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Abstract: The acoustic characteristics of cries are an exhibition of an infant’s health condition and these
characteristics have been acknowledged as indicators for various pathologies. This study focused on
the detection of infants suffering from sepsis by developing a simplified design using acoustic features
and conventional classifiers. The features for the proposed framework were Mel-frequency Cepstral
Coefficients (MFCC), Spectral Entropy Cepstral Coefficients (SENCC) and Spectral Centroid Cepstral
Coefficients (SCCC), which were classified through K-nearest Neighborhood (KNN) and Support
Vector Machine (SVM) classification methods. The performance of the different combinations of the
feature sets was also evaluated based on several measures such as accuracy, F1-score and Matthews
Correlation Coefficient (MCC). Bayesian Hyperparameter Optimization (BHPO) was employed to
tailor the classifiers uniquely to fit each experiment. The proposed methodology was tested on two
datasets of expiratory cries (EXP) and voiced inspiratory cries (INSV). The highest accuracy and
F-score were 89.99% and 89.70%, respectively. This framework also implemented a novel feature
selection method based on Fuzzy Entropy (FE) as a final experiment. By employing FE, the number of
features was reduced by more than 40%, whereas the evaluation measures were not hindered for the
EXP dataset and were even enhanced for the INSV dataset. Therefore, it was deduced through these
experiments that an entropy-based framework is successful for identifying sepsis in neonates and has
the advantage of achieving high performance with conventional machine learning (ML) approaches,
which makes it a reliable means for the early diagnosis of sepsis in deprived areas of the world.

Keywords: newborn cry diagnostic system; Spectral Entropy; sepsis; fuzzy entropy; Bayesian
Hyperparameter Optimization

1. Introduction

Studies conducted by the United Nations Children’s Fund (UNICEF) report that
7000 newborns die every day from mostly treatable causes, which amounts to 2.6 million
neonates per year. Although neonates constitute the most vulnerable group, they are also
the most difficult to interact with; in-depth examinations and medications are intricate and
seldom prescribed. The main challenge in working with neonates is that their only means
of communication is crying. According to UNICEF reports, newborn mortality is mainly
attributable to infectious pathologies such as sepsis and meningitis. These two pathologic
conditions together comprise a 15% share of all neonate death causes, especially in middle
and lower-income countries [1].

Crying is the result of cooperation between numerous organs in the body, such as
the respiratory system, central and peripheral nervous system, and a variety of muscles
and limbs. If any organs fail to function properly, a cry different from a healthy one
is expected [2]. As early as the 20th century, it was observed that the cry of neonates
diagnosed with certain pathologies was different from healthy neonates [3]. This led to
further investigation of cries and the use of sound spectrographic analysis. The results
claimed that the cry signal conveys a significant amount of information about a newborn’s
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health. The researchers developed a more accurate system since the spectrographs could
not capture all the abnormalities and disorders in a cry signal; therefore, the automatic
newborn cry diagnostic systems (NCDSs) were designed and proposed [4–9].

NCDS architectures are designed to serve different purposes. These purposes include
detecting the reason for crying in healthy infants [10,11], such as pain, hunger, etc., seg-
menting the crying episodes into expiration and inspiration [12], detection of the cry from
the surrounding environment [13] and diagnosis of pathologies [14–16]. The design pro-
posed in this study focuses on the last category of NCDSs where the goal is to discriminate
between healthy and septic infants [17]. Similar to other audio analysis systems, the NCDS
consists of three main stages: pre-processing, feature extraction and classification, as seen
in Figure 1.
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Mel-frequency Cepstral Coefficients (MFCC) are one of the most common features in
the analysis of audio signals. They have been employed in the detection of many health
conditions, such as cleft palate [18], asphyxia [19,20], respiratory distress syndrome [4] and
hearing impairment [21], and have demonstrated efficient performance. Other feature sets,
including fundamental and resonant frequencies [22], Linear Prediction Coding (LPC) [23]
and prosodic features [24], have been explored in the feature extraction step of other NCDS
designs. Various entropy feature sets were utilized in order to identify deaf neonates from
the healthy group [21], for detection of asphyxia in newborns [25] and for automated
detection of the cry [26]. It has been reported that approximate entropy has different levels
across healthy and pathologic newborns [27]. We extracted Spectral Entropy Cepstral
Coefficients (SENCC) and Spectral Centroid Cepstral Coefficients (SCCC) and combined
them. The combination of these features provides more analysis for the study of septic cry
signals. Finally, the feature sets are fed to a classifier and the predicted class labels are the
output of the NCDS.

Spectral Centroid (SC) has been studied in order to find the reason for crying [28,29]
and to detect infants with developmental disorders [30]. This feature has shown promis-
ing results in musical applications for studying timbre [31] and medical studies such as
detecting Alzheimer’s disease based on Electroencephalogram (EEG) signals [32]. To the
best of our knowledge, cepstral analysis of this feature set has not been explored in NCDS
designs so far. For a long time, crying has been treated similarly to the speech signal, and
the features that showed potential in speech recognition tasks have been employed in
cry research. This study aims to introduce the features that have been prevalent in the
study of music to cry-based applications since the cry signal has harmonic components
and rhythm [22,24]. In the next step of NCDSs, many different classification approaches
have been explored. Support Vector Machine (SVM) [33,34], Probabilistic Neural Network
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(PNN) [24], Forest [35], Decision Trees [29], K-nearest Neighborhood (KNN) [36], and
discriminant analysis are some of the algorithms implemented in this field [37].

Hyperparameter Optimization (HPO) was introduced in the 1990s [38,39] when several
studies reported that adjusting various hyperparameters led to better results across different
datasets [40]. HPO is employed to enhance the performance of the default settings provided
by conventional machine learning (ML) architectures [41,42]. Moreover, Fuzzy Entropy
(FE) has been studied previously for many applications in the biomedical field, such as
medical database classification [43], and also tested on the Parkinson’s database for feature
selection purposes, which was able to achieve an accuracy of 98.28% [44].

The contribution in this study has several aspects: first, the identification of septic new-
borns using their cry signals is of great significance, which has considerable potential and
has been rarely looked at so far. To the best of our knowledge, even though sepsis is taking
the lives of many newborns every day, there is only one other very recent study dedicated
to this pathology. The second contribution is our approach in the design of an NCDS with
different feature sets, their combination, and unique HPO for each feature set and classifiers,
in order to identify septic newborns. Lastly, we employed a feature selection method based
on Fuzzy Entropy (FE Selection) in order to select the features with the highest information
content and to reduce the feature space dimensionality [45,46]; to the best of the authors’
knowledge, this method has not been explored in research associated with NCDS so far.
There are many other entropy-based features and methods present in the literature. FE
selection was chosen for this study due to its simplicity and the fact that it does not burden
the system with complex computational costs [47]. Moreover, Lee et al. [45] stated that
their FE-based feature selection method enhanced the classification rate by discarding the
features that were detrimental and affected by noise. The term sepsis refers to an infection
that enters the bloodstream. Medical studies suggest that major infections, including sepsis,
are associated with tenacious crying, and therefore, for a neonate with persistent crying,
the predominant manifestation of sepsis should be seriously considered [48]. Expedient
diagnosis is of utmost importance for this pathology and medical staff should be alert to the
risk factors of sepsis in neonates [49]. It should be mentioned that there are other effective
approaches to the study of sepsis in newborns, which range from studying heart rate
monitoring to biosensing and electrochemical detection [50,51]. However, we proposed this
study as an early and simple alert for diagnosing sepsis without the need for any clinical
equipment, or even contact with the newborn, which would be complementary in adding
information regarding sepsis. The areas that suffer the most from septic mortality have a
lack of pediatricians and are categorized among low-income countries. Thus, a method
that is simple and has efficient performance is preferred to one benefiting from complicated
architecture and high computational requirements.

This article aims to provide an automated approach for identifying septic neonates
through the development of a Newborn Cry Diagnostic System (NCDS). Furthermore, our
goal is to assess the performance of the existing methods in the fields of ML and speech
analysis in order to provide a simple tool for early diagnosis of sepsis in infants. It is
noteworthy that there are a very limited number of studies dedicated to the automatic
identification of septic newborns so far, and we will address them in the following sections.
Therefore, there is a lacuna in the studies regarding the automatic analysis of sepsis in
neonates. The methodology section explains the data acquisition process, participants
and NCDS stages with a detailed description of the features and classifiers. Next, we
expound the NCDS evaluation methods and the results in terms of the evaluation metrics
are presented. We will then discuss the achieved results and compare them to the work of
other researchers. The final section is dedicated to the conclusion.

2. Methodology
2.1. Cry Dataset and Recording Procedure

The database used for this study was created in collaboration and cooperation with
Al-Raee and Al-Sahel hospitals in Lebanon and Saint Justine Hospital in Montreal, Canada.
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Most of the infants chosen for this study were neonates by the definition of UNICEF, which
means they were less than four weeks old. The large number of cases and the diversity
of race and pathologies make this database exceptional from all the other databases. The
signals were recorded in the hospital environment; they were recorded in different condi-
tions and times, such as after birth, when infants were placed in intensive care units, in the
maternity room (either public or private), etc.

The crying reasons were not the same for all the infants; for example, cries may be
due to wet diapers, hunger, fear, etc. These reasons were determined according to the
conditions causing the cry with the help of medical staff and the infant’s guardians. They
were also based on the various tests performed after birth [52]. The dataset acquisition and
the selection of the neonates that participated in this study were not limited to a specific
cry stimulus, making our study a comprehensive one.

The recorder utilized for this database was an Olympus hand-held digital two-channel
device. It had a sampling frequency of 44.1 kHz and 16 bit resolution. The recorder was
placed 10 to 30 cm from the newborn’s mouth. There was no well-defined procedure during
the acquisition of the cry sounds. Therefore, during the data collection process, unwanted
information and noises, such as staff chatter, medical instrument beeps, the cry of the other
newborns, and other environmental noises and sounds, were also recorded. Hence, we
consider our database a real corpus recorded in an actual clinical environment. Table 1 is a
description of the cry database used in this study.

Table 1. Description of the cry database.

Septic Healthy

Gender 11 Males and 6 Females 55 Females and 53 Males
Weight 3.03 ± 0.40 kg 3.50 ± 0.55 kg

APGAR Score 8 to 10, measured 2–3 times 9–10, measured 2–3 times
Babies’ Ages 1 to 53 days old
Prematurity Full term

Gestational Age 38 ± 1 week

Origin Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine,
Bangladesh, Turkey

Race Caucasian, Arabic, Asian, Latino, African, Native
Hawaiian, Quebec

Reason for Crying Birth cry, hunger, dirty diaper, discomfort, needs to sleep, cold, pain

The pathology group selected for this study was sepsis. Our database includes
108 full-term healthy neonates and 17 neonates that were marked as having sepsis by
the medical staff through in-depth examinations. There are 53 cry signals recorded from
the septic neonates in total, which means each newborn has more than one recording
in the database. In order to obtain a balanced study, the same number of samples were
chosen from the full-term healthy neonates’ group. The healthy samples were selected
completely randomly and without any pre-specified conditions in order to maintain the
proposed NCDS free of any bias towards race, reason for crying and origin. In order to have
a balanced study, we randomly selected an equal number of samples from both groups.
As shown in Table 2, the control group consisted of randomly chosen samples from the
whole healthy dataset of 108 healthy newborns to match the number of samples from the
septic group. We wanted our NCDS to include newborns from all races, genders and any
cry stimuli. The only remaining difference in the two datasets is the number of males
and females. However, it has been shown that the length of vocal cords is the factor that
determines the fundamental frequency of newborn cries as well as other characteristics,
and this is similar across male and female neonates and does not have any meaningful
impact on the cry [53]. The average lengths of expiratory and inspiratory cries were 0.72
and 0.21 s, respectively. We set a condition to only select the samples with a length of more
than two consecutive windows (17 ms = two 10 ms windows with 30% overlap) in order to
achieve a reliable analysis of the dataset.



Entropy 2022, 24, 1194 5 of 23

Table 2. Specifications of EXP and INSV datasets for healthy and pathologic cry signals.

No. of Healthy No. of Septic No. of
Train Samples

No. of
Test Samples

Available
Time (s)

EXP 1132 1132 1585 679 1773.66

INSV 461 461 646 276 442.27

2.2. Dataset Preprocessing

Neonates have no significant control over their cries and therefore can only have a
few of the respiratory maneuvers present in adults. Lester et al. [54] reported that the cry
pattern of newborns often shows an expiration phase that is five times longer than the
inspiration, which was confirmed by the durations of signals for the expiration and voiced
inspiration in our dataset.

The process of segmenting and labeling the cry signals was manual and rather percep-
tive, and consequently a time-consuming one as well. The usual method was to detect the
start and end of a cry unit by visual and auditory investigation of the spectrogram of the
cry signal [12].

Our team of researchers annotated the labels corresponding to various segments
of cry signals for this study using WaveSurfer software, as in Figure 2. The recordings
of our corpus have been manually annotated to mark the start and endpoints of each
vocalization. A newborn cry can comprise typical cry sounds, glottal sounds, hiccups, short
pause segments between cries and faint cries [5]. The inspiration is believed to contain
information pointing to pain and distress cries [55].
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The power needed for driving the expiratory phase of a cry is stored during inspiration.
Usually, cries occur during this respiratory phase, so this segment contains the main
information [5]. Additionally, voiced inspiration has proven to be significant in the study
of pathologic neonates [52]. Therefore, INSV and EXP units are used separately for this
study in order to discriminate between healthy and pathologic cries.

2.3. Feature Extraction

In the process of generating a cry sound, the impulses produced by the glottis pass
through the vocal tract, which acts as a filter. In other words, the vocal tract filters the
glottal impulses so as to produce the desired sounds [56]. The Cepstrum is a homomorphic
transformation that allows for the discrimination of the source and filter [57]; therefore,
cepstral analysis was employed here. Furthermore, the cry signal is non-stationary and
dynamic. Hence, an entropy-based feature vector that can capture the presence of com-
plexity in the cry signal is indispensable in the study of newborn pathology diagnosis [58].
Our dataset was recorded in real-world conditions; therefore, the presence of noise was
inevitable. In other biological signals, the noise is treated differently based on the purpose
and applications [59]. In this regard, as suggested by the previous researchers in our
lab [33], we addressed this issue by studying both INSV and EXP datasets in order to
be able to have a more reliable representation of the results. Alaie et al. [33] mentioned
that EXP cries are more reliable in terms of estimating the true value. Furthermore, the
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acquisition of the cry signals was done in the same conditions for both healthy and septic
newborns, and all the steps for the analysis of both groups were similar. The biological
signals are associated with nonstationarities. Maganin et al. [60] reported that these nonsta-
tionarities may have detrimental effects on the results. In order to overcome the difficulties
in processing and the classification of the nonstationary cry signal, it is standard practice to
employ filter banks and a sliding window of short length (10 ms) [61]. The windowing of
the nonstationary signal has been introduced as a solution for achieving a locally stationary
signal [62]. In this study, the Hamming window and Mel-filter banks were utilized before
extracting the features. Each of the introduced feature sets was tested both individually
and combined with other features. In the next step, these feature sets were fed to the KNN
and SVM classifiers, and the hyperparameters for each of them was optimized using the
BHPO method.

2.3.1. Mel-Frequency Cepstral Coefficients (MFCC)

Prior to the extraction of MFCC features, the cry signal needs to be pre-emphasized,
which means that the signal is filtered by H(z) = 1 − az−1 as the transfer function of the
signal. This filtering allocates higher gains to higher frequencies. In this study, the value of
a was selected equal to 0.97 based on previous researchers’ work [33]. Extracting MFCCs
consists of four main steps, which are described here [26]:

1. Applying a windowing criterion to the signal: The window was applied to enhance
the harmonics, smooth the edges and decrease the edge effect of applying a Discrete
Fourier Transform (DFT) to the signal. Here, the Hamming window with a frame size
of 10 ms and 30 percent overlap between consecutive frames was selected.

2. Implementing the DFT: In order to obtain the magnitude spectrum of each window,
the DFT is applied to the cry signal. In this study, overlapping triangular filters were
employed; the number of filters used varied in general between 13 and 24. The MFCC
features were computed from 13 filter banks.

3. Computing the logarithm of magnitude and scaling the frequencies on a Mel scale:
The magnitude spectrum was multiplied by every triangular Mel weighting filter to
calculate the Mel spectrum. The Mel spectrum should be represented on a log scale to
be prepared for the next step. Equation (1) gives the Mel scale of frequency f.

M(f ) = 1125 ln(1 + f /700) (1)

4. Taking the inverse Discrete Cosine Transform (iDCT) of the signal: As mentioned
before, the energy levels of adjacent bands tend to be correlated due to the smooth
form of the vocal tract. Therefore, the transformed Mel-frequency coefficients must
undergo an iDCT that results in separable cepstral coefficients. The first few MFCC
coefficients might be sufficient for a robust representation of the system [63]. Therefore,
the first 13 coefficients were extracted in this study.

MFCCs often only contain the information from one window; hence, these cepstral
coefficients are considered static features. In order to gain information on the temporal
dynamics, cepstral coefficients’ first and second derivatives should be calculated, which
are known as delta and delta-delta coefficients, Equation (2).

∆n =
∑Θ

θ=1 θ(cn+θ − cn−θ)

2 ∑Θ
θ=1 θ2

(2)

where ∆n is a delta coefficient from discrete-time n computed in interval of the static
coefficients cn−Θ to cn+Θ ; the value of Θ is usually set to 2 [61]. The delta-delta coefficients
are calculated with delta coefficients in a similar manner. The dynamic features help us
capture the spectral changes in the cry signal. Finally, the dynamic MFCC features are
added to the feature vector, and together they form the MFCC feature set with a total of
39 features.
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2.3.2. Spectral Entropy Cepstral Coefficients (SENCC)

Spectral Entropy (SEN) evaluates the signal’s energy distribution uniformity. This
measure is an indicator of the complexity of the signal. It can also be employed to capture
the peakiness in a signal. Figure 3 illustrates the SEN of multiple episodes of expiration cry
for a healthy infant as opposed to an infant diagnosed with sepsis. The entropy levels for a
septic cry are lower, which was also deduced in previous works [64].
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In order to compute the SEN, the spectrum is written in terms of a Probability Mass
Function (PMF)-like function, Equation (3).

xi =
Xi

∑N
i=1 Xi

for i = 1 to N (3)

Here, (the uppercase) Xi, appearing in the nominator and denominator, is the energy
of ith frequency component of the spectrum. The PMF of the spectrum is represented by
(the lowercase) x = (x 1, . . . , xN), and the number of points in the spectrum is specified by
N. The entropy of each frame was computed from Equation (4) [65].

H = −
N

∑
i=1

xi · log2xi (4)

In order to detect the position of peakiness or flatness present in the spectrum, a
process similar to the extraction of the MFCCs was employed. The fast Fourier Transform
(FFT) of each frame was calculated. Following the calculation of the FFT, the achieved
spectrum was mapped to the Mel-scale in order to mimic the signal based on the human
sound perception model. Then, the SEN was computed from the Mel-spectrum. Finally,
DCT was applied to decorrelate between the coefficients and further improve the results,
and 13 SENCC coefficients were obtained.

2.3.3. Spectral Centroid Cepstral Coefficients (SCCC)

SC is a measure of the shape of the spectrum of the signal and the position of the
mass of the spectrum. The mean value of SC was shown to be a discriminative feature [66]
that indicates where the major energy of the signal is concentrated. SC is expected to be
higher for the “brighter sounds” and has been widely employed in the study of timbre for
music applications [58]. It is also a discriminative feature in the measurement of tone in
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audio signals [67]. Figure 4 presents how the cries of the neonates suffering from sepsis
are associated with lower tone, as is listed as one of the red-flag listings associated with
neonatal sepsis [68].
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SC denotes the center of the signal’s gravity and is computed by taking the weighted
mean of the frequency bins. The SC value, Ci of the i-th window, is computed using
Equation (5).

Ci =
∑

WfL
k=1 kXi(k)

∑
WfL
k=1 Xi(k)

(5)

where xi(n) are the i-th window samples, and Xi(k) are the DFT coefficients. The SC
cepstral coefficients’ extraction procedure is similar to what was described for MFCC and
SENCC, except that for the SCCC feature vector, the first five coefficients were extracted.

2.4. Feature Reduction

The first and most crucial aspect of post-processing is to reduce the dimensionality
of the feature vectors to decrease the storage and computational costs. Feature reduction
includes all the techniques that aim to make a compact feature set out of the original sets
while trying to keep as much information as possible. Camargo et al. [69] suggested a
simple and rapid method that reduces data through statistical operations such as minimum,
maximum, average and standard deviation. Messaoud et al. [7] also proposed an arithmetic
method by averaging MFCCs over a time axis. Matikolaie et al. [4] further investigated the
use of statistical methods in the compression of the MFCC feature set and reported that
this method was effective in terms of computational costs and classification accuracy. In
order to reduce the dimensionality of the MFCC feature set, the statistical approach was
employed, and the mean value of each MFCC coefficient over the time axis of each signal
was calculated.

2.5. Fuzzy Entropy Based Feature Selection

As explained in the previous sections, entropy is associated with the uncertainty of a
given variable. Here, we aim to focus on the concept of fuzzy entropy, which calculates
entropy through a fuzzy c-means clustering algorithm. This method is called Fuzzy Entropy
Selection of the features (FE Selection). In general, fuzziness refers to a possibilistic point
of view, while the aforementioned entropy measure focuses on randomness and has a
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probabilistic perspective. This method was chosen because it is very fast and imposes a
negligible computational cost on the system [47].

Trivedi et al. [70] introduced a Fuzzy c-Partition model that computed the membership
of each feature dimension and its corresponding FE. Suppose a finite set where Y = {y1, y2,
. . . , yn}, a set of real c× n matrices denoted by Vcn, and c is an integer so that 2 ≤ c < n.
The fuzzy c-partition space, M f c, for Y is given by Equation (6).

M f c =

{
U ∈ Vcn| uik ∈ [0, 1], ∀i, k;

c

∑
i=1

uik = 1, ∀k; 0 <
c

∑
i=1

uik < n, ∀i

}
(6)

This means that membership values of yj in the c subsets could be obtained from the
jth column of matrix U, which is from c× n dimensions. The grade of membership of yk
in the ith fuzzy subset of Y is represented by uik = ui(yk). Therefore, the membership of
each pattern yk in all subsets is calculated and then normalized. Instead of applying this
algorithm to each pattern, it is applied to each feature similar to previous studies [47]. The
FE is calculated based on the matching degree, Dc, described by Equation (7), where uc is
the membership of the feature yd in each of our two classes, denoted by c for each class
and C for the set of the two classes [45].

Dc =
∑yd∈c uc (yd)

∑y∈C uc (yd)
(7)

The FE of the elements of each of these classes is achieved through Equation (8).

FEc = −Dc log Dc (8)

Finally, the overall FE is given by Equation (9):

FE =
C

∑
c=1

FEc = FEHealthy + FESeptic (9)

The main interpretation of the FE is very similar to the SEN which was described
before; higher entropy translates to lower information content. We based our feature
selection on the fact that smaller FE values contribute more to the recognition of septic
infants. Thus, we first calculated the average FE value across the features and set this value
as a threshold for our feature selection. In the next step, we imposed a condition where only
the features with FE values lower than the overall average FE should be selected and formed
a new feature set to be fed into the classifier. This condition secures the selection of features
with minimum overlap and also will likely result in a lower misclassification possibility,
which will be evaluated by the Matthews Correlation Coefficient (MCC) measure.

2.6. Classification

The performance of the feature sets was tested by the two classification methods of
KNN and SVM in order to discriminate between the healthy and septic neonates. Each EXP
or INSV cry episode was treated as a sample and the classifier assigned a label of healthy
or septic to it. Both classification methods benefit from five-fold cross-validation in order to
avoid over-fitting and ensure credibility. The models were tuned with the BHPO method
in order to enhance the performance of each model.

2.6.1. K-Nearest Neighborhood (KNN)

This method is an efficient yet simple method of classifying data. As the name of
this method suggests, the features with similar values belong to the same class. The KNN
classifiers often use Euclidean distance for the measurement of the distance between data
points. This classifier has three bases for classification: sets of labeled data, a distance
measure and, finally, the number of neighbors, which is denoted by K. In other words,
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KNN classifies a given sample based on the majority vote of the neighborhood and the
distance [71,72]. The number of neighbours was automatically tuned with the BHPO
method in the first step, which in all of the given experiments returned K = 1 as the best
choice. The other hyperparameter selected for tuning is the type of distance used with
each feature set. The distance measures included in this optimization include Minkowski,
Chebyshev, Euclidean, standard Euclidean, cosine, Jaccard, Manhattan and Hamming.

2.6.2. Support Vector Machine (SVM)

SVM has a broad application in the classification of audio signals. An SVM differenti-
ates between two cases by implementing a hyperplane. SVM is inspired by the statistical
learning theory and the Vapnik–Chervonenkis (VC) dimension. The optimal hyperplane is
constructed when the distance between the hyperplane and data is considerable. The linear
data can be classified by simply constructing a straight hyperplane, while the nonlinear
data should be made linearly separable for the purpose of classification. It means that the
data must pass through a transformation into high-dimensional space, which is known as
the kernel function [73]. The gaussian kernel is used in this study. The hyperparameters
selected for HPO were kernel scale and box constraint. The BHPO was used for the tuning
of the mentioned hyperparameters of the SVM model as well.

2.6.3. Bayesian Hyperparameter Optimization (BHPO)

In order to maintain the classification errors at a minimum while achieving high
performance in a ML problem, HPO methods are used. A majority of ML designs include
hyperparameters. With recent advances in the field of automated ML, various methods
such as random search, grid search and Bayesian optimization have been introduced that
no longer require human efforts for tuning these hyperparameters. More importantly, the
hyperparameters are tailored to meet the requirements of each specific task and the results
are reproducible. The basis of HPO is finding the optimal value for the hyperparameters in
a finite set of predefined values, in order to minimize or maximize an objective function
(e.g., model performance). The common challenge with these grid search and random
search methods is the high number (~90 iterations) of function evaluations needed to obtain
minimal error, which in turn is not cost-effective and may cause curse of dimensionality [74].
BHPO is also an iterative method in which the acquisition function and the probabilistic
surrogate model are the vital elements. The model is constantly updated based on the
objective function evaluation, which is expressed as Equation (10) [75]:

x∗ = argmin
x∈X

f (x) (10)

The methodology in summary is deduction of the information on the model in each
iteration based on new hyperparameters and the resulting model performance. When the
number of determined iterations ends, the global optimal hyperparameter configuration
is reported. In order to establish the local optimal hyperparameter, the acquisition func-
tion employs the predictive information of each possible hyperparameter configuration.
BHPO requires far fewer iterations when compared to the other two methods and all the
experiments in this study were performed with only 30 iterations.

3. Evaluation and Results

The features introduced in this study were extracted and fed to the classifiers with the
purpose of distinguishing between healthy and septic neonates. In order to compare their
abilities to reach that goal, several experiments were conducted which were comprised
of different feature sets, implementing the features individually or combined, and two
classification methods with a wide range of parameters. Finally, the models were tuned to
obtain the best performance. In this framework, the following feature sets were used:

• MFCC;
• SENCC;
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• SCCC;
• MFCC + SENCC;
• SENCC + SCCC;
• MFCC + SCCC;
• MFCC + SENCC + SCCC.

Five-fold cross-validation was carried out after feeding each feature set to the classifier.
This means that one fold of data was treated as the test data in each iteration of the training
process, and the other four were the training folds. This process was repeated until all
the folds had been used as the test fold. This process was repeated for both EXP and
INSV datasets.

3.1. Evaluation Criteria

There are different approaches to evaluating a system’s performance. One of the main
measures for that purpose is accuracy. Accuracy is the ratio of correct decisions to the total
number of cases, Equation (11).

Acc =
TP + TN

TP + TN + FN + FP
(11)

where N stands for negative and P stands for positive, and T and F stand for true and
false. However, when the task is diagnosing a pathology, it is of utmost importance that
the system does not miss a pathologic case. A confusion matrix is defined for the binary
classification task where the problem is the discrimination between healthy and pathologic
cries, as shown in Figure 5. In this study, the positive label stands for septic infants and the
negative label stands for healthy (not septic).
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The True Positive Rate (TPR) is referred to as sensitivity, hit rate or recall. In the
concept of this study, recall is also an important measure as it demonstrates how many true
septic cases have been captured by the NCDS. Hence, recall owes its importance to the fact
that a false healthy detection is not desirable, Equation (12) [76].

TPR =
TP

TP + FN
(12)

The Positive Predictive Value (PPV) is another measure and is also referred to as
precision. In this framework, precision is the probability that a septic case is predicted as
septic, Equation (13).

PPV =
TP

TP + FP
(13)
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The next evaluation measure is called the F1-score, which shows the balance between
precision and recall and is a good measure of the system’s performance. Mathematically,
the F1-score is the harmonic mean of precision and recall, Equation (14).

F1 =
TP

TP + 0.5 ( FP + FN)
= 2· precision · recall

precision + recall
(14)

Finally, the MCC considers all the information in a contingency matrix. The value
of this measure belongs to the [−1, +1] interval where 0 denotes a random distribution,
−1 shows complete misclassification and +1 corresponds to perfect classification [77].

The MCC is computed using Equation (15):

MCC =
TP × TN− FP× FN√

(TP + FN)(TN + FP)(TP + FP)(TN + FN)
(15)

The MCC measure is highly informative for binary classification tasks in general [78].
Since we have a healthy versus septic classification problem in this study, implementing
the MCC is considered beneficial and proper.

3.2. Results

The results of different experiments conducted in this study are given in Tables 3–10.
As previously mentioned, we analyzed the performance of feature sets for two separate
datasets of EXP and INSV. Moreover, KNN and SVM were employed as the classifiers in
this study. The feature sets were used both individually and jointly. They were concate-
nated so that we could compare the performance of larger feature sets as opposed to the
individual feature sets. It is noteworthy that our findings regarding the behavior of feature
sets were consistent with medical findings and other researchers’ work, as discussed in
Sections 2.3.2 and 2.3.3. Regarding the evaluation criteria discussed in the previous section,
the higher the value of each measure, the better the performance of our NCDS. The results
presented in this section are all in the form of average and standard deviation of five-fold
cross validation values. For all the measures, the values represent percentages except for
the MCC measure, which is unitless and belongs to the [−1, 1] range.

Table 3. Evaluation metrics for the MFCC feature set.

MFCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 88.07 ± 0.98 81.97 ± 0.70 89.06 ± 1.80 85.36 ± 0.49
Recall (%) 85.71 ± 1.91 91.67 ± 1.83 91.85 ± 2.96 92.74 ± 0.33

Precision (%) 90.38 ± 0.74 72.48 ± 1.93 86.38 ± 1.05 78.30 ± 0.81
Specificity (%) 89.72 ± 0.72 76.56 ± 1.01 86.58 ± 1.16 80.36 ± 0.61

F-score (%) 87.66 ± 1.13 83.42 ± 0.67 89.13 ± 1.90 86.11 ± 0.42
MCC 0.76 ± 0.02 0.65 ± 0.01 0.78 ± 0.04 0.72 ± 0.01

Distance/Kernel Scale 1.7864 Cosine 5.8165 Cosine

Table 4. Evaluation metrics for the SENCC feature set.

SENCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 71.55 ± 0.70 72.02 ± 0.82 69.20 ± 0.85 65.00 ± 1.71
Recall (%) 42.50 ± 1.42 44.88 ± 1.85 37.04 ± 1.74 58.81 ± 3.13

Precision (%) 100.00 ± 0.00 98.60 ± 0.24 100.00 ± 0.00 70.92 ± 2.01
Specificity (%) 100.00 ± 0.00 96.93 ± 0.43 100.00 ± 0.00 65.95 ± 1.82

F-score (%) 59.64 ± 1.40 61.33 ± 1.68 54.04 ± 1.84 62.15 ± 2.29
MCC 0.52 ± 0.01 0.52 ± 0.01 0.48 ± 0.01 0.30 ± 0.03

Distance/Kernel Scale 0.0116 Cosine 0.1063 Chebyshev
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Table 5. Evaluation metrics for the SCCC feature set.

SCCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 71.46 ± 0.67 72.02 ± 0.77 69.06 ± 0.83 68.12 ± 0.87
Recall (%) 42.32 ± 1.35 45.60 ± 1.73 36.74 ± 1.71 37.33 ± 1.93

Precision (%) 100 ± 0.00 97.90 ± 0.24 100.00 ± 0.00 96.03 ± 0.81
Specificity (%) 100 ± 0.00 95.52 ± 0.39 100.00 ± 0.00 90.04 ± 1.72

F-score (%) 59.46 ± 1.33 61.71 ± 1.55 53.72 ± 1.82 52.75 ± 1.91
MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.41 ± 0.02

Distance/Kernel Scale 0.0089 Jaccard 0.0129 Hamming

Table 6. Evaluation metrics for the combination of SCCC and SENCC feature set.

SCCC + SENCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 71.55 ± 0.70 72.52 ± 0.89 69.06 ± 0.83 65.72 ± 1.24
Recall (%) 42.50 ± 1.42 47.80 ± 2.13 36.74 ± 1.71 58.52 ± 2.10

Precision (%) 100.00 ± 0.00 96.73 ± 0.38 100.00 ± 0.00 72.62 ± 2.28
Specificity (%) 100.00 ± 0.00 93.50 ± 0.48 100.00 ± 0.00 67.21 ± 1.68

F-score (%) 59.64 ± 1.40 63.23 ± 1.79 53.72 ± 1.82 62.54 ± 1.47
MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.31 ± 0.03

Distance/Kernel Scale 0.0951 Jaccard 0.0764 Cosine

Table 7. Evaluation metrics for the combination of SCCC and MFCC feature set.

MFCC + SCCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 81.50 ± 1.46 82.44 ± 0.65 88.41 ± 1.77 87.25 ± 0.94
Recall (%) 83.69 ± 2.40 89.05 ± 1.42 89.19 ± 3.25 92.74 ± 1.61

Precision (%) 79.36 ± 1.53 75.98 ± 0.98 87.66 ± 1.47 81.99 ± 2.28
Specificity (%) 79.89 ± 1.31 78.41 ± 0.62 87.38 ± 1.39 83.17 ± 1.62

F-score (%) 81.74 ± 1.57 83.39 ± 0.69 88.25 ± 1.92 87.68 ± 0.84
MCC 0.63 ± 0.03 0.66 ± 0.01 0.77 ± 0.04 0.75 ± 0.02

Distance/Kernel Scale 6.5705 Standard
Euclidean 2.5893 Manhattan

Table 8. Evaluation metrics for the combination of SENCC and SENCC feature set.

MFCC + SENCC
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 89.99 ± 0.71 86.83 ± 0.44 88.19 ± 1.42 84.57 ± 0.75
Recall (%) 88.15 ± 1.75 91.07 ± 0.87 88.89 ± 3.31 90.07 ± 0.66

Precision (%) 91.78 ± 0.75 82.68 ± 1.56 87.52 ± 1.19 79.29 ± 0.92
Specificity (%) 91.31 ± 0.65 83.76 ± 1.10 87.22 ± 0.94 80.64 ± 0.79

F-score (%) 89.70 ± 0.83 87.26 ± 0.31 88.02 ± 1.61 85.10 ± 0.70
MCC 0.80 ± 0.01 0.74 ± 0.01 0.76 ± 0.03 0.70 ± 0.01

Distance/Kernel Scale 2.1612 Minkowski 4.5656 Correlation
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Table 9. Evaluation metrics for the combination of all feature sets.

All Features
EXP INSV

SVM KNN SVM KNN

Accuracy (%) 85.71 ± 1.17 82.77 ± 0.29 89.42 ± 1.01 85.87 ± 0.92
Recall (%) 78.75 ± 3.34 85.03 ± 1.54 91.41 ± 1.62 94.22 ± 0.97

Precision (%) 92.54 ± 1.26 80.29 ± 1.51 87.52 ± 1.63 77.87 ± 1.36
Specificity (%) 91.21 ± 1.04 80.93 ± 0.93 87.54 ± 1.42 80.31 ± 1.02

F-score (%) 84.48 ± 1.62 83.05 ± 0.38 89.42 ± 1.00 86.71 ± 0.84
MCC 0.72 ± 0.02 0.66 ± 0.01 0.79 ± 0.02 0.73 ± 0.02

Distance/Kernel Scale 2.3092 Euclidean 3.8005 Cosine

Table 10. Evaluation metrics after applying FE Selection to the best feature sets of previous experiments.

FE Selection
EXP: MFCC + SENCC INSV: All Features Combined

All FE Selection All FE Selection

Accuracy (%) 89.99 ± 0.71 88.51 ± 0.77 89.42 ± 1.01 91.81 ± 0.75
Recall (%) 88.15 ± 1.75 89.11 ± 1.32 91.41 ± 1.62 93.23 ± 0.44

Precision (%) 91.78 ± 0.75 87.93 ± 0.84 87.52 ± 1.63 90.66 ± 1.18
Specificity (%) 91.31 ± 0.65 87.86 ± 0.76 87.54 ± 1.42 89.07 ± 1.25

F-score (%) 89.70 ± 0.83 88.47 ± 0.81 89.42 ± 1.00 91.10 ± 0.77
MCC 0.80 ± 0.01 0.77 ± 0.02 0.79 ± 0.02 0.84 ± 0.01

Number of Features 52 27 57 35

Table 3 presents the results for the evaluation of the MFCC feature set for EXP and
INSV datasets. Furthermore, the MFCC feature set was evaluated with the use of the HPO
method. We used BHPO for both classifiers, as mentioned in the previous sections. Finally,
the performance of this feature set was tested with the KNN and SVM classifiers. The HPO
led to consistent enhancement of accuracy and F-score measures across both datasets for
the MFCC feature set. The SVM classifier had better performance in the evaluation of the
MFCC feature set in both datasets in terms of all the evaluation measures except for recall,
where the KNN classifier showed better performance. The best results achieved by this
feature set are highlighted.

Overall, the highest achieved F-score and accuracy for the EXP dataset were 88.07%
and 87.66%, respectively. In this regard, the performance of the NCDS with the INSV
dataset was superior to the EXP dataset; the highest overall results obtained for this dataset
in terms of F-score and accuracy were 89.06% and 89.13%, respectively.

As can be seen in Tables 4 and 5, the performance of our NCDS with the SENCC and
the SCCC feature sets were similar; both feature sets achieved 72.02% accuracy measures
(with different standard deviations). Furthermore, the SENCC and the SCCC feature sets
obtained 61.33% and 61.71%, respectively, for F-score with the KNN classifier for the EXP
dataset. Also, both datasets and feature sets obtained 100% precision and specificity with
the SVM classifier. In the evaluation of the INSV dataset, KNN had better performance
in terms of accuracy and F-score. The best F-score for the SENCC dataset was achieved
with the KNN classifier for the INSV dataset, which was equal to 62.15%. Regarding the
SCCC feature set, the highest F-score was 61.71% for the EXP dataset using the KNN
classification method.

In the next step, the framework of feature combination was investigated. We examined
all possible combinations of these feature sets that were made possible through their
concatenation. The results of these combinations are presented in Tables 6–9. It can be
observed that using the SVM classification method, the combination of SENCC and SCCC
was dominated by the SENCC feature set for the EXP dataset and by SCCC for the INSV
method since, despite the difference in their kernel scales, there was not a change in
the evaluation measures. The overall best accuracy and F-score for the combination of
SCCC and SENCC belonged to the KNN classification of the EXP dataset with 72.52% and
63.23%, respectively.
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The addition of the SCCC feature set to the MFCC feature set with the SVM classifier
achieved the results of 88.41% and 88.25% for accuracy and F-score measures with the
INSV dataset, as seen in Table 7. Furthermore, using the KNN classifier with the EXP
dataset resulted in better performance in terms of accuracy and F-score, with 82.44% and
83.39%, respectively.

As can be interpreted from Table 8, the best performance in terms of accuracy and
F-score measures for the EXP dataset across all the experiments was achieved by the
combination of the MFCC and SENCC feature sets. The highest accuracy and F-score
among all the experiments on the EXP were 89.99% and 89.70%, respectively. Regarding
the EXP dataset, the accuracy and F-score measures were enhanced by 1.92% and 2.04%,
respectively, compared to the MFCC feature set, which had the highest accuracy and F-score
among the individual datasets.

Finally, the combination of all the individual feature sets with the SVM classification
resulted in the highest accuracy and F-score across all the experiments for the INSV dataset,
with 89.42% for both measures, as seen in Table 9. The combination of all individual feature
sets enhanced these two measures by 0.36% and 3.31%, respectively, compared to the MFCC
feature set, which achieved the best results among the individual feature sets.

As our final experiment, we computed the FE measure for the best two experiments
discussed above and selected the most compatible features in each presented feature set.
These two experiments included the combination of the MFCC and SENCC features for the
EXP dataset and the combination of all features for the INSV dataset, both classified using
the SVM method. Table 10 represents the results of applying the FE selection method to
these two experiments.

According to the evaluation measures studied here, the FE selection method was
highly successful. Implementing fewer features resulted in a negligible decrease in the
evaluation measures for the EXP dataset. As for the INSV dataset, the FE selection led
to enhancement of all the evaluation measures, which marked the highest accuracy and
F-score measures across all the experiments with 91.81% and 91.10%, respectively. Figure 6
summarizes the results of the experiments in terms of F-score and accuracy measures for
the SVM classifier that yielded the best results for a clearer comparison.
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4. Discussion

This study further explored sepsis in newborns by the means of studying their cry
signal through developing an NCDS design. Even though sepsis is associated with high
mortality rates in newborns, only one recent work in our lab has studied the cries of
septic infants in parallel to the study presented here. The previous study in our lab did
not discuss the performance of the system in terms of the accuracy measure [37]. In this
study, accuracy as well as several other evaluation measures were included to help better
study the performance of NCDSs for diagnosing septic newborns. Our goal was to build
upon the previous work and also design a simple model that could achieve improved
or comparable performance. Moreover, it is worth highlighting this research’s novelty
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in terms of analyzing the infant cry from the perspective of musical machine-learning
applications. Most of the works addressing infant cries have treated the cry signal as a
pre-speech audio. We believed that the harmonic nature of the infant cry, as well as the
natural differences in the voice generation organs of infants and adults, had the potential to
be analyzed with the features and methods that have shown promising results in the field
of musical signal processing. There is meager information on the behaviour of pathologic
cries based on analysis of the SC, and this work is the only study that combines SC with
cepstral analysis in the study of pathologic newborn cries.

Nowadays, many audio recognition system designs benefit from state-of-the-art deep
learning and ML methods. However, the main challenge in studying pathology-related
applications is the acquisition of relevant data. The occurrence of a specific pathology in
any given time interval in newborns is not predictable and meeting the ethical and technical
requirements to include cry samples in a database calls for extreme measures. Therefore,
this study explored different approaches to make the best use of the available data. The
limitations of the data impose many challenges in NCDS design. Inspired by [37], we also
addressed this issue by segmenting each cry signal into multiple expiratory and inspiratory
episodes in order to treat each segment as a sample. Despite our efforts to make the analysis
in this study unbiased towards race, origin and other factors, it should be noted that the
system might still suffer from a low generalization power since it was designed based on a
limited number of participants. Therefore, future research should be devoted to further
investigate this matter. Moreover, the data dimensionality imposed more challenges in
the process of feature extraction. It is common practice in NCDS studies to use statistical
measures with extracted features to reduce computational costs [4,7]. The statistical method
was chosen to ensure that our results are comparable to the previous studies. Furthermore,
extra attention should be paid to the details in the design of conventional models because
limited data may lead to overfitting of the classifiers. We addressed this challenge by using
BHPO for both the SVM and KNN classification methods. As can be interpreted from
Table 6, the accuracy of the NCDS was enhanced up to 89.42% for the INSV dataset. Also,
we believed that the characteristics that were reported in the medical studies conducted
on septic cries could be better analyzed through cepstral analysis of the SC and the SEN
features, which was confirmed by our findings. Through the implementation of these
features, the presented work was made capable of obtaining F-scores of 89.70% for the
EXP dataset and 89.42% for the INSV dataset, which were both superior to the previous
study [37]. Therefore, we were able to show that even a single episode (as opposed to the
All Episode voting scheme) analysis of the cry signal could achieve reassuring performance
with careful selection of the parameters.

As mentioned, the performance of the system was tested with the two different
classification approaches of SVM and KNN, and SVM showed superiority in a majority of
experiments. The recall measure was an exception to this conclusion, where KNN showed
better performance. The presented study also showed that elevating the number of features
in a pattern recognition problem does not always enhance the system’s performance. The
predictive performance of the system depends on many different factors.

As was mentioned previously, the high discriminative power of inspiratory cries in
the study of pathologic newborns has been neglected in many works. However, the high
values of the evaluation measures achieved for this dataset show the potential for further
investigation of inspiratory cries, which was consistent with previous studies in our lab.

As discussed in Section 3, the entropy levels differ across healthy and septic infants,
which is also reported by other researchers where healthy newborn cries were distinguished
from pathologic cries [27]. The same explanation applies to the SC of the infant cries, which
marks these feature sets as potential biomarkers for further study of septic newborns. The
SENCC measure alone could achieve 72% accuracy with the SVM classifier; it yields the
highest performance in this study when combined with the MFCC feature sets.

Figure 7 shows the elapsed time for extracting each of our feature sets for EXP and
INSV datasets. The elapsed times are rational in terms of the duration of datasets and the
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number of coefficients in each feature set. Nevertheless, it was validated that extracting
the SENCC and SCCC features does not aggravate the system’s complexity in terms of
computational costs, and they have similar performance and run-times.
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It has been reported that the aggregation of multiple classifiers, with the intention of
having the classifiers compensate for the errors of each other, does not yield good results
and only burdens the system with more complexity and computational cost [37]. In order
to overcome this issue, we utilized BHPO with only 30 iterations, which is a low-cost and
fast method. We were able to outperform the mentioned model in terms of F-score by
between 3–6% for both datasets.

None of the conducted experiments showed misclassification in terms of the MCC
measure since they all had positive values. Moreover, all the combined feature sets for the
EXP dataset yielded MCC values higher than 0.50. MCC values consider all elements from
a confusion matrix; thus, their high value means prediction had satisfactory performance
in terms of TP, TN, FN and FP. The same explanation applies to the INSV dataset, except
for the feature set formed by the combination of the SENCC and SCCC features.

As a final contribution, we further explored the use of entropy-based measures in the
framework of diagnosing pathologies in infants based on their cry signals. By calculating
the FE of the combined feature sets, we were able to remove redundant features, and also
identified which features yielded better information in the feature set. After calculating
the average FE across all measures, we set a threshold for the selection of the features and
removed all the features with a higher FE value than the average. As a result, the system’s
accuracy for the EXP dataset was not notably hindered by removing more than 40% of
the features, and it was even enhanced in terms of the recall measure. Moreover, all of
the evaluation measures were enhanced for the INSV dataset, which shows the reliability
of this feature selection method in selecting the most prominent features. Figure 8 shows
the difference in the evaluation measures for the best experiments in each dataset, after
removing nearly 50% of the features based on their FE.
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The results from these experiments also highlighted the fact that incrementing the
number of features may not always lead to higher accuracy or enhanced performance of
the system. Furthermore, it is noteworthy that understanding the information content of
the feature space and selection of the most compatible features accordingly improves the
performance of the system, as seen through the INSV dataset experiments where using FE
selection enhanced the system’s performance by an average of 2%.

As discussed before, high recall values show the ability of the NCDS in the successful
detection of septic cases. The MFCC feature set had the best performance in terms of recall
among all the individual feature sets with 92.74% for the INSV dataset. The overall highest
recall was obtained by combining all feature sets for the INSV dataset with 94.22%.

The implementation of the FE was a successful experiment in addition to all other
presented experiments on the septic newborn cry signals. Our main achievement through
the study of FE was to reduce the feature space by more than 40% while keeping the same
performance; however, the improvement from the FE alone was limited. This experiment
was simply carried out to evaluate if the system could benefit from further simplification
and to eliminate the features corrupted by noise. We tried to develop each stage of the
proposed NCDS in a way that was not explored well enough or not investigated in the field
of NCDS designs. This included the analysis of septic newborn cries in NCDSs for only
the second time ever, introducing the use of cepstral coefficients of entropy and centroid
to NCDS design, the ways we manipulated these features in order to study the newborn
cries, the use of FE for feature selection, and employing BHPO for both the SVM and KNN
methods, all of which, to the best of our knowledge, was unprecedented in NCDSs. We
acknowledge that the study presented here cannot cover all aspects of the study of septic
newborn cries and may be improved upon in many ways. There is an unceasing need
for more studies in this field. The authors suggest exploring more classification schemes
such as naïve Bayesian, Ensemble classifier, etc., and fusing their outcomes to form a more
precise decision. There are more in-depth ideas for investigation that can assess the effect
of the inevitable noise in the biological signals, as well as exploring other entropy-based
measures, which could not be explored in the scope of this study.

5. Conclusions

In the presented study, sepsis was targeted as one of the leading mortality causes
of neonates worldwide. The main goal was to develop a simple NCDS which is capable
of detecting septic infants without the need for in-depth and invasive clinical tests. The
recording of the cries does not need any complicated equipment, it can be done with a
commercial handheld recorder, and it does not require any special conditions (our database
was recorded in maternity rooms, NICUs, etc.). It does not even necessitate touching the
newborn. We believed it was worth exploring how the cries of septic newborns would
be different from those of healthy newborns as a complementary method to other means
present in the literature. The novelty of our proposed work is in taking common tools in
audio, music and speech processing, combining them, and tuning them in such a way that
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the final design is still simple but is able to achieve high performance in comparison to
the other similar methods that are computationally expensive. The proposed NCDS could
be employed as an early alarm for medical staff to detect possible pathologic neonates as
soon as possible. Within this framework, entropy was utilized in various stages of the
architecture, and yet it avoided complicated designs as well as any need for high-end
technologies. We studied the infant cries with a musical perspective by employing SEN and
SC features and their combination with cepstral analysis. These feature sets were classified
using KNN and SVM classifiers that were tuned specifically for each of the feature sets and
datasets by the BHPO methods. We also introduced a FE feature selection framework for
the first time in the study of pathologic infant cry signals. By using this method, we further
simplified our NCDS design and removed nearly half of the redundant, low-impact and
noise-affected features. The performance of our design was evaluated using two separate
datasets of expiratory cries (EXP) and inspiratory cries (INSV) with various evaluation
measures such as accuracy, F-score and MCC. The achieved results showed promising
potential in every step of the study. Each stage of the design further improved the system’s
performance, at least in terms of one of the evaluation metrics. The best results in terms of
accuracy and F-score measures were achieved by combining all the introduced features
after FE selection for the INSV dataset with the SVM classifier, and these were 91.10% and
91.81%, respectively. These results also highlight the importance of INSV cries as potential
biomarkers, which has been neglected in many infant cry studies. Finally, we concluded
that the framework presented here has promising potential in studying and diagnosing
sepsis in newborns all around the world as a non-invasive means, especially in areas that
are facing challenges with a lack of experts and specialists.

For a list of all acronyms, please see Appendix A.
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Appendix A

Table A1. List of acronyms.

Full Name Acronym

Mel-frequency Cepstral Coefficients MFCC
Spectral Entropy Cepstral Coefficients SENCC
Spectral Centroid Cepstral Coefficients SCCC
Electroencephalogram EEG
K-nearest Neighborhood KNN
Support Vector Machine SVM
Newborn Cry Diagnostic Systems NCDS
Expiratory Cries EXP
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Table A1. Cont.

Full Name Acronym

Voiced Inspiratory Cries INSV
United Nations Children’s Fund UNICEF
Linear Prediction Coding LPC
Probabilistic Neural Network PNN
Hyperparameter Optimization HPO
Bayesian Hyperparameter Optimization BHPO
Machine Learning ML
Respiratory Distress Syndrome RDS
Discrete Fourier Transform DFT
Discrete Cosine Transform DCT
Spectral Entropy SEN
Probability Mass Function PMF
Fast Fourier Transform FFT
Spectral Centroid SC
Fuzzy Entropy Selection of the features FE Selection
Fuzzy Entropy FE
True Positive Rate TPR
Predictive Positive Value PPV
Matthews Correlation Coefficient MCC
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