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T he automatic analysis and detection of audio sig-
nals is an important field of research with promising 
applications in various biomedical engineering prob-

lems such as speech, heart murmur, and lung sound analysis 
and classification. In this regard, automatic classification of in-
fant vocalizations is becoming an appealing research area for 
medical diagnosis in clinical milieu. Indeed, the analysis and 
classification of infant cry records is a conventional non-inva-
sive technique to distinguish between healthy and unhealthy 
infants.

Recently, various computer-aided diagnosis (CAD) sys-
tems have been developed to detect infant pathological cry 
records. For instance, an automatic segmentation system for 
newborn cry recordings was developed in [1], based on Hid-
den Markov Models to detect cry expiratory and inspiratory 
parts from normal and pathological newborns. The proposed 
system achieved 83.79% accuracy. The authors in [2] used a 
features vector composed of the prevalence of fundamental 
frequency glide, resonance frequencies dysregulation, and 
Mel-frequency cestrum coefficients to train a probabilistic neu-
ral network. The latter achieved 88.71% accuracy in classifying 
healthy and unhealthy records of preterm babies and achieved 
67.00% accuracy in classifying healthy and unhealthy records 
of full-term babies. More recently, the authors in [3] proposed 
an automatic system that combines short-term and long-term 
features from different time scales to distinguish between the 
cry audio signals of healthy infants from those with respira-
tory distress syndrome. When trained with Mel-frequency 
cepstral coefficients, tilt, and rhythm features, the linear sup-
port vector machine yielded to 73.80% accuracy when tested 
on expiration samples and 67.80% accuracy when tested on in-
spiration samples.

In this work, we propose a new CAD system to distin-
guish between healthy and unhealthy infant cry signals. The 
proposed CAD system is composed of four major steps. First, 
the original cry signal is pre-processed to remove background 

noise and artifacts. This step also includes signal segmenta-
tion to differentiate between expiration and segmentation 
episodes. Second, the resulting pre-processed cry signal is an-
alyzed to obtain its cepstrum. Third, the obtained cepstrum 
coefficients are fed to a deep feedforward neural network 
(DFFNN) for training and classification. Fourth, the per-
formance of the cepstrum-DFFNN system is evaluated by 
standard classification performance metrics.

The cepstrum is widely employed in audio signal analy-
sis as it provides a description of the spectrum envelope and 
spectral richness and characterizes the harmonic and noise 
components of the original signal [4]. Moreover, in recent 
years, there has been a growing interest in deep learning in 
various engineering and science problems thanks to its ability 
to extract deep features and achieve high accuracy compared 
to existing machining learning techniques. However, the ap-
plication of deep learning to the problem of infant cry signal 
classification for medical diagnosis has not been explored in 
the biomedical literature, except in the classification of baby 
cry signals under different domestic environment conditions 
[5]. In this work, we focus on deep feedforward neural net-
work as it has deeper architectures compared to standard 
feedforward neural network, which allow the input data to 
be analyzed and transformed multiple times to generate the 
output [6]. In this regard, multiple hidden layers make the 
DFFNN more appropriate for comprehensive data [7], [8]. In 
addition, DFFNN is faster compared to most common deep 
learning artificial neural network such as convolutional neural 
network and long short-term memory network.

The proposed CAD system for infant cry signal analysis 
and classification is shown in Fig. 1, in which the original cry 
signal is denoised and segmented. Then, it is processed to ob-
tain its ceptrum signature. The latter is employed to train a 
DFFNN which is used to distinguish between healthy and 
unhealthy infant cry signals. For comparison purposes, Na-
ïve Bayes, support vector machine, and probabilistic neural 
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network are employed as baseline classifiers. In this regard, 
we seek to show that the DFFNN is effective compared to the 
aforementioned, and investigation of various combinations of 
DFFNN architectures and related functions are out of scope 
of the current work. The proposed CAD system for infant cry 
analysis and classification will be applied to a large data set ob-
tained from a Canadian hospital located in Montreal, Quebec 
and two other hospitals located in Lebanon.

Cepstrum Analysis
Basically, the cepstrum is the inverse Fourier transform of the 
logarithm of the signal spectrum. In other words, it is essen-
tially a spectrum of the original signal spectrum. The most 
compelling feature of cepstrum is that any periodic pattern in 
the spectrum arises as a particular component of cepstrum [9]. 
In this regard, cepstrum analysis has been employed in various 
biomedical signal processing applications, including epilep-
tic seizure detection [9], assessing Parkinson’s disease severity 
[10], newborn cry diagnostics [3], classification of heart sounds 
[11], and estimation of heartbeat rate [12]. Besides, cepstrum 
analysis was successfully employed in mechanical fault diag-
nosis [13]–[15].

Technically speaking, the cepstrum C[n] is computed as the 
inverse discrete Fourier transform (IDFT) of the log magnitude 
of the DFT of a signal x[n], which is given as follows:

	   logC n IDFT DFT x n       	 (1)

Keep in mind that there is no formal guide on how to choose 
the number of coefficients used to describe the cepstrum. 

In this study, the number 
of cepstrum coefficients 
to estimate is set to 1000. 
Indeed, we make the hy-
pothesis that such number 
can statistically describe 
harmonics in the original 
infant cry signal. Also, we 
expect that the DFFNN 
would take less time to con-
verge when trained with a 
feature vector of size 1000 
in each single hidden layer.

Deep Feedforward Neural Network
The standard feedforward neural network (FFNN) is an arti-
ficial neural network with one hidden layer used to process 
the inputs. Besides, the deep feedforward neural network 
(DFFNN) has several hidden layers. Specifically, the informa-
tion in DFFNN moves from the input layer through the hidden 
layers to the output layer, and there is no feedback or loop in 
the network [16] which basically makes it deep and fast. Recall 
that deep learning artificial neural networks have been found 
to be successful in environment sound classification [17], im-
proving safety of elderly people [18], heart rate estimation [19], 
environmental and biological measurement [20], and hand 
gesture recognition [21].

The architecture of FFNN used for infant cry classifica-
tion is presented in Fig. 2. Accordingly, there are one input 
layer, three hidden layers, and one output layer. The number 
of neurons is set to 1000 in the input layer and in each hidden 
layer. The number of neurons in the output layer is set to one 
to represent the class label: either a healthy cry record or an 
unhealthy cry record. Each hidden neuron is used to process 
output information of the input layer according to the follow-
ing expression:

	  h X wX b  	 (2)

where X is the input vector, w is the matrix of weights, and b is 
the bias vector. In general, the neuron of the output is nonlin-
early processed by a given activation function such as sigmoid, 
tanh, ReLU, and ELU functions. For instance, the input h(X) is 

Fig. 1. Flowchart of the proposed CAD system based on cepstrum analysis and DFFNN for infant cry signal classification. 
The pre-processing step includes signal denoising, artifact removing, and segmentation to separate expiration and 
inspiration episodes. The resulting classification made by DFFNN is evaluated by standard performance measures.

Fig. 2. DFFNN with three hidden layers. The input layer has 1000 neurons, corresponding to the number of coefficients in the cepstrum. There are 1000 neurons 
in each hidden layer. The network is fully connected. Specifically, every single neuron in a layer is connected to all neurons in the next layer. As a result, there is 
one bias plus 1000*1000 connections in each hidden layer. The output layer has only one neuron that indicates the class label. In each hidden layer and in the 
output layer, W indicates the corresponding weight matrix and the corresponding constant parameter b. The activation function used to process the output signal 
from each layer is the sigmoid.
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processed by the nonlinear activation function. In our study, 
the sigmoid function is chosen as the activation function and 
it is given by:

	   1
1 xSigmoid x

e



	 (3)

Finally, the output neuron is expressed as follows:

	   y Sigmoid h X  	 (4)

Recall that the information fed to each neuron in each hid-
den layer is processed by a sigmoid activation function. The 
resilient backpropagation algorithm is chosen as the training 
function since it is fast and does not require large memory dur-
ing computation. Finally, the number of epochs is set to 10, and 
the learning rate is set to 0.01.

Recall that there is no rule of thumb on how to configure 
the entire architecture of the DFFNN along with its parame-
ters. In general, they are fixed, according to the experience of 
the user. In our study, the number of hidden layers is set to four 
for deeper analysis of the cepstum coefficients compared to 
two and three hidden layers and to obtain acceptable compu-
tation processing time. Also, the number of epochs is set to 10 
for fast processing of the input signal. Finally, a learning rate of 
0.01 is a good compromise between convergence and required 
processing time. Indeed, our goal is to design an effective and 
fast DFFNN system for analysis and classification of ceptrum 
coefficients.

Baseline Classifiers: SVM, NB, and PNN
The SVM classifier [22] is a supervised learning algorithm 
based on statistical learning theory used to determine a hyper 
plane. The latter optimally splits two classes by learning a train 
data set. For instance, let   1

,
n

i i i
x y


 where x is the input vector, 

and y is the class label. The classification decision function is 
expressed as follows:

	    
1

,
N

i i i j
i

f x sign y K x x b


 
   

 
 	 (5)

where αi is the Lagrange multipliers, K(xi,xj) is a linear kernel 
function, and b is a constant parameter.

The Naïve Bayes classifier [23] is based on estimation of 
probabilities to assign the membership of an input vector x to 
a particular class y. The Bayes’ theorem can be used to express 
the conditional probability of class label y given input vector 
x as follows:

	      
 

|
|

P x y P y
P y x

P x
 	 (6)

where P(y|x) is the posterior probability of the compound 
class, P(x|y) is the conditional probability that a compound 
has certain features given its class y, P(y) is the prior proba-
bility estimated from the training set, and P(x) is the marginal 
probability of observing the given features in the dataset.

The probabilistic neural network (PNN) [24] is composed 
of three layers: the input layer, pattern layer, summation layer, 

and output layer. The input layer has 1000 neurons, corre-
sponding to the number of cepstrum coefficients. The second 
layer consists of 1000 neurons where each one is represented 
by a Gaussian transfer function. The pattern layer has two neu-
rons where each one is used to represent a specific class. The 
pattern layer is used to perform an average operation of the 
outputs from the pattern layer for each class. Finally, the out-
put layer has one neuron used to compute the maximum sum 
as follows:

	   i iy argmax P y 	 (7)

where,

	    
1

1 iN

i ij
ji

P y Q y
N 

  	 (8)

and,
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	 (9)

where Pi(y) represents the probability that a test sample x be-
longs to class y, Qij represents the standard probability density 
function (PDF), δ is a smoothing parameter set to unity, and N 
is the number of neurons in the input layer.

Experimental Protocol and Performance 
Measures
The performance of each classifier is measured by computing 
the accuracy, sensitivity, and specificity. The accuracy is the ra-
tio of the correct predictions to the total number of predictions, 
sensitivity measures the proportion of positive predictions 
that are correctly identified over all positive cases, and speci-
ficity measures the proportion of negative predictions that are 
correctly identified. Hence, accuracy, sensitivity, and specific-
ity are expressed as follows:

	
TP TNAccuracy

TP FN TN FP



   	 (10)

	
TPSensitivity

TP FN


 	 (11)

	
TNSpecificity

TN FP


 	 (12)

where TP, TN, FN and FP indicate the number of true positives, 
true negatives, false negatives and false positives, respectively.

To evaluate the performance of each classifier while avoid-
ing overfitting, 10-fold cross-validation protocol is adopted 
in our study. For instance, under 10-fold cross-validation pro-
tocol, the data set is divided into 10 subsets. Each time, one 
different subset is used as the test set, and the remaining nine 
subsets are put together to form a training set. Then the aver-
age performance across all 10 trials is calculated. In the current 
work, the average and standard deviation of accuracy, sensi-
tivity, and specificity are calculated across the 10 folds. Also, 
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we consider an additional experimental protocol where the 
data is randomly separated into 50% for learning and 50% for 
testing.

Data and Pre-processing
The database is composed of two sets: expiration (EXP) set 
and inspiration (INS) set. The EXP set has 2638 cry signals and 
INS set has 1860 cry signals. Specifically, there are 1319 healthy 
signals and 1319 unhealthy signals in the EXP set. Moreover, 
there are 930 healthy signals and 930 unhealthy signals in the 
INS set. To record a cry signal, a two-channel sound recorder 
with a sampling frequency of 44.1 kHz and a resolution of 16 
bits was placed at 10 cm to 30 cm from the infant. The time du-
ration of each recorded signal is within 2 to 3 minutes. Each 
original recorded cry signal has been pre-processed to remove 
background noise and artifacts. It is also segmented to keep 
only respiration and expiration episodes. The segmentation 
task is manually performed by using the Wave Surfer tool.

All infant cry signals have been recorded in the neonatol-
ogy departments of the following hospitals: Sainte-Justine 
hospital (Montreal, Canada), Al-Sahel hospital (Beirut, Leba-
non), and Al-Raee hospital (Saida, Lebanon). The infants who 
entered the study are preterm and full term, and their respec-
tive ages range from one to 53 days. The sample includes both 
healthy and unhealthy babies and both males and females. 
The group of unhealthy babies suffers from various pathol-
ogies such as diseases affecting the central nervous system 
and respiratory system. Other pathologies include blood dis-
orders, chromosomal abnormalities, and congenital cardiac 
anomalies. For illustration purpose, Fig. 3 displays examples 
of healthy and unhealthy signals.

Examples of cepstrums representing healthy and un-
healthy cry signals are shown in Fig. 4. Recall that the number 
of coefficients to be calculated was set to 1000 to allow for a 
general representation of the original cry signal, on one hand, 
and for fast learning and classification by each single classifier, 
on the other hand. According to Fig. 4, INS cepstrums show 

more variability compared to those from EXP sets. All exper-
iments are performed by a PC with 1.80 GHz processor and 8 
GB installed RAM in Matlab2020b© cloud environment.

Experimental Results
Fig. 5a and Fig. 5b compare the classification results from deep 
feedforward (DFFNN), linear support vector machine (SVM), 
Naïve Bayes (NB), and probabilistic neural network (PNN) 
following 10-fold cross-validation protocol when applied to 
EXP and INS sets, respectively. For both EXP and INS sets, the 
DFFNN outperforms the linear SVM, NB, and PNN in terms of 
accuracy, sensitivity, and specificity.

Specifically, in the problem of classifying EXP cry signals, 
the DFFNN, SVM, NB, and PNN achieved an accuracy of 
99.92%±0.00, 61.15%±0.04, 58.11%±0.01, and 56.71%±0.01, re-
spectively. In addition, the obtained sensitivity is 99.85%±0.00, 
61.03%±0.04, 56.31%±0.01, and 57.70%±0.03, respectively, 
for DFFNN, SVM, NB, and PNN. In terms of specificity, the 
DFFNN, SVM, NB, and PNN obtained 100%, 61.27%±0.05, and 
59.93%±0.02, and 55.72%±0.02, respectively.

Moreover, in the problem of classifying INS cry signals, 
the DFFNN achieved perfect accuracy, sensitivity, and spec-
ificity. The linear SVM, NB, and PNN, respectively, achieved 
an accuracy of 59.57%±0.01, 55.46%±0.02, and 52.63%±0.05, a 
sensitivity of 58.82%±0.04, 55.84%±0.01, and 47.10%±0.07, and 
a specificity of 60.32%±0.04, 55.08%±0.02, and 58.17%±0.06.

Finally, Table 1 provides the performance measures of each 
predictive model when the data set is randomly split into 50% 
for training and 50% for testing. As shown, the DFFNN outper-
forms all classifiers on both EXP set INS sets.

In summary, the DFFNN performs best in distinguishing 
between healthy and unhealthy infant cry signals. It is fol-
lowed by the SVM, and the NB classifier performs the worst. In 
terms of processing time for training and classifying EXP and Fig. 3. Examples of healthy and unhealthy cry signals.

Fig. 4. Examples of cepstrums from healthy and unhealthy infant cry signals. 
More variability is observed in cepstrums from healthy and unhealthy signals 
associated with inspiration records. In addition, visual inspection of cepstrum 
coefficients from inspiration set indicates that those related to healthy infant 
cry signals exhibit higher magnitude compared to those associated with 
unhealthy cry signals.
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INS sets under 10-fold cross-validation protocol, the NB is the 
fast one, followed by PNN, DFFNN and SVM, respectively, as 
shown in Table 2.

The DFFNN outperforms all classifiers and requires less 
than one minute to converge. Its superiority can be explained 
by the ability to capture complexities inherent in the data struc-
ture. Specifically, as they have high level of abstraction, the 
DFFNN can fully account for the complex relationships be-
tween cepstrums and their corresponding classes. Moreover, 
the slight improvement in performance measures observed for 
the INS set that yield to perfect accuracy by DFFNN could be 
attributed to its capability to learn and model large variability 
in cepstrums, which is clearly observed in Fig. 4.

In addition, it is worth mentioning that the NB classifier 
is fast since it requires only a small training data set to es-
timate the probabilities. However, it performed the worst, 
which is most likely linked to violation of the assumption of 
independent predictors, for instance, cepstrum coefficients. 
Furthermore, it is worth mentioning that the performance of 
the linear SVM is moderate, possibly because its key param-
eters have not been optimized, and it is very slow compared 
to NB and DFFNN due to the complexity of the optimization 
process that underlies the SVM and the complexity of the data 
under study. The accuracy of the PNN is the lowest, and this 
could be explained by the fact that this kind of artificial neural 
network employs a Gaussian transfer function to process the 
inputs. In this regard, its performance depends on the distribu-
tion of the inputs and on the value of the smoothing parameter 
used to determine the length of the probability density func-
tion (PDF) of the transfer function.

Finally, it is worth mentioning that the DFFNN outper-
formed most recent studies in distinguishing between healthy 
and unhealthy infant cry signals in terms of accuracy, in-
cluding Hidden Markov Models trained with segmented 
cry signals (83.79%) [1], probabilistic neural network trained 
with prevalence of fundamental frequency glide, resonance 
frequencies dysregulation, and Mel-frequency cestrum coef-
ficients (67.00% to 88.71%) [2], and linear SVM trained with 
Mel-frequency cepstral coefficients, tilt, and rhythm features, 
(67.80%) [3]. Therefore, the proposed CAD system for infant 
cry signal classification based on DFFNN trained with ceps-
trum coefficients appears to be effective and promising.

Conclusion
Infant cry signal analysis is a non-invasive acoustic evaluation 
that represents an important tool for physicians for pathol-
ogy diagnosis. The purpose of the current work was to design 
a CAD system to distinguish between healthy and unhealthy 
infant cry signals. In this regard, we proposed to calculate the 

Fig. 5. Bar plots of obtained performance measures from 10-fold cross-
validation protocol. The DFFNN outperforms the linear SVM, NB, and PNN 
classifiers in terms of accuracy, sensitivity, and specificity. Bar plots of 
obtained performance measures from expiration set under 10-fold cross-
validation protocol. (a) Expiration set. (b) Inspiration set.

Table 1 – Experimental results from random split of the data into 50% learning and 50% testing

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Expiration set Inspiration set

SVM 56.63% 59.79% 53.48% 54.62% 51.61% 57.63%

NB 57.32% 55.91% 58.73% 57.10% 55.48% 58.71%

PNN 53.83% 52.88% 54.78% 52.80% 44.73% 60.86%

DFFNN 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 2 – Processing time (in seconds) of each 
classifier under 10-fold cross-validation

Expiration (EXP) set Inspiration (INS) set

SVM 653.14 73.57

NB 3.18 1.46

PNN 19.57 14.30

DFFNN 29.30 31.63
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cepstrum of infant cry signal to capture its periodic patterns. 
Then, the obtained cepstrum coefficients were fed to deep 
feedforward neural network for training and classification un-
der ten-fold cross-validation protocol.

Thanks to its ability to learn and model deep complex 
structures in the data, the deep feedforward neural network 
achieved very close to perfect accuracy when applied to expi-
ration infant cry signals and yielded to perfect accuracy when 
applied to inspiration infant cry signals. In addition, it outper-
formed the linear SVM and the Naïve Bayes systems when 
tested both on the expiration and inspiration sets. Furthermore, 
the proposed approach outperformed very recent works found 
in the literature. In short, the proposed system for infant cry sig-
nal analysis and classification was found to be effective and fast.

In future work, some interesting issues will be considered. 
First, regarding DFFNN, various topologies and transfer func-
tions will be evaluated. As this is out of scope of the current 
work, such investigation is expected to be comprehensive re-
garding the possible architectures, parameters, and transfer 
functions. Second, other categories of deep learning neural 
networks will be examined and compared to DFFNN, such 
as convolutional neural network and long short-term mem-
ory networks. Third, we will examine the performance of 
optimized classifiers when trained with two types of features, 
namely deep features and nonlinear statistical features. Such 
investigation will shed light on the effectiveness of other exist-
ing deep learning neural networks and on the discrimination 
power of deep features compared to features used to describe 
nonlinear dynamics in infant cry signals.
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