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nals [11-17]. In our previous work [18], we made use of 
cry signals to distinguish between healthy and sick in- 
fants both full-term and premature. Most of the previous 
studies [11-17,19] concentrate on health status of infants 
via a binary classification task, but this paper focuses on 
identifying several different pathological conditions. In 
this article a method for splitting of Gaussian mixture 
densities is presented based on the boosting algorithm to 
maximize the frame-level ML objective function. The 
performed experiments on the diagnosis of infants’ dis- 
eases show that it has fairly superior performance to the 
conventional method based on random splitting and 
EM-based re-estimation. 

This paper is organized as follows: In Section 2 we 
give a brief review of GMM. Section 3 explains the dif- 
ferent parts of introduced learning algorithm. In Section 
4, preprocessing steps and experiments are reported, and 
in section 5 a follow-up analysis of the results and a con- 
clusion are presented at the end to finalize this paper. 

2. Gaussian Mixture Model 

A complete GMM for a D dimensional continuous value 
data vector called X can be represented by the weighted 
sum of M  Gaussian component densities 

 , ,k k kc    1, ,k M  as follows: 

   
1 1

; , 1,
M M

M k k k k k
k k

F X c X c 
 

        (1) 

where each mixture component k  is a D-dimen- 
sional multivariate Gaussian distribution and , ,k k kc    
are the mixture weights, mean vector and covariance 
matrix respectively. Since GMMs are used usually in 
unsupervised learning and clustering problems with un- 
known number of mixtures and their parameters, the 
choice of model configuration is almost determined by 
the amount of data available for estimating the GMM 
parameters in a particular application. GMM, as a para- 
metric probability density function with the following 
adapted learning method could be a successful candidate 
for cry-based physical or psychological status identifica- 
tion system. 

3. Adapted Boosted Mixture Model 

Generally, boosting method combines weak learners or 
base classifiers in a weighted majority voting scheme to 
improve the overall classification accuracy for almost 
any type of learning algorithm [20,21]. The main idea of 
boosting is that instead of always treating all data points 
as equal, component classifiers should specialize on cer- 
tain examples. Moreover, some recent work has shown 
that the boosting method can effectively increase the 
margin of all training samples, which can be explained 
by a theoretical view related to functional gradient tech- 

niques [4,22]. We should note that the boosting algo- 
rithm does not always improve the accuracy of a learning 
algorithm nor does it always increase the margin. 

In the presented method a new component k  and 
its weight kw can be trained based discriminatively 
based on a predefined objective function, denoted as  , 
in an optimal way. Then, they will be added to the pre-
vious mixture model k -1F  which has k − 1 mixture 
components to grow into a new mixture model kF . 

     11 k kk k kF X c F c X            (2) 

Objective function is defined as the log likelihood 
function of the mixture model kF , based on all training 
data  1 2, , TX X X . 

   
1

log
T

k k t
t

F F X


             (3) 

where kw  is a weight to combine the new mixture 
component with the current model. When a new mixture 
component k  is added, it will increase the ML objec- 
tive function with respect to F until the criterion which 
will be explained later is met. 

    11 k-1 k kC ε F +εN > C F           (4) 

where   is a small deviation constant. Thus, the new 
mixture component k  should be estimated in order to 
increase the ML objective function the most. By em- 
ploying Teylor’s series and predefined inner product of 
mixture models p and Q over training samples, 

   
T

t t
t 1

1
P,Q P X Q X

T 

               (5) 

the optimal new component can be obtained by: 

   
k

*
k k 1 k k 1argmax F , F    



    

 
 k

T
k t

t 1 k 1 t

X
argmax

F X 

 



              (6) 

The new mixture component is generated along the 
direction of functional gradient where the objective func- 
tion grows the most. There is no closed-form of the op- 
timization problem for GMMs, but it can be solved by 
optimizing a lower bound on the boosting learning for- 
mula with the EM algorithm [4]. After estimating *

k , 
the mixture weight *

kc  can be obtained by using the 
following line search: 

 
  * *

1
0,1

1
k

k k k k k
c

c argmax c F c


         (7) 

3.1. Process of Adding a New Component 

In this method, a single Gaussian model initialized by 
ML training is estimated to fit the data at first, and then 
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in each step it is split into two Gaussians followed by 
learning via introduced method. In the splitting or adding 
process the part of training vectors in which  k X  
has a higher value than the reminder of the mixture mod- 
el, denoted by  kkF    is selected. Then this subset 
of data indicated by subX  should be modeled by a small 
GMM consisting in two Gaussian components called 

*
k  and k 1 . The initial component came from the 

EM-based re-estimation, and then the second component 
and its weight were estimated based upon adapted BML 
method. We considered the estimated component—the 
second one—as an initial component and run the algo- 
rithm again. This process continues repeatedly, until it 
reached the optimal maximum log-likelihood estimate of 
parameters over subX . This procedure for finding the 
best two new components 1k   and *

k  continued 
for 1, ,k K  . Amongst all the created K  mixture 
models, denoted by 1KF  , the one that gave the highest 
value of the objective function was selected and added to 
the mixture by adjusting its weight. This iterative density 
splitting process in ML frame work is repeated as long as 
the added component causes an increase in the prede- 
fined objective function. 

3.2. Partial and Global Updating 

During previous step, instead of finding the new mixture 
weight from the line search, there is an alternative me- 
thod called partial updating in which each new compo- 
nent and its weight are estimated at the same time, which 
is preferable since it may result in more robust and relia- 
ble estimation. 

    
,

* *
1

,
, 1

k k

k k k k k k
c

c argmax c F c  


        (8) 

The iterative re-estimation formula for model parame- 
ters    n 1 1 1

kΦ ,n n
k k     at the  th

n 1  iteration can 
be evaluated as follows: [4]: 

 
  

      1 1

  
1

n
k t k

n
t nn n

k k t k k k t k

X
w X

c X c F X 




   




 

    
 

1

n
n t

t k T n
tt

w X

w X




 


 

 1 ?

1

1 T
n n n

k k t
t

c c w X
T





   

  1

1

.
T

nn
k t k t

t

X 



   

     1 1 1

1

. ?
T Trnn n n

k t k t k t k
t

X X    



        (9) 

where  n
tw X  denotes the weight assigned to sample 

tX  at the thn  iteration, similar to sample weights used 
in the traditional boosting algorithms and 

 1,k k k    . Moreover, in order to speed up con- 
verging process and finding the minimum number of 
Gaussian component in the final mixture, the current 
mixture model kF  should be updated globally over 
training data samples before adding the next component. 
For example in the GMM with k  components, denoted 
by kF , the thk  component can be re-estimated for 

1, ,k K   when the reminder of the mixture mode is 
assumed to be fixed. It means that after obtaining a mix- 
ture model KF , we could update each component k  
and its weight over all training feature vectors by using 
the same updating equations. The parameters updating 
phase, subsequent to splitting the selected density in half, 
brings about an increase in the objective function through 
the localized training of each component separately. 

3.3. Initialization of Sample Weights 

A problem may arise when the initial values of the 
weights are chosen by boosting theory as follow: 

   0
1 11/t k t kw X F X              (10) 

The dynamic range of 1kF   is large in a way that it 
could be dominated by only a few number of outliers or 
samples with low probabilities. We use the so-called 
“Weight decay” method [23] to overcompensate for the 
low probability by smoothing sample weights based on 
power scaling. 

   0
1 1(1 0/ 1,) p

t k t kw X F X p       (11) 

where p  is a decay parameter or an exponential scaling 
factor. In the second method the idea of sampling boost- 
ing in [24] is applied to form a subset of training feature 
vectors according to the mean and variance values of the 
decayed weights. Afterwards, vectors contained in the 
previously created subset are utilized with equal weights 
to estimate the new component parameters. Assume M  
and 2  denote the mean and variance of weights calcu- 
lated in equation (9) as defined below. 

  0  tmean log wM X  

  2 0  tvariance log w X         (12) 

Then, the aforementioned subset with large weights is 
selected as described below: 

  0 sub t tX X log w X M        (13) 

where   is a linear scaling factor to control the size of 
subset subX . In the experiments, we set 0.05p   and

0.5    to overcome over fitting and these same para- 
meter values which utilized for BML algorithm in [4]. 
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3.4. Criterion for Model Selection 

The process of adding new mixture component to the 
previous mixture model is continued incrementally and 
recursively until the optimal number of mixtures is met. 
The set of Gaussian components selected should re- 
present the space covered by the feature vectors. For this 
purpose, the selected strategy to stop the adding process 
is a criterion-based called Bayesian Inference Criterion 
(BIC). It can be represented as the following [25]: 

     logk kBIC k F M T         (14) 

where  kF  is the log-likelihood function of the mix- 
ture model over all training data, kM  is the number of 
parameters used in model kF , and T  denotes total 
number of training data. Figure 1 shows a brief review 
of all mentioned processes to train a GMM for each 
available pathological condition in order. A simple pro- 
cedure to evaluate the presented learning method is to 
monitor the progress of the method during learning phase 
with a created training dataset, whose samples have been 
drawn from a known mixture of multivariate Gaussian 
distributions. Given training data with 600 two-dimen- 
sional samples, we wish to estimate the parameters of the 
GMM,  , ,k k kc   , which in some sense best 
matches the distribution of the training feature vectors. 

Figure 2 shows the final trained GMM and the whole 
discriminative splitting process after each substitution 
step. We compare the log-likelihood score between our 
method and the mentioned traditional method at the end 
of the discriminative training of this model. The negative 
log-likelihood score of the estimated GMM bears a close 
resemblance to that of the trained model with the tradi- 
tional method consisting of the correct number of Gaus- 
sian components on the same data, whose values are

32.7682 10  and 32.7684 10  respectively. 

4. Experiments 

4.1. Preprocessing and Features Extraction 

It would be worthwhile to find a clear correlation be- 
tween infants’ medical statuses and extracted cry charac- 
teristics. This concept could prove useful in the early 
infant diagnosis system. Several different cry characte- 
ristics and features were described in [19,26] and have 
 

 

Figure 1. Block diagram of adapted BML technique. 

been shown to work well in practice for distinguishing 
between a healthy infant’s cry and that of infants with 
asphyxia, brain damage, hyperbilirubinemia, Down’s 
syndrome, and mothers who abused drug during their 
pregnancies. Therefore, selecting the most informative 
features to distinguish between healthy baby class and 
pathological infant classes with different pathology con- 
ditions has a significant role in pathological classification 
tasks. Table 1 shows the list of available different pa- 
thological conditions and the number of samples in each 
class; totaling 63 cry signals for each healthy and sick 
infants classes including both full-term and premature 
per class. 

In a similar way to typical speech recognition systems, 
the pre-processing and the feature extraction phases are 
modeled in such a way that irrelevant information to 
phonetic content of the cries should be eliminated as far 
as possible i.e. nurses talking and environmental noises. 
On the other hand, the Mel-Frequency Cepstral Coeffi- 
cients (MFCCs) are selected to be extracted from the 
cries which contain the vocal tract information [27]. This 
type of excitation source characteristics is one of the 
popular schemes in speaker recognition and identifica- 
tion systems [27-30]. It is common practice to pre-em- 
phasis the signal prior to computing the speech parame- 
ters by applying the filter   11 0.97P z z   [31,32]. In 
all related practical applications, the short terms or 
frames should be utilized, which implies that the signal 
characteristics are uniform in the region. Prior to any 
frequency analysis, the Hamming windowing is neces- 
sary to reduce any discontinuities at the edges of the se- 
lected region. A common choice for the value of the 
window length is 10 - 30 ms [32-34]. 

A total number of 12 MFCCs  , 1, ,12nC n    are 
computed directly from the data [31,35]. For better per- 
formance, the 0th  cepstral coefficient 0C  is appended 
to the vector which is simply a version of energy (i.e., 
weighting with a zero-frequency cosine). Therefore, each 
frame is represented by a 13-dimensional MFCCs feature 
vector [33]. 

4.2. Multi-Pathology Classification 

In training phase of algorithm, in order to estimate the 
parameters of GMMs for pathology classes, almost 63% 
of total cry signals were employed and the reminder for 
system evaluation. The GMM classifier is employed to 
identify infants’ pathological conditions. The Maximum 
Likelihood (ML) decision criterion is applied to assist in 
choosing between hypotheses.  

   # argmax j
j

PathologyClass X         (15) 

where  j X  shows the likelihood of a feature vector 
X given a Gaussian model i  for thi  pathology class. 
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(a)                                      (b)                                     (c) 

Figure 2. Estimated contour (a) of first Gaussian component, (b) after splitting GMM into 2 components, (c) of final GMM. 
 

Table 1. Cry database. 

Infants State Pathologies Number

Full term

Healthy N/A 38 

Sick

Bovine protein allergy 13 

Tetralogy of Fallot 5 

Thrombosis in the vena cava 13 

Premature

Healthy N/A 25 

Sick

Tetralogy of Fallot 9 

Cardio complex 14 

X chromosomal abnormalities 9 

 
This multi-pathology classification was done by using 
predefined feature vectors extracted from different frame 
durations (10, 20, 25, 30 msec) with the same overlap 
percentage (30%) between two consecutive windows to 
assess what improvements it may have. 

Nevertheless, our results show that, on the average, it 
had a better accuracy rate compared with the traditional 
method based on random splitting and EM-based re- 
estimation for GMMs as our reference system. It is worth 
mentioning that the GMMs created by the traditional 
method for each class were trained by setting the number 
of components equal to that of mixture model learned by 
adapted BML method. The coefficient of variation (CV) 
is used to represent the reliability of performance tests. It 
gives the standard deviation as a percentage of the mean 
values which is computed from frequency distribution 
over all pathology classes as follows [36]: 

100%
StandardDeviation

CV
Mean

        (16) 

Due to space limitation, Table 2 shows only the re- 
sults for two frame length (10 ms and 20 ms) as the most 
reliable results. Note that the states correspond to the 
order given in Table 1. It can be seen that both methods 
delivered great performances for most pathology classes, 
but based on the frequency distribution of the cry sam- 
ples. The presented method for 20 ms frame size had  

Table 2.Obtained accuracy rate (%) for multi-pathology 
task. 

 20 msec 10 msec 

State EM-Based ABML EM-Based ABML 

1 100 100 100 100 

2 100 100 80 80 

3 100 100 100 100 

4 75 100 75 75 

5 100 88.9 100 100 

6 100 100 100 100 

7 80 60 80 80 

8 100 100 100 100 

Mean 94.16 94.58 92.08 92.08 

CV 10.9 12 11.8 11.8 

 
better final accuracy rate. Moreover, the larger the CV, 
the more the performance varies.  

5. Conclusion 

An adapted mixture learning method for GMMs based on 
boosting algorithm is introduced in this paper. Advanced 
techniques of signal processing, and machine learning 
were employed in different parts of the learning process 
such as adding a new component per step, weighting 
function for samples, model selection, and global re- 
estimation of parameters. The focus of this paper has 
been on the application of discriminative training via 
introduced GMM-ABML as it pertains to the pathology 
detection through infants’ cry signals. For each path- 
ology class in our cry database, the adapted BML method 
trained a mixture model with a separate Gaussian pool as 
a cry-pattern. The results show that, on the average, it 
delivers a higher classification accuracy rate (94.58%) 
than the traditional method based on random splitting 
and EM-based re-estimation. It might be early to reach 
strong conclusions since there are not enough cases of 
the pathological classes, but the results have the potential  
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to serve as a mixture learning method for further research. 
We are currently trying to use alternative discriminative 
criteria like MMI rather than ML and collecting more 
sample cries for further tests.  
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