighbors (kNN), all trained with 
different audio acoustic features separately or combined; precisely, 
MFCC, AAM, and prosody. More specifically, only the most significant 
patterns from each set are selected by a statistical filter (Chi- square; for 
instance) are used to train each optimal classifier. 

We rely of acoustic patterns as they are good descriptors of any 
sound, easy to measure and to interpret, and was successfully applied in 
previous works dealing with newborn cry analysis and classification 
[7–12,15,16]. Besides, we consider the SVM [19,20] thanks to its ability 
to minimize the upper bound on the generalization error based on the 
structural risk minimization principle [20] which makes it very suc-
cessful in various biomedical engineering problems; including, detection 
of heart murmur [21], hemorrhage in retina [22], Parkinson’s disease 
[23], and Alzheimer’s disease [24]. Also, the kNN algorithm [25] is 
considered in the current as it allows for local approximation of any 
function by learning non-linear decision boundaries and while being 
flexible. In this regard, the kNN algorithm was found to be effective in 
diagnosis of gastric cancer [26], Parkinson’s disease [27], hypertension 
[28], and seizure [29]. For better tuning of the SVM and kNN algorithm, 
the BO algorithm [30] is adopted to determine their respective optimal 
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key parameters thanks to its ability to update the prior belief in light of 
new information to produce an updated posterior belief to find prom-
ising minima; hence, to statistically and robustly approximate the 
objective function. The BO is fast, effective and was successful in opti-
mization of classifiers in various biomedical engineering applications; 
including, detection of Parkinson’s disease in patient’s voice [23], ma-
larial cell [32], arrhythmia in electrocardiogram [33], COVID-19 in 
chest X-ray image [34], and diabetes [35]. Finally, the Chi-square test is 
employed as statistical filter to identify the most significant patterns 
from each set of acoustic features separately to faster information pro-
cessing by each optimized classifier and improve its accuracy. It was 
found to be effective in identification of significant patterns with 
application to Parkinson’s disease diagnosis [36], gene selection [37], 
and schizophrenia identification [38]. 

To sum up, the contributions of the current study are as follows:  

i. To design, implement, and compare various optimal CAD systems 
for diagnosis of newborn based on automatic analysis and clas-
sification of cry audio features.  

ii. Apply a statistical filter for most significant features selection to 
allow fast convergence of the classifier along with reduction in 
system complexity.  

iii. To fine tune key parameters of classifiers by using Bayesian 
optimization. Hence, the accuracy of the optimal classifier is 
expected to improve. 

iv. The performance of the optimal CAD system can easily be inter-
preted from a physiological perspective as main involved features 
in improvement of accuracy can be identified.  

v. To test the efficacy of designed optimal CAD systems on a large 
data set considered in very recent studies. Hence, the perfor-
mance of our best optimal CAD system can be compared to the 
most recent models tested on the same database. 

The rest of the manuscript is organized as follows. Section 2 describes 
the different techniques for vocal feature extraction, feature selection, 
the classifiers, Bayesian optimization, and performance measures. The 
dataset and results are provided in Section 3. Finally, discussion of the 
obtained results and conclusion are presented in Section 4. 

2. Methods 

The purpose of the current study is to design various CAD systems to 
distinguish between healthy and unhealthy newborns based on analysis 
and classification of acoustics of their respective cry signals. The 
acoustic features are categorized into three sets: MFCC, AAM, and 
prosody. The Chi-square (χ2) is applied to each acoustic features set to 
determine the most 10 significant features used to train the classifiers. 
The SVM and kNN algorithm are chosen as main classifiers two distin-
guish between health conditions of the newborns. The key parameters of 
each classifier are optimized by using BO algorithm. Fig. 1 shows the 
flowchart of the proposed CAD systems. The methods are described next. 

2.1. Acoustic features and selection 

To characterize each newborn cry signal, four three of features are 
extracted; namely, mel frequency cepstral coefficients (MFCC), 
auditory-inspired amplitude modulation (AAM), and prosody. The 
MFCC have the merit to identify and track timbre fluctuations in a 
sound, AAM is able to characterize the rate of change of long-term 
speech, and prosody provides the melody and the parsing of speech. 
They are briefly presented afterward.  

• Mel frequency cepstral coefficients (MFCC) 

The MFCC are well-known popular short-term acoustic features 
useful to determine the critical bandwidth used by human auditory 
system to recognize a different tone based on the Mel scale. The latter is 
defined as follows: 

M(f ) = 1125× log
(

1+
f

700

)

(1)  

Here, f and M(f) denote the frequency value of the signal and its cor-
responding Mel value respectively. To obtain MFCC, four steps should be 
performed: (i) framing (voice signal is broken down into overlapping 
frames), (ii) windowing (each frame is multiplied by a Hamming win-
dow), (iii) applying Fast Fourier transform (convert the signal to the 
frequency domain and calculate its periodogram), (iv) applying Mel 
filter banks (compute the average of each spectral power density con-
tained in each filter and computes its logarithm), and (v) converting 
from cepstral to temporal domain by calculating the inverse discrete 
Fourier transform. More details can be found in [12].  

• AAM features 

First, the newborn cry signal is processed by short-time discrete 
Fourier transform (STDFT). Second, the squared magnitudes of the 
resulting acoustic frequency components are categorized into 27 sub- 
bands. Third, a second transform is performed across time for each of 
the 27 sub-band magnitude signals. Fourth, a band-pass filter is applied 
to the grouped squared modulation frequencies. Finally, logarithm 
transform is applied for compression purpose. More technical details on 
AAM are found in [39].  

• Prosody features 

Prosody set is composed of tilt feature subset, intensity feature sub-
set, and rhythm feature subset. Tilt features are estimated based on two 
parameters: At and Dt. They are defined as follows: 

At =

(
|Ar| −

⃒
⃒Af
⃒
⃒

|Ar| +
⃒
⃒Af
⃒
⃒

)

(2)  

Dt =

(
|Dr| −

⃒
⃒Df
⃒
⃒

|Dr| +
⃒
⃒Df
⃒
⃒

)

(3)  

where Af is the amplitude of the contours of the fundamental frequency 
F0 when they are descending and Ar is their amplitude when they are 
ascending. Likewise, Df is the length of the contours of F0 when they are 
descending and Dr is their length when they are ascending. 

Besides, the intensity represents the height of the audio signal. 
Specifically, the intensity of an audio signal is used to embody its height 
by measuring the energy of volume in a waveform. Intensity of the audio 
signal is given by: 

Intensity = 10× log

(
∑N

n=1
A2(n)w(n)

)

(4) 

Newborn
Cry signal

Acous�c Features
extrac�on

Healthy

Acous�c Features
selec�on by 2

Classifier
(SVM/kNN)

Bayesian
op�miza�on

Unhealthy

Fig. 1. Diagram of the proposed CAD system for newborn cry signal analysis 
and classification. 
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where w and A are respectively the window and the amplitude. 
Finally, the rhythm feature subset includes two main parameters; 

namely, the raw pairwise variability index (rPVI) and the normalized 
one (nrPVI). Both are useful to quantify the rhythm in a given audio by 
expressing the level of variability in successive measurements. They 
expressed as follows: 

rPVI =

(∑M− 1
k=1 |dk − dk+1|

m − 1

)

(5)  

nrPVI = 100×

⎛

⎜
⎜
⎝

∑M− 1
k=1

⃒
⃒
⃒2 ×

dk − dk+1
dk − dk+1

⃒
⃒
⃒

m − 1

⎞

⎟
⎟
⎠ (6) 

In addition to rPVI and nrPVI, six other features are computed; 
namely, the standard deviation of the expiration signal, the standard 
deviation of the expiration signal divided by mean length, number of 
expirations in each cry signal, duration of expiration, range of expira-
tion, average of all expirations in one signal cry signal.  

• Acoustics selection by χ2 test 

Since each acoustic features set is large and may negatively affect the 
processing time and accuracy of the diagnosis, the classifiers will be 
trained with the ten most significant features from each features set 
which are selected by a statistical filter; namely, Chi-square test (χ2). It is 
chosen thanks to its robustness with respect to the distribution of the 
data as it does not assume any distribution and is fast to compute. The 
feature selection process seeks to generate a score for each acoustic 
feature by counting its frequency in training unhealthy and healthy class 
samples separately and then finding a function of both. The χ2 statistic is 
calculated as follows: 

χ2 =
∑

i− 1

∑

j− 1

(
Oij − Eij

Eij

)

(7)  

where O is the frequency that feature is observed and E is the frequency 
that it is expected. Larger value of χ2 statistic suggests significant 
confirmation that two features are different. 

2.2. SVM and kNN classifiers 

The SVM [19,20] seeks to find a hyperplane w.Φ(x) + b = 0 to 
separate the features vector x from classes +1 (unhealthy) and − 1 
(healthy) with a maximal margin. Here, w is a weight vector, Φ is a 
mapping function, and b a bias. The decision frontier of classes y is 
written as: 

y = sign

(
∑n

i=1
yiαiK(xi, x)+ b

)

(8) 

In this study, the kernel K is set to be the radial basis function (RBF) 
as it is a local function, which is flexible and effective in approximation 
of short variations in a nonlinear function. The RBF is given by: 

K
(
xi, xj

)
= exp

(
− γ‖x − xi‖

2 ) (9)  

where γ is the width of the RBF. 
Besides, the kNN algorithm [25] is typically a non-parametric 

instance-based learning algorithm. It assigns a class to an unclassified 
point following a majority rule based on the k-nearest neighbors in the 
training set. As a result, the class majority among the kNN produces a 
prediction for a new point. For instance, the kNN of point xi are all k 
nearest neighbor points xj in a subset of datasets D defined as follows: 

NNk(xi) =
{

xj ∈ D, d
(
xi, xj

)
≤ d(xi, q)

}
(10)  

where q is the kth nearest neighbor of point xi and d(xi,xj) is a distance 
function. 

2.3. Bayesian optimization 

The Bayesian optimization (BO) [30] uses an acquisition function to 
find both regions where the model believes the objective function to be 
low and regions where uncertainty is high. Let consider f(x) be the 
objective function and the expected improvement function EI(x,Q) be 
the acquisition function used to evaluate the feasibility of a point x based 
on the posterior distribution function Q. The expected-improvement 
function (EI(x,Q)) is expressed as follows: 

EI(x,Q) = EQ
[
max

(
0, μQ(xbest) − f (x)

) ]
(11)  

where xbest is the location of the lowest posterior mean and μQ(xbest) is 
the lowest value of the posterior mean. 

The BO is employed to find optimal values of the structural param-
eters of the SVM and the width of the RBF. Also, it is employed to find 
the optimal distance metric and the optimal k for the kNN algorithm. 
The BO technique is employed through 10-fold cross validation to find 
the optimal parameters. More details on BO method can be found in 
[30]. 

3. Data and experimental results 

We used a private dataset [15,16] that consists of cry signals recor-
ded from newborns by using a two-channel sound recorder. The sam-
pling frequency of the recorded signal is 44.1 kHz and its length varies 
between two to three minutes. Cry signals are recorded from 763 healthy 
newborns and 320 unhealthy ones. More details on the dataset can be 
found in [15,16]. For illustration purpose, Fig. 2 displays examples of 
recoded healthy and unhealthy cry signals from two different newborns. 

For experiments, we consider four different vectors of features. The 
first one is composed of 190 MFCC features, the second is composed of 
200 AAM features, the third one is composed of 38 prosody features, and 
the fourth is the larger one which includes all MFCC, AAM, and prosody 
acoustic patterns. Univariate feature ranking for classification using Chi- 
square test is performed to each vector of features to obtain 10 best 
features that explain most of variability in each one of them by using 5 % 
statistical significance level. The ranking of features is shown in Fig. 3 
for each category of acoustic patterns. Then, each optimal classifier is 
trained either with best AAMF vector, best MFCC vector, best prosody 
vector, or best features selected from the large vector composed of 

Fig. 2. Examples of cry signals recorded from healthy and unhealthy newborns.  
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AAMF, MFCC, and prosody feature set. Ten-fold cross-validation is 
employed and average and standard deviation of accuracy, sensitivity 
(correct classification rate of unhealthy infant records) and specificity 
(correct classification rate of unhealthy infant cry records) are reported 
in Table 1. 

Accordingly, the obtained performance by each optimal classifier 
trained with a specific set of features. As shown, the optimal SVM 
trained with AAM features yielded to the highest accuracy (correct 
classification rate) 83.62 % ± 0.0229 followed by the optimal kNN 
trained with AAM, MFC and prosody (82.88 % ± 0.0144). The least 
accuracy is obtained by kNN trained with prosody features (70.43 % ±
0.0007) and SVM trained with prosody features (70.65 % ± 0.0025). 

Besides, the highest sensitivity (correct classification of healthy 
newborns) is achieved by the optimal SVM trained with AAM features 
(59.18 % ± 0.0469) followed by the optimal kNN trained with AAM, 
MFC and prosody (55.34 % ± 0.0350). Finally, the latter system ach-
ieved the highest specificity (correct classification of unhealthy new-
borns) 94.42 % ± 0.0075 followed by the optimal SVM trained with 
AAM features (93.87 % ± 0.0190). 

It is worth to mention three interesting observations. First, in-
tegrations of all three different features sets considerably improves the 
accuracy of the optimal kNN. Also, it improves the accuracy of the 
optimal SVM compared to the one trained with MFCC or prosody fea-
tures. Another interesting observation is the fact that AAM features 
allow the optimal kNN to outperform the one trained with MFCC or 
prosody features. Finally, training and testing the best systems requires 
0.5161 s by the optimal SVM trained with AAM and 0.1713 s by the 
optimal kNN trained with AAM, MFC and prosody. Hence, these two best 
CAD systems are fast and can be implemented for real applications. 

With comparison to previous works where various CAD systems have 
been proposed to distinguish between healthy and unhealthy cry signals 
of newborns, our best CAD system achieved 83.62 % ± 0.0229 accuracy. 
Hence, it outperformed a very recent study validated on the same 
database [15] where the linear SVM and PNN achieved 76.50 % and 
68.90 % respectively when trained with MFCC, 75.75 % and 70.70 % 
respectively when trained with AAM features, 61.50 % and 52.10 % 
respectively when trained with prosody features and 78.70 % and 77.90 
% respectively when trained with combination of MFCC and AAM. 

4. Conclusion 

To explore the effectiveness of various automatic systems in analysis 
and classification of newborn cry signals to distinguish between healthy 
and healthy ones, our work designed and compared different CAD 
models involving nonlinear SVM and kNN classifiers optimized by using 
Bayesian optimization and trained by Chi-square based selected features 
from MFCC, AAM, prosody or combination of those selected features. 
This is the first study to design and compare these CAD systems for 
detection of unhealthy newborn cry signals. The best model is the SVM 
trained with AAM followed by kNN trained with combination of MFCC, 
AAM, and prosody. Our best model outperformed most existing works 
validated on the same database while being considerably fast to 
perform. As being effective and explainable, the proposed CAD system 
can be promising for diagnosis of newborns based on their cry signals in 
clinical milieu. 
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