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Abstract: Crying is the only means of communication for a newborn baby with its surrounding
environment, but it also provides significant information about the newborn’s health, emotions,
and needs. The cries of newborn babies have long been known as a biomarker for the diagnosis of
pathologies. However, to the best of our knowledge, exploring the discrimination of two pathology
groups by means of cry signals is unprecedented. Therefore, this study aimed to identify septic
newborns with Neonatal Respiratory Distress Syndrome (RDS) by employing the Machine Learning
(ML) methods of Multilayer Perceptron (MLP) and Support Vector Machine (SVM). Furthermore, the
cry signal was analyzed from the following two different perspectives: 1) the musical perspective by
studying the spectral feature set of Harmonic Ratio (HR), and 2) the speech processing perspective
using the short-term feature set of Gammatone Frequency Cepstral Coefficients (GFCCs). In order to
assess the role of employing features from both short-term and spectral modalities in distinguishing
the two pathology groups, they were fused in one feature set named the combined features. The
hyperparameters (HPs) of the implemented ML approaches were fine-tuned to fit each experiment.
Finally, by normalizing and fusing the features originating from the two modalities, the overall
performance of the proposed design was improved across all evaluation measures, achieving accu-
racies of 92.49% and 95.3% by the MLP and SVM classifiers, respectively. The MLP classifier was
outperformed in terms of all evaluation measures presented in this study, except for the Area Under
Curve of Receiver Operator Characteristics (AUC-ROC), which signifies the ability of the proposed
design in class separation. The achieved results highlighted the role of combining features from
different levels and modalities for a more powerful analysis of the cry signals, as well as including a
neural network (NN)-based classifier. Consequently, attaining a 95.3% accuracy for the separation of
two entangled pathology groups of RDS and sepsis elucidated the promising potential for further
studies with larger datasets and more pathology groups.

Keywords: cepstral features; sepsis; RDS; SVM; MLP

1. Introduction

According to the World Health Organization (WHO), millions of children die every
year globally. It was also indicated that the majority of deaths among children occur under
the age of one month; for example, in 2020, 2.4 million children died globally in the first
month of their lives, adding up to 47% of all child deaths being under-five mortality, which
was 40% in 1990 [1]. This shows that the neonatal mortality rate is increasing globally.
The WHO also presented the main pathological causes that may lead to neonatal death,
where 75% of neonatal deaths usually occurred during the first week of life. Some of these
pathological causes included Neonatal Respiratory Distress Syndrome (RDS) and sepsis.
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The reason behind the RDS is unknown; however, it is often associated with surfactant
deficiencies [2]. From 2016 to 2020, RDS was among Canada’s leading causes of post-
partum mortality, and nearly 100 newborns lost their lives due to this pathology during the
mentioned years [3]. Typically, the clinical diagnosis of RDS is carried out via a series of tests
which include recording echocardiography, collecting blood samples, measuring the oxygen
levels in the bloodstream through pulse oximetry, and chest and lung radiography [4].
RDS is, thus, identified by breathing difficulty in a newborn and red or blue color of
the face and lips and should be diagnosed at an early stage since it could lead to many
developmental difficulties such as vision or hearing impairment, learning challenges, and
mobility problems. However, it is worth mentioning that there is no determined test for
diagnosing RDS or ruling out the possibility.

On the other hand, sepsis was among the top 10 pathological causes that led to the
mortality of infants in Canada between 2016 and 2020; it took the lives of more than
185 newborns [3]. In a general sense, sepsis is an infection that entails the blood and it may
lead to, or be associated with, several other pathological conditions such as hypothermia,
hypotension, or even RDS [3,5]. Neonatal sepsis is clinically diagnosed based on having at
least two of the following symptoms: high or low heart rates, feeding problems, lethargy,
fever, hypotonia, convulsion, hemodynamic abnormalities, and apnoea that lasts for more
than 20 s [6]. Therefore, the present clinical tests for diagnosing sepsis take time and have a
moderate risk of producing false negative and false positive results. Consequently, it is of
great significance to promptly identify this pathology in the newborn to start the treatment
procedure before the onset of symptoms.

It can thus be seen that both pathologies require intrusive and in-depth clinical tests to
be diagnosed accurately, and they are associated with high mortality and morbidity rates
for newborns. Furthermore, it has been shown that sepsis and RDS are closely associated
and entangled [5], and sepsis is one of the main causes of RDS [6]. Therefore, studying
and analyzing these two infant pathologies by the means of a simple, automated, and
non-invasive tool, such as a newborn cry-based diagnostic system (NCDS), is preeminent
and essential. This system can serve as a tool for early recognition and accurate diagnosis
of these infants’ pathologies, which greatly contributes to acquiring the necessary treatment
for the infant before the onset of symptoms and, thus, preserving the infant’s life. In
addition to that, the distinction between these two pathologic groups (sepsis versus RDS)
will be lucrative in demonstrating that the concept of distinguishing neonates with certain
pathologies from other pathological infants is an auspicious goal.

Typically, infants communicate with those around them through crying; it is a com-
bination of vocalization, coughing, choking, and interruption, which includes a diversity
of prosodic and acoustic features at different levels [7]. Recently, the analysis and under-
standing of infant crying signals have been receiving growing attention from researchers
and data scientists, with the aim of diagnosing the infant’s pathology in its early stages.
In this respect, it has been shown that infant cries provide important acoustic parameters
or characteristics that should be taken into consideration, studied, and analyzed while
monitoring the first days of an infant’s life [7,8]. Furthermore, the cry signals of unhealthy
infants usually contain unique features or characteristics that differ from healthy ones [7].
Consequently, pathological cry signal analysis and classification can be used as a valuable
tool for predicting and recognizing neonatal diseases before the onset of the symptoms.

By using the cry signals, various audio feature categories can be computed and
generated, including cepstral, prosodic, and spectrograms, that have been widely used and
applied to different research related to music, speech, and environmental sounds. These
categories have separately been used for the identification of pathologies in newborns,
and few attempts studied the combination of these features for the same purpose. In this
research work, we aim to combine two feature categories, namely the cepstral domain and
the prosodic domain, and then employ the combined features for training the classifiers.
The ultimate goal of this research is thus to investigate the capacity of machine learning
methods to discriminate between the septic and RDS cries, by using the combined feature
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set of the prosodic and cepstral domains. The characterization of different pathological
patterns using the audio features would enable the development of an early and accurate
diagnostic system that aggregates various audio feature categories to assist the early
identification of abnormal acoustic behavior and link it to the early signs of a specific infant
pathology. To the best of our knowledge, the question of utilizing different audio domains
with a hyper-tuned machine learning model to classify infant RDS cries from infant septic
cries has not been considered yet.

The presented study was proposed to address three main challenges in the field of
pathological cry analysis. Firstly, despite the wide range of valuable research proving that
the newborns diagnosed with a pathology cry differently than healthy newborns, there
is no study where the cry signals of two pathology groups are compared to the best of
authors’ knowledge. Secondly, there is an inadequate number of studies that target sepsis
and RDS; more specifically, the studies that target cries associated with RDS as a single
pathology group (as opposed to being a part of an entire “pathologic” group) are scarce and
the few existing studies never obtained an accuracy of more than 75%. Third, low-income
countries suffer the most from infant mortality rates, which is due to their lack of adequate
monitoring equipment, low number of pediatricians, and lack of resources. Child mortality
risks in low-income countries are 16 times higher than high-income countries [9], which
calls for designing non-complex, fast and efficient tools for early diagnosis.

This study is the first to answer the question of pathologic versus pathologic that
aimed to take the existing methods and algorithms and design a simplistic, yet efficient
system, that requires only the everyday commercial tools. Our design benefits from a
unique dataset owing to multiple factors. Firstly, no well-defined procedure or specific
conditions were imposed during data collection phase; the data were collected in maternity
rooms, Neonatal Intensive Care Units (NICUs), etc., where noise of medical equipment and
staff and newborn’s guardians’ chatter was also present. Second, the recording was carried
out by a simple handheld recorder, which can be found even in deprived areas of the world
where the newborn mortality rates are at its highest. Third of all, data collection does not
necessitate even as much as simply touching the newborn which makes our design a truly
non-invasive method.

Despite the ever-growing use of computationally expensive tools, and also the per-
spective where crying is thought of as a pre-speech signal, we employed conventional
tools from different fields such as musical applications, non-speech audio analysis and
processing. We fused and optimized them so that the final design remains simplistic yet
achieves the compatible performance of the state-of-the-art methods. The combination of
the prosodic domain and cepstral domain features, which could lead to a new feature set
that takes advantage of each domain and thus improves the linear separation between the
two pathologies, is considered here by combining GFCCs and HR feature sets for the first
time in the study of diagnostic analysis of the cry signal.

The rest of the paper is organized as follows. The related work on infant pathologies
classification techniques is discussed in Section 2, while Section 3 describes the proposed
methodology, including a description of the dataset and participants, features extraction,
and modeling, followed by a description of the different machine learning methods that
have been tuned and applied to this classification problem. Section 4 presents and discusses
the obtained results. Finally, Section 5 presents conclusions and outlines future work.

2. Related Work

In the early years of pathological infant cry signal analysis and classification, nu-
merous artificial intelligence (AI) and machine learning (ML) techniques were proposed
and developed. Researchers can find many research works on infant pathological cry
analysis and classification in [7,10]. One can see that researchers continue to apply new
machine learning methods to classify infant cry signals into normal and pathological
records; for example, see the recent works in [11,12]. However, some of the current re-
search works include identifying pathologies such as hypo-acoustic [13], asphyxia [14–16],
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hypothyroidism [17], septic [18,19], RDS [20], and autism spectrum disorder (ASD) [21];
additionally the authors in [8,22–24] have investigated different infant pathologies. In
particular, the asphyxiated infant crying signals have been identified using different ML
methods, including a deep feedforward neural network (DFNN) model [14], a support vec-
tor machine (SVM) model [15], and a convolutional neural network (CNN) approach [16],
and achieved accuracy rates of 96.74%, 98.5%, and 92.8%, respectively. In addition, hy-
pothyroidism has been studied in [17] using a Multilayer Perceptron (MLP) classifier, and
achieved a classification accuracy of 88.12%. Two groups of authors investigated sepsis in
newborns recently; the authors in [18,19] have developed a machine learning-based CDS
for identifying septic newborns and reached an accuracy of 83.9% using majority voting,
while the authors in [19] attained 89.99% using entropy-based features. Furthermore, ASD
in [21] and RDS in [20] have been identified based on a SVM and reached accuracies of 96%
and 73.8%, respectively.

Normal and hypo-acoustic infant cry signal classification has also been proposed
in [13] using general regression Neural Networks (NNs) and reached 99% accuracy. There-
fore, most of the existing NCDS models have mainly focused on investigating one pathology
individually versus healthy cases. The authors in [8,11,22–24] have proposed to classify
different pathological types of infant cry signals, namely: normal, deaf, asphyxia, hungry,
pain, jaundice, and premature from the healthy group. Moreover, their proposed model is
based on a combination of wavelet packet-based features and an Improved Binary Dragon-
fly Optimization-based feature selection method, and they conducted several classification
experiments of two-class and multi-class of crying signals and achieved promising results.

As mentioned before, different audio feature categories can be extracted from infant
cry signals using the following domains: cepstral domain, prosodic domain, time domain,
image domain, and wavelet domain [7]. Each domain represents different aspects of the
infant’s cry signal and they each present specific information and characteristics. Compared
to the time domain features, which are more sensitive to the background noise, the cepstral
domain features have been shown to be more robust in modelling characteristics and
covering variations within infant crying signals [7]. These frequency-domain features
can be computed using different mathematical tools, including Mel-frequency cepstral
coefficients (MFCCs), Linear Prediction Cepstral Coefficients (LPCCs), Bark Frequency
Cepstral Coefficients (BFCCs), Gammatone Frequency Cepstral Coefficients (GFCCs), and
Linear Frequency Cepstral Coefficients (LFCCs). Indeed, cepstral features have been widely
used in the field of speech processing and recognition, and the most frequently used ones
to identify infant pathologies are MFCCs, LPCCs, and LFCCs, which have shown better
performance compared to time domain features. In particular, MFCCs are the most used
and tested features to identify infant pathologies; for example, asphyxia in [15,16], and
hypothyroidism in [17], and achieved promising accuracies as presented above. Liu et al.
also used MFCCs along with LPCCs and BFCCs and based on a NNs model to identify
infant cry reasons and the results showed that BFCCs produced the best classification rate
of 76.5% [25]. Furthermore, the authors in [26,27], showed that LFCC performed better
than MFCC in distinguishing high-frequency audio signals such as female voice and infant
crying signals. On the other hand, GFCCs have been shown to be powerful descriptors
in non-speech recognition tasks, such as emotion recognition [28,29], understanding the
reason behind the crying of infants [30], and automatic speech recognition [31]. There is
one recent study where authors employed Gammatone Cepstral Coefficients (GTCCs) that
are based on the time-representation of the signal for identifying infants suffering from
Hypoxic Ischemic Encephalopathy (HIE) based on their cry signal [32]. It is noteworthy to
highlight that our study employs the frequency-representation by extracting GFCCs since
they have proved successful in audio recognition tasks [33].

Prosodic domain features, which include high-level information such as formants,
intensity, duration, harmonicity, and unvoiced regions, also contribute in improving the
discriminative ability between the crying signals and thus identifying the type of the infant
cry signal; an example of this is the identification of asphyxia in [14]. It has been shown that
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attaching these features together with frequency domain features contributes to extracting
both physiological and physical information from acoustic signals [7]. Furthermore, image
domain features, such as the spectrogram which is a time-frequency image representation
of an audio signal and includes both acoustic and prosodic information, can be used to
distinguish between healthy and unhealthy infant cries. It has been widely shown that
feeding spectrograms into machine learning algorithms also plays an important role in
enhancing the classification of different infant crying signals [34–37]. It is, therefore, obvious
that each domain contributes to the classification of infant crying signals, and thus the
mechanism of generating a combined feature set that takes advantage of different domains
deserves to be considered and investigated.

Several relevant recent research works have already shown promising enhancement
with combined features to the problem of infant cry signals analysis [14,37–39]. More
specifically, Ji et al. showed that combining MFCC features with weighted prosodic features
contributed in improving the classification rates of the asphyxiated infant cry signals using a
deep learning approach [14]. In addition, a combined NNs model that combines summative
and temporal features was proposed for infant cry classification and outperformed the
independently-trained temporal and summative networks [38]. In addition to that, the
authors in [37] have shown that using hybrid features of the prosodic, spectrogram, and
waveform classified by a CNN model produces better infant sound classification rates
for the two different datasets. Moreover, a more recent study has investigated the use of
hybrid features of MFCC, Spectral Contrast, Chromagram, Mel-scaled Spectrogram, and
Tonnetz based on CNN and DFNN learning models [39]. The results have shown that
deep learning models performed better with hybrid features compared to the use of single
feature of MFCC. It was shown that combining DCNN with RBF-SVM was capable of
achieving up to 88.89% accuracy in classifying infant cries based on the reason of crying [40].
Incorporating deep learning networks and combining them has shown the potential for
state-of-the-art performance. For example, Khatun et al. [41] proposed a DCNN-LSTM
classifier with self-attention model, which was capable of attaining an accuracy of 99.93%
for human activity recognition purposes. In another study for classifying MRI brain
tumor, authors implemented CNN with PCA in the feature extraction step and fed these
features to different machine learning classification algorithms, which yielded a remarkable
99.76% accuracy [42].

To summarize, most of the existing models focus on analyzing infant cry signals to
identify one pathology by using different machine learning techniques. To the best of
our knowledge, no studies have addressed classifying RDS cries from sepsis cries using
machine learning methods. Moreover, we noticed a lack of studies that give attention to
the question of combining cepstral domain features and prosodic domain features to be
used in classifying different infant pathologies. Therefore, finding the optimal combination
of cepstral and prosodic domains, followed by a fine-tuned machine learning algorithm,
remains an open question and needs further research investigations. Therefore, this paper
proposes to use different machine learning techniques that use a combined feature set
of cepstral and prosodic. The main contributions of this research work can, thus, be
summarized as follows:

• Different machine learning techniques were used to classify RDS cries from sepsis cries.
In this regard, all used ML techniques were fine-tuned to give the best classification
rates. Our fundamental goal is to prove the concept that a NCDS can be built, starting
with these two pathologies that are most common in newborns.

• It is the first demonstration that GFCC features, and HR descriptors can be combined
and used to support the diagnosis of pathologies in newborns. In this regard, we
show that combining the two feature sets played an important role in improving the
classification results.

• An accuracy of 95.3% with 0.95, 0.95, and 0.95 precision, recall, and F-score, re-
spectively, were obtained using a fine-tuned SVM to distinguish between RDS and
sepsis cries.
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3. Materials and Methods

It is well known that extracting the most significant efficient features from given
data plays an important role in simplifying subsequent tasks, such as the classification
process, and thus leads to more accurate results. In this proposed work, we propose a
combined feature set specifically for the classification of infant pathological cries. As shown
in Figure 1, the workflow of the proposed model involves four main stages, which can
be summarized as follows: (1) signal preprocessing and segmentation, (2) features extrac-
tion, selection, and modelling (3) machine learning model, and, finally, (4) pathological
cry classification.
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3.1. Dataset Description

The samples included in this study were acquired as a result of collaboration between
Saint-Justine children’s hospital in Montreal, Canada and the Al-Raee and Al-Sahel hos-
pitals in Lebanon. As explained in our previous works [24], the cries in our dataset were
collected from the newborns regardless of their race, gender, weight, or cry stimulus (pain,
hunger, etc.). These cries have been collected with a common digital 2-channel Olympus
handheld recorder with a 16-bit resolution and 44,100 Hz sampling frequency placed in
the 10-to-30-cm vicinity of the newborn’s mouth. The cries were recorded in the hospital
environment including maternity rooms and NICUs with no well-defined procedure and
in the presence of noise. The health status of the newborn was determined based on several
screening tests performed after birth and the cry signals were labeled as healthy or with
the diagnosed pathology group based on medical reports accordingly. The gestational age,
race, reason of crying, babies age, weight, and APGAR score were all noted. These con-
siderations make our dataset a real and comprehensive one that can study newborns and
propose a real-world solution in designing newborn cry diagnostic systems. The age of the
babies in this study ranged from 1 to 53 days old, since it is not until the end of the second
month of life (53 days to be precise) when newborns gain control of the vocalizations they
produce [43]. Prior to this age, any vocalization is controlled by independent biological
rhythms and thus it could be an indicator of newborn’s health. Moreover, the restructuring
of the supralaryngeal vocal tract takes place around 3 months of age [43]. Therefore, this
study excluded the newborns with a postnatal age more than 53 days.

It is well known that a majority of pathological studies encounter the same main obstacle,
which is data acquisition. This challenge is attributable to several factors: (1) the unpredictabil-
ity of whether a newborn with the targeted pathology groups will be observed during the
data collection period, (2) acquiring the ethical and technical approvals to incorporate a cry
sample in the database is a timely and difficult process which may result in losing some of the
samples and (3) obtaining the newborns’ guardians’ consent to record their newborn’s cry
and then add it to the database is quite challenging.

Given all these obstacles, we tried to segment each recording to multiple expiration
segments in order to overcome the data limitation challenge and better study the character-
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istics of pathological newborn cries. There was a total of 53 recordings from 17 newborns
for sepsis, and 102 recording from 33 newborns for the RDS pathology groups. These
recordings had an average of 90 s including silence, hiccups, inspiration cries, expiration
cries, and background noise. The original newborn cries were recorded with different
durations ranging from 1 to 4 min with an average of 90 s, obtaining up to 5 recordings
per newborn, which was inadequate for classification purposes. As explained in data
preprocessing section, multiple EXP segments were extracted from each recording, which
were later treated as an individual sample; these formed the 2264 samples mentioned in
Table 1 with an average length of 0.71 s for sepsis and 0.74 s for RDS.

In this study, the expiratory cries of newborns diagnosed with sepsis and RDS were
included with 17 and 33 newborns in each group, respectively. In order to have a well-
balanced and homogenous study, we selected the same number of samples from each
pathology group, Table 1.

Table 1. The dataset description.

Septic RDS

Gender 11 Males and 6 Females 10 Females and 23 Males
Average sample length 71 milliseconds 74 milliseconds

Babies Ages 1 to 53 days old
Prematurity Term

Gestational age 38 ± 1 week
Number of samples 2264 (1132 each)

Origin Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine,
Bangladesh, Turkey

Race Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, Quebec
Reason of crying Birth cry, hunger, dirty diaper, discomfort, needs to sleep, cold, pain

Finally, it is noteworthy to mention that despite the fact that RDS is mainly attributable
to prematurity, term newborns are often misdiagnosed or not considered for RDS. Although
the occurrence of RDS in term newborns is exiguous compared to the preterm newborns,
several studies show that a notable number of term-born neonatal hospital admissions
are still due to RDS every year [44,45], accounting to a total of around 8%. Another study
showed that 43% of term-born respiratory failures are due to RDS, which is a serious alert
to not rule out RDS in term neonates [46].

3.2. Data Preprocessing

The cries of infants in our dataset have been processed by our previous colleagues in
order to remove silence, filter, and segment each recording. Each recording was segmented
and assigned with multiple labels. For example, the expiratory cries were marked as EXP, or
the phonation during inspiration was labeled INSV, which represents a voiced inspiratory
cry segment. These labels were attached by the means of WaveSurfer software. In the
present study, we used the EXP segments of each cry recording and treated each segment
as a sample. As has already been stated, one of the main challenges in any biomedical
research is the limitation of data, especially in a problem such as this study, where the
chances of observing a newborn suffering from a certain pathology are not predictable.
Therefore, by segmenting each cry signal, we solved this challenge to a fair extent.

3.3. Features Extraction and Modelling

As mentioned before, the main focus of this study is the extraction and the study of
feature sets that are capable of representing the differences in newborn cries associated with
two entangled groups of pathologies, RDS and sepsis. The cry signal is non-stationary and
dynamic, which calls for the study of both short-term and spectral features. Furthermore, it
has been shown that although MFCCs are the most commonly used features owing to their
high performance [20], GFCCs outperform them in terms of less computational costs and
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better performance [47]. Thus, we studied GFCC features as short-term representations
of the cry signal, as well as the harmonic factors that capture the spectral behaviour of
resonance frequencies in newborn cries. We studied these features individually and then
fused them to test the performance of the NCDS, considering both short-term and spectral
features. The following sections expound on the procedure needed for the acquisition of
these features.

Gammatone Frequency Cepstral Coefficients (GFCCs) are considered an alteration of the
MFCC feature inspired by the biological model of the auditory system. GFCCs employ the
equivalent rectangular bandwidth (ERB) bands instead of triangular bands and mimic the
cochlear spectral structure in mapping the frequencies [47]. The spectrogram representation
of Gammatone-Frequency is called cochleagram. A cochleagram is expected to have fair
performance with pathologic newborn cry signals since the lower frequencies can be
studied with a far better resolution. This study combines the benefits of cochleagrams with
Cepstral analysis. This is because, during the generation of a cry, the glottal impulses travel
across the vocal tract, which then has a filtering effect on them [48]. The Cepstrum facilitates
distinguishing the source and the filter [49], which is desirable for identifying the region of
the malfunctioning body organ. GFCCs have also shown promising potential in non-speech
classification tasks such as emotion recognition [33]. Regarding the computational costs
associated with the extraction of GFCC features, it was shown that by cascading n 1st-order
Gammatone (GT) filters, the nth-order GT filter could be well approximated. In order to
attain GFCCs, the cry signal is first windowed into overlapping Hamming filters of 10 ms
with 3 ms overlap length, since the performance of the feature extraction step is enhanced,
and the non-stationarity of the signal could be neglected in such short frames. Next, in
order to pre-emphasize the valuable signal frequencies, the signal passes the GT filters after
a fast Fourier Transform (FFT) is applied. The final steps of extracting the GFCCs constitute
employing the log function and then the DCT to decorrelate the compressed outputs of the
previous steps. For a given frame k, the GFCCs can be computed through Equation (1):

GFCCk =

√
2
N

N

∑
n=1

GF[k] cos
(

iπ
2N

(2c + 1)
)

1 ≤ k ≤ M, (1)

where GF[k] denotes the loudness-compressed response of the Gammatone Filters (GF),
and the number of filters is given by N.

Harmonic Ratio (HR) has been implemented as a powerful descriptor feature in many
applications related to audio classification since it provides high accuracy [50]. The newborn
cry has the potential to be studied in terms of its musical aspects in addition to being
treated as a pre-speech phenomenon owing to its harmonic components and rhythm
and the differences in sound generator organs between newborns and adults [24,51]. By
definition, a sound is considered harmonic when a series of frequencies derived from
the fundamental frequency as its multiples (called resonance frequencies) are observed
in the sound [52]. Several researchers have revealed the presence of harmonics in the
cry signals of newborns, and the study carried out by Kheddache et al. [51] précised the
harmonic behaviour (the behaviour of resonance frequencies) in pathologic cries, which
showed different distributions and patterns among healthy and pathologic cries and among
groups of pathologies. More specifically, they concluded that this behaviour depends on
the pathology group. Based on these observations, this study evaluates the performance of
HR as a potential biomarker for distinguishing between two pathologic groups of cries. HR
determines the proportion of the energy of the harmonic segments of the cry signal to the
total energy of the cry signal, and four statistical measures of mean, median, interquartile
range, and standard deviation were computed based on HR in order to better represent the
distribution of this feature across the spectrum of the signal [52].

Finally, it is worthwhile to discuss why we chose to fuse HR and GFCC feature sets
in this study. We aimed to propose a simple yet effective design that considered both
the short-term and spectral behavior of the cry signal. For this purpose, the HR was
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chosen because it could demonstrate the abnormalities in the cry signal with low compu-
tational costs and low feature dimensions, and in addition was shown to demonstrate a
meaningful difference between infants diagnosed with RDS compared to other pathology
groups. The GFCC feature set was also used as a more robust alternative to the MFCCs
that are the most prevalent in the field of audio processing applications. It was shown
in [18,19] that the combination of short-term and spectral features provide better classifica-
tion performance for the study of RDS and sepsis. Furthermore, feature fusion was shown
to enhance the performance of the diagnostic system designs for depression data [53] and
artifact rejection in neuroimaging data [54] by playing a significant role in enhancing the
linear separability through constructing the apropos feature set. Thus, forming a feature
vector that merges spectral and short-term and maintains simplicity, robustness, and low
dimensionality, is advantageous and interesting to be explored. The feature sets were fused
by the means of simple concatenation, and then normalized using a standard normaliza-
tion. By implementing a fused feature set, we can expect a robust newborn pathology
classification performance benefitting from a simpler classification process. Moreover, it
would improve the linear separability of various pathology groups within the feature space.
The individual feature sets of HR and GFCC were also normalized before being fed into
the classifiers.

3.4. Machine Learning Classification and Tuning

In this study two classification methods were used, namely SVM and MLP, and
both of them were chosen based on their common properties, which are simplicity and
cost-effectiveness. The SVM classifier is one of the prevailing algorithms when it comes
to the infant cry applications, hence it is often employed as a baseline in many studies
to highlight the role of other stages of the design, e.g., how successful the features are
and to provide comparability to the classifiers and works of other researchers [15,55,56].
This is because the data in biomedical studies are often very limited and one of the main
strengths of the SVM is the ability to efficiently construct complex decision boundaries
from limited samples [57]. Moreover, SVM is suitable for a portable and low-cost model
design. The MLP classifier has a similar performance to the SVM, the samples are classified
by constructing a complex decision boundary. MLP was successfully applied to several
studies regarding asphyxia, which also involves the respiratory system [58–60]. Hence, it
would be beneficial to investigate MLP in the diagnosis of RDS as well. Moreover, MLP is
amongst the simplest NN classifiers. The application of MLP is lucrative to assessing the
potential of more advanced NNs with more data in the future.

3.4.1. Support Vector Machine (SVM)

SVMs are among the most recognized classification methods implemented for the
study of audio signals. Both linear and nonlinear classifications can be performed via SVMs,
which are categorized as high precision supervised learning algorithms. The classification
procedure of SVM consists of constructing a hyperplane that forms the farthest distance
between the data points of different classes. For the case where the data points are not
linearly separable, kernel functions are implemented. In this study, a Radial Basis Function
(RBF) kernel was chosen, which presumes the neighboring points belong to a similar group
and calculates the Euclidean distance between two given points in the feature space [15].

3.4.2. Multilayer Perceptron (MLP)

The general algorithm of a MLP consists of four steps: feeding the pattern to the
network, feeding forward across the following layers, updating weights through a back-
propagation method, and finally optimizing using an optimization function [61]. MLP
constructs a linear decision boundary for classification, and similar to SVM, a hyperplane
is constructed so that the decision boundary has the minimum distance from misclassified
points [62]. The Root Mean Square Propagation (RMSprop) was used as the optimization
function that helps minimize this distance by tuning the backpropagation weights [63]. In
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order to evaluate the feasibility of employing neural networks for discriminating among
groups of pathologies, a 7-layer MLP classifier was designed and proposed. Figure 2 shows
the system design with the MLP classifier. With the use of HPO methods, the MLP was
configured and tuned for each experiment. The input layer had the same number of neu-
rons as the input feature vector (4, 13, and 17 neurons for HR, GFCC, and fused feature sets,
respectively). Next, a 128 node fully connected layer was followed by a normalization layer
and a hyperbolic tangent activation function. The activation function decided whether
the neuron would fire. Next, another fully connected layer consisting of two nodes that
corresponded to the number of output classes (Septic vs. RDS) was included. Finally, a
sigmoid layer was used to convert the raw outputs of the previous layers into meaningful
class probabilities between the range of [0, 1], and these probabilities were then fed to the
classification layer where the decided label was produced. Training iterated with a learning
rate of 0.001 through 120 epochs, and then validated by 15% of all the data, with 30% of the
data randomly split for testing, and 55% of the data used for training.
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3.4.3. Hyper-Parameter Fine-Tuning and Evaluation Measures

Attaining desirable classification performance, as well as low error rates, is the goal
and the main challenge of all classification problems; hence, the fine-tuning methods of
HPs were introduced to serve this purpose.

Each experiment requires its own HP tuning since the feature matrix dimensions vary
so that the classifier is tailored to fit the task. Furthermore, the HP fine-tuning methods
replace human interference in determining classifier HP configuration, which includes
random search, grid search, and Bayesian HPO approaches. In this study, the grid search
method was used to fine-tune the classifiers’ HPs, where it selected an optimum value
for HPs from a limited set [64]. The HPs selected for SVM fine-tuning were the γ and C,
whereas the initial learn rate, L2 regularization, and the number of epochs were tuned
for MLP.

In order to assess the ability of the proposed design in discriminating between the
two groups of pathologies, several evaluation measures should be considered. Generally,
the accuracy measure is the most prevalent measure in all systems, which is equal to the
ratio of correct predictions to all the observations. The accuracy owes its prevalence to
simplicity in calculation and understanding, but it is not informative in terms of class
assessment and missed cases; therefore, other measures were introduced and studied.
Table 2 presents a number of these measures used in this study [19].
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Table 2. The evaluation measures and their formula.

Evaluation Measure Formula
Accuracy TP+TN

TP+FP+FN+TN×100
Sensitivity TP

TP+FN ×100
Precision TP

TP+FP ×100
F-score 2TP

2TP+FP+FN ×100

4. Results and Discussion

This study targets the distinction between two entangled groups of pathologies in
newborns for the first time in NCDS designs to the best of our knowledge. The aim of this
study was to develop an early alert for the detection of sepsis and RDS, which are among
the top newborn mortality causes around the world. Assessing the potential of analyzing
acoustic features of the cry signal as a biomarker, through simple and accessible tools, was
the priority of the proposed NCDS. Our dataset was recorded through a handheld recorder
in the presence of noise with no prespecified conditions in maternity rooms and NICUs.
Furthermore, newborns from different races, origins, genders, and various reasons of crying
participated in our study which makes it comprehensive. Moreover, this study combined
features that were conventional in musical applications of HR with the biologically inspired
features used in speech-processing applications, and GFCCs that belonged to two levels of
short-term and spectral. Additionally, with the help of HP fine-tuning, the classifiers were
tailored to fit each of the presented experiments.

Various audio recognition, speech, and music processing systems benefit from sophis-
ticated and complex deep-learning models, whereas in biomedical applications, the use
of these designs depend on data availability. Data acquisition and collection are among
the most significant challenges in biomedical research; when it comes to observing certain
pathological groups, the probability is not deterministic in any given period of time. There
is no way of knowing whether the newborns admitted to a hospital on a certain date
would be diagnosed with the pathology groups subject to research. Nevertheless, obtaining
the ethical and technical requirements to include data from any participant adds to the
challenge of data acquisition. Therefore, this study benefits from SVM as a desirable and
successful approach in NCDS designs and explores the use of a MLP neural network in
order to assess the further potential for using other NN models in future works.

As mentioned in previous sections, the NCDS was designed and analyzed with the
EXP dataset. The MLP and SVM classification approaches were used to identify septic
newborns from RDS, and the feature sets were employed individually and also after
their fusion. In order to fuse the features a simple concatenation followed by standard
normalization was performed, so that the performance of the feature set implementing
both modalities (short-term and spectral) would be compared to the individual feature
sets. Furthermore, the classifiers were fine-tuned using the grid search hyperparameter
(HP) optimization. In this case, γ and C were tuned for the SVM classifier, while the HPs
of L2 regularization, initial learn rate, and number of Epochs were optimized for the MLP.
In order to fully investigate the potential of HP fine-tuning, the range for each HP was
determined for the optimization process, Table 3. Elaborating the reasons behind choosing
which HPs were tuned in this study would be of essence.

Table 3. The pre-defined ranges for HP fine-tuning.

Classifier Parameter Selected Range Value Type

MLP
Initial learning rate [0.0001, 1] Logarithmic
L2 Regularization [0.0001, 0.001] Continuous
Number of Epochs [50, 200] Integer

γ [0.1, 0.25, 0.26, 0.3, 0.5] Categorical
SVM C [0.5, 1, 2, 4, 5] Categorical
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Initial Learning Rate is the most significant HP to tune in neural networks. Following
each iteration of estimating the error yielded after updating the weights, the learning rate
determines how much of an adjustment the model requires.

Selecting the optimal learning rate is a trade-off between computational time and
finding the optimal solution. Larger learning rates lead to the faster convergence of the
model to the suboptimal solution, whereas a small learning rate calls for a higher number
of epochs. Therefore, we should tune the number of epochs as well [65].

Number of Epochs determines the number of changes in the weights of the network;
increasing and decreasing the number of epochs may lead to the underfitting and overfitting
of the model. Therefore, while tuning other HPs of the network, it is important to select
the optimal number of epochs correspondingly. The optimal selection of the number of
the epochs allows for the termination of the training process before the elevation of the
validation error [66].

L2 Regularization: In order to prevent machine learning techniques from encountering
overfitting, regularization methods were introduced [67] so that by adding a penalty factor
to the large weights, the complexity of the overall design was reduced. L2 regularization
is amongst the most prevalent methods of regularization. The value of regularization HP
should be selected in such a way that both overfitting (associated with small regularization
value) and underfitting (associated with large regularization value) are prevented [68].

As for the SVM classifier, both γ and C should be tuned. A higher value of the C
would prioritize decreasing the support vectors count due to the fact that they each add to
the optimization costs, while lower values of C lead to a higher support vector count and
thus, larger margins. The γ HP determines the simplicity of a SVM model; higher values
correspond to a curvier decision plane, which closely follows the data, whereas a small γ
means a simpler model with flatter decision plane. γ in fact signifies the speed of lowering
the domination of each point as the distance grows [69].

We conducted three experiments to evaluate the system performance, the role of fused
features, and the role of each feature set. Tables 4–6 present the results of the evaluation of
the proposed design based on these experiments.

The results for the evaluation of the HR feature set are presented in Table 4. The HR
feature set proved to be a successful feature in the analysis of the cry signal, since with only
4 elements, the NCDS could yield a 71.03% accuracy. However, the MLP classifier did not
converge for the HR feature set. This result was unsurprising since this feature set has a
low dimensionality of only 4 elements. Therefore, increasing the number of features could
solve this challenge, as presented in Table 6.

Moreover, this feature set could also obtain fair performance in terms of recall and
precision. The recall measure is of great significance in exploring the pathologies, since
it demonstrates the share of true septic (or RDS) cases among all the samples. Precision
shows the probability that NCDS will predict a septic (or RDS) case correctly. These two
measures owe their importance to the fact that true diagnosis and timely treatment of the
pathology have a considerable effect on the survival chances of the newborn.

Table 4. The results for the evaluation of the HR feature set.

Feature Set Classifier Accuracy Precision Recall F1-Score
SVM 71.03% 0.71 0.71 0.71

HR MLP N/A N/A N/A N/A

The GFCC feature set remarkably attained a high performance as an individual feature
set with both classification methods, Table 5.

Increasing the number of features resulted in the convergence of the MLP classifier
as expected; however, the SVM outperformed MLP across all evaluation measures. It can
also be seen that the performance of the NCDS with GFCC feature set was superior to the
HR feature set by more than 10% in accuracy. Figure 3 depicts a more detailed look at the
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results of identifying the septic and RDS cases via HR feature set through presenting the
heatmap for the SVM classifier.
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Table 5. The results for the evaluation of the GFCC feature set.

Feature Set Classifier Accuracy Precision Recall F1-Score
SVM 92.94% 0.93 0.93 0.93

GFCC MLP 88.51% 0.88 0.89 0.89

In the final experiment, we fused the previous features to assess the performance of
NCDS in discriminating between RDS and septic newborns, Table 6. The addition of the
HR features resulted in an enhancement of more than 2% across all the evaluation measures
for both classifiers compared to the GFCC feature set. These results are promising due to
two main points: (1) improving the performance where the results are already at more
than 90% would be difficult, and our design gained more than 2% enhancement. (2) this
enhancement is consistent across all the evaluation measures investigated. Similar to the
GFCC feature set, the SVM transcended the MLP throughout the evaluation measures.

Similar to the HR feature set, the detailed heatmaps for the GFCC and combined
feature sets using each of the classifiers are presented in Figures 4 and 5, respectively. These
heatmaps show how the data are distributed across the classes and provide a deeper look
into the predictions made by the NCDS.

Finally, comparison of the Area Under Curve (AUC) of the Receiver Operator Charac-
teristic (ROC) for the experiments in this study would help further assess the performance
of different architectures. Figure 6 shows the ROC curves for the SVM classifier. The ROC
curve shows the true positive rate (TPR) on the vertical axis and the false positive rate (FPR)
on the horizontal axis. FPR is also an important measure, since it represents the probability
of a false alert. The area under curve (AUCs) of ROCs is an indicator of model performance
which will be discussed later in this section.

As can be seen through all evaluation measures, the fused feature set achieved the
highest results with both classifiers. The study of the AUC is salient in terms of statistical
analysis, since it demonstrates the probability of ranking any positive sample is higher
than any negative sample, the same as Wilcoxon test of ranks [70] in order to compare
the classifiers; the ROC curves are summarized in a single scalar, the AUC. The AUC is
always between 0 and 1 since it is defined as a share of the area of the unit square [71]. Any
practical and acceptable classifier should have an AUC of more than 0.5 since the random
guessing is equal to the diagonal line in the ROC curve that crosses (0, 0) and (1, 1); the
closer values of AUC to 1 translate to better performance of the classifier. In other words,
the AUC signifies the ability of the system in distinguishing between the two classes which
is the main goal of this study [72].
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Table 6. The results for the evaluation of the combined feature set.

Feature Set Classifier Accuracy Precision Recall F1-Score
SVM 95.29% 0.95 0.95 0.95

GFCC + HR MLP 92.49% 0.92 0.92 0.92

Two main goals were introduced for this study: (1) finding the optimal feature set and
study the effect of combining spectral and cepstral features. (2) finding the best classification
algorithm that fits our problem/challenge.
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Through comparing the AUCs resulting from analyzing the introduced feature sets in
this study with the SVM classifier, the role of feature fusion in studying the pathologic infant
cries became clear. It is shown that implementation and combination of different modalities
can enhance the performance of the system, thus achieving the first goal. Concerning the
second goal, it was shown that the MLP classifier was outperformed in terms of evaluation
measures for all feature sets; therefore, as a final discussion point, we compared the AUC-
ROC of the best feature sets of the SVM and MLP classifiers. Figure 7 illustrates the ROC
curve for the MLP classifier; as can be seen from Figures 6 and 7, the MLP showed better
performance in terms of the AUC measure. This is an interesting result since it suggests two
points: (1) the study of the ROC curve is essential for analyzing the binary classification
problems since the evaluation measures might not describe all the aspects. (2) the MLP
classifier shows great potential in studying the pathological infant cry signals since it
has better performance in the separation of the two classes and should be considered for
future studies. Finally, it can be seen that the superiority of the combined feature set is
consistent across both classifiers as the MLP classifier also has a 0.17 increase in the AUC
by implementing a combination of the features.
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There are few studies analyzing newborn cry signals to diagnose sepsis. Recently,
two groups of researchers studied sepsis based on processing the newborn cry signals;
however, they both focus on detecting septic newborns from the healthy group, whereas
this study aims to target distinguishing between two pathological groups for the first
time. The study presented by Matikolaie et al. [18] investigated the role of prosodical
characterization of the cry signal in detecting sepsis which accomplished 86% as their best
F-score. Furthermore, Khalilzad et al. [19] explored the potential of a NCDS in diagnosing
sepsis by incorporating entropy-based features and fuzzy entropy feature selection, which
attained 89.70% as their best F-score for the expiration cry segments. We believed that with
sepsis being one of the globally leading post-partum mortality causes, there is a need for
more in-depth studies that probe other perspectives of this pathology. Hence, this study
could be complementary to the previous studies to give another means and modality of
studying sepsis by comparing it to another cognate pathology.

The respiratory distress syndrome (RDS) suffers from a similar research gap; the exist-
ing literature on processing RDS cries is scarce. There are few studies target studying RDS
as a single pathology group; Matikolaie et al. [20] proposed a NCDS to detect newborns
suffering from RDS from the healthy and obtained 73.80% accuracy. Chittora et al. [73] pre-
sented a spectrographic comparison of the RDS cries, where a double harmonic break was
presented, suggesting that resonant study of the cry signal would be helpful in analyzing
the RDS cries. Moreover, Lederman et al. [74] classified the preterm infants suffering from
RDS from healthy preterm infants and achieved a 63% accuracy using hidden Markov mod-
els. Finally, Alaie et al. [11] obtained 69.59% accuracy by GMMs using the boosting mixture
learning method for the detection of infants diagnosed with RDS; in another experiment,
they formed a subset of pathological newborns suffering from multiple pathologies such as
RDS, heart problems, blood abnormality and neurological disorders as a single patholog-
ical group to be detected from healthy newborns and gained an accuracy of 85.21%. As
mentioned above, all discussed research focused on the identification of RDS/Sepsis from
healthy; however, to the best of our knowledge there is no prior work on distinguishing
between two (or more) pathology groups. Nevertheless, despite the entangled nature of the
two pathologies studied here, our design was able to outperform all of the previous studied
on sepsis and RDS cry signals by achieving 95.3% for accuracy. Similar to any other study in
this field, this study also faced multiple challenges. Although we attempted to study the cry
signals regardless of race, origin, and other factors such as cry stimuli, the designed NCDS
has room to be further developed with more data. Furthermore, employing explainable AI,
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such as LIME, might help to better analyze the contribution of different features to the final
result; thus, it will be considered in our future works.

This study had several achievements; it provided a proof for the concept of distin-
guishing between different pathology groups based on only cry signals, as well as further
highlighting the benefit of combining features from different levels. Furthermore, by using
proper feature manipulation, normalization, and HP fine-tuning, our machine learning
design was able to achieve results similar to the more complex and resource expensive
methods in the literature by attaining an accuracy and F-score of up to 95%. The high values
of recall demonstrate the success of our design in detection of the true pathology group.

5. Conclusions and Future Work

This paper aimed to investigate RDS and sepsis as two of the pathologies associated
with high mortality rates of neonates across the world through machine learning-based
methods. These two pathology groups require in-depth and extensive clinical tests to
be diagnosed, which calls for the development of a non-invasive tool such as the one
suggested in this study. The novelty of the proposed design lies in removing the need
for any extreme data collection or analysis tools by employing a commercial handheld
recorder for data acquisition with no well-defined conditions, as well as using conventional
machine learning techniques and combining them in such a way that the performance of
the system is comparable to the highly complex and recent methods. This study proposed
an early alert for detecting and discriminating two entangled groups of pathologies for the
caregivers of the newborn and the medical staff in deprived areas of the world suffering
from high newborn mortality rates.

The classifiers in this study were tuned for each experiment and all the feature sets
were normalized before being fed to the classifiers. The cry signals were studied from
a musical perspective through the HR feature set and from a speech processing aspect
by means of the GFCC feature sets. Moreover, these features were from two different
levels that also investigated the short-term and the spectral behaviour of the cries. The
combination of these two feature sets improved the overall performance of the system, and
the final accuracy and F-score were as high as 95%.

In this research work, we have noticed that training deep learning approaches requires
a large size of diverse samples of infant pathologies. Therefore, increasing the number of
samples is desirable for introducing deep learning models. Instead of using GFCC features
modality only, we have also seen that combining HR features and GFCC features has
positively contributed to improving the classification rates by 2.35% and 2.21% using SVM
and MLP, respectively. Nonetheless, integrating other features from other domains that
improve the linear separation ability will be further investigated in our future works. As
mentioned before, it has been shown that extracting spectrogram features includes impor-
tant information or characteristics in classifying infant crying signals [34–37]. Combining
spectrogram features along with the prosodic and cepstral features will be one of our future
works. Whether the features will be fused prior to training or within the learning process is
also an open question.

Our next work will be based on proposing a multimodal fused model for the diagnosis
of different infant pathologies leading to an accurate NCDS. This will include increasing the
dataset by introducing new pathology types, extracting more robust features from different
domains, fusing them with appropriate ratios, and then generating a new combined
feature set that improves the discrimination ability. The feature analysis will be based on
more sophisticated techniques, such as deep learning approaches. Therefore, studying
and finding novel deep learning architectures, such as CNN and DFNN, with the use of
combined features will also be considered.
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