
68

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

ARCHITECTURAL SURVEY OF CONTEXT-AWARE SYSTEMS IN
PERVASIVE COMPUTING ENVIRONMENT

Moeiz Miraoui1, Chakib Tadj1, Chokri ben Amar2
1LATIS Laboratory, Université du Québec, École de technologie supérieure

1100, rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 Canada
{moeiz.miraoui.1@ens,ctadj@ele}.etsmtl.ca

2REGIM Laboratory, Université de Sfax, École Nationale d'Ingénieurs de
Sfax, Route de Soukra, B.P. W, 3038 Sfax – Tunisie

Chokri.benamar@enis.rnu.tn

ABSTRACT
The main characteristic of devices in a pervasive (or ubiquitous) computing system
is their context awareness which allows them to provide proactively adapted
services to user and to applications according to the global context. In order to
support the development and to ease the implementation of context-aware systems,
many architectures were proposed with characteristics related to the application
domain and techniques used. A survey of such architectures that makes
comparison between them and evaluates them is strongly recommended. Proposed
surveys are either restricted to a limited number of architectures or do not offer a
good comparison or their evaluation is not based on appropriate criteria which
keep them as simple descriptions. Our aim is to make a survey of relevant
architectures which mark the evolution of context-aware systems based on criteria
related to pervasive computing. This survey will serve as a guide to developers of
context-aware systems and help them to make architectural choices.

Keywords: achitecture, pervasive computing, context-awareness.

1 INTRODUCTION

Pervasive computing aims to provide proactively
adapted services to both user and applications
according to the global context. The main
characteristic of devices in such system is their
context awareness. Since its apparition, pervasive
computing has required tools (architectures,
frameworks and middleware), methods and concepts
to support the development of a context-aware
system and ease their design and implementation.
System architecture is created early in the
development process and permits the creation of a
high level design of the system which takes into
account the fulfillment of requirements’
implementation. The architecture design is an
important step in the development of context-aware
systems. Many researchers have proposed several
architectures, frameworks and middleware for
context-aware systems with particularities related to
the application domain and techniques used. To
evaluate these proposed architectures, many surveys
were done but they did not cover all architectures
that mark the evolution of pervasive computing.

They did not offer a solid comparison or evaluation
and instead are simple descriptions. Even if they
exist (in limited number of surveys), these surveys
were not based on criteria related to pervasive
computing particularities. Our aim, therefore, is to
make a survey of relevant architectures that mark the
evolution of context-aware systems beginning from
localization-aware systems up to present context-
aware systems. This survey presents a comparison
and evaluation of architectures on various criteria
which are considered important for pervasive
computing such as: context abstraction level,
communication model, reasoning system,
extensibility and reusability. Our objective is to
come up with a survey that will serve as a guide to
developers and architecture designers of context-
aware systems in a pervasive computing
environment.
The rest of this paper is organized as follows, in
section 2 we review some previous surveys done
until now on context-aware architectures and show
their weaknesses. In section 3 we present the
evaluation and comparison criteria used and argue
their use in pervasive computing. In section 4 we

mailto:Chokri.benamar@enis.rnu.tn

69

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

present detailed descriptions of some relevant
architectures of context-aware systems and show
their strengths and weaknesses. Before concluding
this paper, we summarize the characteristics of each
architecture with regards to the criteria presented in
section 3.

2 RELATED WORK

In the literature there were several surveys on
context-aware system architectures and for us the
most significant ones are the following. Beldauf et al.
[1] proposed a survey of a good number of
architectures. They focused in particular on layered
architectures. Their survey was based on describing
layers of different architectures and the mechanisms
used in each layer. In spite of the diversity of
architectures cited, the survey was not done based on
pervasive computing criteria and did not show
clearly the strengths and weaknesses of each one.
Kjaer [2] did a middleware oriented survey but it
deals also with some architectural aspects. It consists
of a classification according to a taxonomy judged
important by the author. This classification seems to
us a more detailed description of classical context-
aware system architecture layers (sensor,
interpretation, context management and adaptation)
rather than a consistent survey. As the former one,
this survey was not made in order to compare
architectures according to criteria related to
pervasive computing. Abshik and Conway [3]
described four architectures but they did not make an
evaluation of them which renders their survey as a
simple description. Wingrad [4] did a specific survey
on organizational models of architectures relative to
context-aware human-computer interaction which is
not generic enough and kept his survey specific to
that domain. Finally Henrikson et al. [5] did a brief
survey as a part of their work on five architectures
which seems to us the most interesting one. It makes
a comparison of architectures according to criteria
related to pervasive computing but this survey does
not cover other architectures that mark the evolution
of context-aware system architecture. The criteria
used for comparison are rather oriented on
distributed systems even though most of them are
basic for pervasive computing.

3 EVALUATION CRITERIA

A pervasive environment has some specific
characteristics which should be taken into account
when evaluating context-aware architectures. In this
survey, we will make an evaluation of these
architectures based on some criteria that we consider
relevant for pervasive computing. These criteria are:
a) level of context abstraction, b) communication

model, c) reasoning system, d) extensibility and e)
reusability. We have chosen these criteria due to the
following reasons:

• Pervasive system uses sensors of different
kinds to perceive contextual information.
Software architecture must hide the
complexity of the physical sensors by
providing a higher level of abstraction
which makes it independent of physical
sensor and enhances the reusability of
architecture components.

• Pervasive system is composed of proactive
devices that adapt to the current context
without an explicit intervention from the
user. This requires that devices embed a
reasoning mechanism in order to take
initiatives for a correct adaptation.

• Devices must be autonomous, independent
from each other and can be easily connected.
The peer-to-peer communication model
seems the most appropriate for a pervasive
system. It offers an easy way to tie devices
and the network can be set up for a very
modest investment and permits an easy
sharing of contextual information among
devices. It does need neither a dedicated
material (server) nor software (operating
system, data base management system, etc.)

• A pervasive system is characterized by its
rapidly changing environment due to
mobility; hence devices can be added or
removed dynamically without affecting the
entire operation of the global system
(hardware extensibility).

• Pervasive computing is a new domain of
computing. Its architecture should provide
reusable components in order to ease their
integration and reduce development effort.

4 CONTEXT-AWARE ARCHITECTURES

4.1 Active Badge

The Active Badge project [6] developed by
Olivetti Research Ltd. aims to built a system for
phone calls delivery according to the called person’s
localization. It permits the transport of phone call to
the phone closest to the called person. The system
uses badges which continuously emit infra-red
signals at a given frequency. These badges are
carried by personnel of an enterprise and each badge
contains the carrier identification. The signals
emitted by these badges are perceived by some
receivers distributed in the whole edifice. The
perceived signals are then sent to a server. The latter
presents to a receptionist the information about
badges carriers and their localization. This
information helps the receptionist to deliver a call to
the place closest to the called person (this task can be

70

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

done automatically). The active badge is based on a
distributed architecture of sensors. The layered
architecture (figure 1) of an application running on
the server is composed of the following four layers:

• The network controller which supervises the
operation of the sensor network.

• The information presentation which is
responsible for data management and
control of localization information.

• The data processing which selects the
interesting information at the time of
localization variation

• The user interface to display the textual
information about badges variation position.

workstation in a local area network. This prevents
Parctabs from making a lot of processing which
consumes their limited resources. The
communication system is based on the remote
procedure call (RPC) between ParcTabs and
applications running on a local area network
workstation. This infrastructure permits the
development of context-aware systems in particular
those localization-aware. For example we can cite an
incoming e-mail notification to a user based on his
location and of nearby people by displaying the e-
mail text on the parcTab displayer or by a simple
beep (filters can be used to notify users for only
emergency cases when the user is attending an
assembly or a conference). The authors consider
many others context-aware applications based on this
infrastructure like remote program control, assisted
collaboration, information and resources access
according to the context, etc.
The ParcTab is a primitive localization-aware system
based on hardware infrastructure like the Active
Badge. The software architecture is very dependent
on hardware and does not provide a good abstraction
of contextual information.

Figure 1: The Active Badge infrastructure

The active badge is a hardware architecture for
localization-aware system rather than a software
architecture of context-aware system with various
software components. It is specific to localization
systems and cannot be easily used for other kind of
context-aware systems. Finally it does not make any
abstraction of contextual information (localization
information in this case) which makes it very
dependent to the hardware infrastructure.

4.2 ParcTab

The Xerox project ParcTab [7] is a material

infrastructure that enhances the development of
applications aware to localization context (person
location, surrounding devices, nearby people, etc.).
The parcTab is a personal digital assistant (PDA)
carried by the user and operates as a graphical
terminal. It uses infra-red communication with a
transmitter in a room of an edifice which
communicates with a local area network via an RS-
232 connection (figure 2). For each ParcTab there is
a corresponding software agent that controls its
communication with applications running on

Figure 2: The ParcTab infrastructure

4.3 Stick-e-notes

The stick-e-notes project [8] is a framework to
support the development of context-aware
application where localization is the basic
component of context. In this system the main
component is a personal digital assistant (PDA)
connected to a localization sensor (GPS or Active
Badge). The PDA may communicate with one
another depending on the application. The idea
behind the stick-e-notes comes from stick notes used
to remind user about something (or to briefly
describe something) and stuck on a door, a device,
etc. In this case, the notes are electronic and not hand
written. Notes are written by the user and are
attached to a specific context (example localization)
and saved on his PDA. The electronic notes are
automatically triggered (displayed by the PDA)

71

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

whenever the same context appears in the future. For
example: the user attaches a description of a museum
when he visited one, each time the user enter the
same museum, the description note will be displayed
on his PDA. Notes may be of different formats such
as text, HTMl, sound, video, a program to execute,
etc.
The authors defined four software components for
the architecture:

• SEPREPARE: enables the user to prepare
notes

• SEMANAGE: permits the management of
notes

• SETRIGGER: enables notes triggering
whenever similar context appears

• SESHOW: enables the display of triggered
notes and their storage

Notes are written in SGML language for ease of
information exchange.
The stick-e-notes use a limited set of contextual
information (those related to localization) are
hardware dependent (dedicated material) and do not
provide a significant improvement of context
abstraction as compared with previous systems.

4.4 Cyberguide and Guide

The cyberguide project [9] equips user with a

personal electronic tourist guide aware of its context
(localization, orientation, etc.). The hardware
infrastructure is composed of a set of personal digital
assistants (PDA) connected to some global
positioning systems (GPS) to detect a tourist’s
position. These PDAs can communicate in infra-red
among them or with a local area network. The
objective is to guide a tourist in his visit by providing
him with interesting sites to visit based on his actual
location, paths to follow and some useful
information depending on his current position. The
cyberguide architecture is composed of the following
elements:

• An electronic geographical card of the
physical environment visited by the tourist
with a special representation of remarkable
objects (towers, park, museum, etc.)

• A browser that permits the detection of the
tourist’s current location in order to provide
him with information related to the
surrounding environment

• A messenger which provides a message
delivery service to the tourist to send
request, suggestion, communication with
other tourists and to receive broadcasted
messages

Another project called GUIDE [10] was proposed
with the same objectives as the cyberguide. For us, it
seems that the two projects are very similar with
minor differences in the hardware used and web
access.

These two projects are specific to localization
systems, they do not interpret contextual information
(to come up with a higher level of abstraction), are
very dependent to the hardware used and do not offer
an extensible and reusable software architecture.

4.5 CASS

The CASS tool [11] is a middleware for
supporting the development of context-aware
applications. It provides a good abstraction of
contextual information and uses an object oriented
model for context description. The architecture
(figure 3) is based on a server containing a database
of contextual information and a knowledge base with
an inference engine to infer other contextual
information using a back chaining mechanism. The
mobile devices are equipped with various sensors to
perceive context variation and send them to the
server without local processing. Mobile devices and
the server communicate via wireless mode. The
server also contains a module for context
interpretation that provides it with a higher level of
abstraction. The architecture provides a good
modularity that allows easy modification of server
components in particular the inference engine. The
mobile devices do not make any processing (all is
done by the server) which limits the autonomy
needed for pervasive systems but enhances the
extensibility of the system (adding or removing
devices require only the configuration of the server).
CASS also provides a good abstraction of context
due to its interpretation module and a reasoning
mechanism which makes it more proactive however
the centralized architecture is its weakness (if the
server is down all the system will be affected and
becomes non operational).

Figure 3: The CASS architecture

4.6 CORTEX

Biegel et al. [12] proposed the CORTEX
framework to ease the development of context-aware
mobile applications. The architecture is based on the
“sentient object” which has some beneficial
characteristics for pervasive computing environment

72

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

such as:
• Sensitivity: the capability of perceiving the

state of the surrounding environment by
using sensors

• Autonomy: the capability of operating
independently of human control in a
distributed manner

• Proactivity: take initiatives to achieve a
goal

The sentient object contains two interfaces:
• Sensor of events perceived by sensors

(sensor or consumer)
• Event emission to adapt to the current

context (actuator or producer)
The core architecture (figure 4) is composed of:

• A module for fusion and interpretation of
contextual information in order to increase
their level of abstraction

• A module for a hierarchical representation
of context in order to limit the actual
situation context and then limit the set of
possible actions

• An inference engine which specifies the
applications behavior to a given context and
uses the execution model event-condition-
action

The communication between sentient objects,
sensors and actuators that compose the system uses
the mechanism based on events which are
established dynamically during the system operation.
This architecture presents many advantages as earlier
stated but remains an ad hoc solution for a mobile
network. The inference engine written in CLIPS
language requires qualified personal to build, modify
or adapt it to an other application which limit its
usability. The discovery mechanism is not well
detailed by authors and does not allow a measuring
of the extensibility of the architecture. Also, the
model of context used does not provide a complete
set of contextual information needed for adaptation
task.

4.7 Context management framework

The CMF (context management framework) [13]
allows semantic reasoning on context in real time
and even in the presence of noise, incertitude and
rapid variation of context. It delivers contextual
information to applications by using a
communication model based on events. The
framework proposes a client/server (figure 5)
architecture composed of the following basic
components:

• Context manager: responsible for the
storage of contextual information on server
and the delivery of context to clients using
different kinds of mechanisms
(request/response, subscription/notification,
etc.)

• Resource server: responsible for the
acquisition of contextual information from
physical sensors and their interpretation
according to a specific format before
sending them to the context manager

• Context recognition service: responsible for
the conversion of the data stream to a
presentation defined in the context ontology

• Change detection service: responsible for
the detection of service change and
therefore the context change

• Security: responsible for the verification
and control of contextual information

The CMF uses ontology for context representation
but does not offer a context reasoning module. It
contains a good mechanism for context interpretation
which provides a good abstraction of context and
enhances the reusability in addition to a module for
context security. It uses a server for context
management (centralized system) which is the main
problem since, when the server is down all the
system will be affected and renders the devices less
autonomous which is something not desirable in a
pervasive computing system.

Figure 5: The CMF architecture

Figure 4: The CORTEX sentient object architecture
4.8 JCAF

Bardram [14] proposed the JCAF (java context

73

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

Access C
ontrol

awareness framework) based on java programming
language to support the development of context-
aware applications. The JCAF architecture is
composed of a set of components called “context
service” communicating in a peer-to-peer mode.
These components are responsible for collecting
context information in a specific environment (room,
hospital, laboratory, etc.). A context service contains
four modules as follows (figure 6):

• Entity container: responsible for context
exchange with context clients by using a
communication mechanism based on events
(subscription/notification). It also contains
one or more entities that describe the
context of an environment object (person,
computer, doctor, patient, etc.)

• Transformer repository: provides basically
two operations : context aggregation and
translation between types of context

• Environment entity: allows communication
between entities and control access to
shared resources

• Access control: controls access to the entity
via correct authentication of client’s query
to access entity context

• Entity listener: it can be an entity of another
context service and can access the entity
context of a context service either by the
request/response scheme or the
subscription/notification scheme. It is
possible to use the subscription/notification
scheme according to the type of context.

• Context monitor: permits the acquisition of
context via sensors and makes
transformation of crude context

• Context actuator: permits commanding the
actuators of the physical environment

The JCAF also controls the contextual information
(trust on the information sensed by a particular
sensor, error probability of information perceived by
a sensor, etc.). The remote communication between
the architecture components is done using java RMI
(remote method invocation). The context service
does not have an automatic discovery mechanism but
can use a configuration file containing all others
active context services.
The JCAF does not have a context reasoning
mechanism and does not provide a good abstraction
of context because there is no component that makes
context interpretation in an explicit manner. The lack
of an automatic discovery mechanism limits its
extensibility but the JCAF offers reusable and
portable modules because of its use of java language.

Figure 6: The JCAF architecture

4.9 Context toolkit

The context toolkit [15] was proposed as a tool
to help the developers of context-aware systems. It
has a layered architecture that permits the separation
of context acquisition, representation and adaptation
process. It is based on context widgets which operate
similarly to graphical user interface widgets in order
to hide the complexity of physical sensors. These
widgets offer a good abstraction of context and
provide reusable blocs for context sensing. The
architecture (figure 7) is composed of the following
components:

• Sensor: sensing of physical context
• Widgets: enable the encapsulation of

contextual information and provide methods
to access them in the same manner as
graphical widgets

• Interpreters: make context transformation in
order to provide a higher level of
abstraction of context

• Aggregator: makes context grouping
according to a subject or a situation

• Discoverer: maintains a register of existing
capabilities in the framework (currently
available components for use by
applications)

• Service: executes actions for applications
This architecture is easy to implement, offers a
distributed communication among system devices
and reusable widgets but the discovery mechanism is
centralized which does not make it a perfect peer-to-
peer communication model. It has a limited
extensibility when the number of devices increases.
The architecture takes into account events (to notify
context variation) by using a thread for each event
which overloads the system and affects its
performance. The architecture does not contain a
layer or a module for context reasoning because the
model used for context representation (key/value)
does not permit a good reasoning.

74

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

4.11 SOCAM

Figure 7.:The context toolkit architecture

4.10 Hydrogen

Hydrogen [16] is an architecture and a
framework for context-aware systems. It is a three
layered architecture that responds to particular
requirements of mobile devices. The architecture
(figure 8) has the following layers: adaptation,
management and application. The context server
(management layer) contains all the sensed
information perceived by the sensors of the adaptor
layer and provides context to the application layer of
the attached device or other devices using a peer-to-
peer communication model. The Hydrogen approach
considers context as any pertinent information on an
application environment and describes it using an
object oriented model.
The architecture can be implemented easily, is
simple and takes into account the limited resources
of mobile devices (battery, memory, processing, etc.)
and uses a peer-to-peer communication model
(distributed). The adaptor layer does both the sensing
and the interpretation task of context which does not
offer a good abstraction of context and limits the
reusability of such component. Also, it makes it very
dependent to sensors. The architecture does not
contain a reasoning module on context to ease the
adaptation task.

SOCAM [17] is an architecture of a service
oriented context-aware middleware for building and
rapid prototyping of context-aware mobile services
in an intelligent car. The architecture (figure 9) is
composed of the following components: context
provider, context interpreter, (context knowledge and
context reasoner), service locating service, context-
aware mobile service and context database. The
architecture uses the client/server model where the
context interpreter collects contextual information
from context providers (internal or external) and
context database and provides them to the context-
aware mobile services and the service locating
service. The main strength of the SOCAM
architecture is its context reasoner which uses
ontology for context description and allows a robust
reasoning on context. It uses two classes of
ontologies: domain specific and generalized
ontologies. Several reasoning systems can be
incorporated in the context interpreter to support a
variety of reasoning tasks.
The architecture was proposed to support the
development of a small non distributed application
(intelligent car) which limits its use in a wide range
of pervasive computing applications. The context
interpreter is overloaded with an important quality of
information (ontologies of different domains) which
affects the global performance of the system but
enhances its reusability, in addition to the major
problem of a centralized architecture that contradicts
the nature of a pervasive system which is a
distributed one with autonomous devices.

Figure 8: The Hydrogen architecture

Figure 9: The SOCAM architecture

4.12 CoBrA

CoBrA [18] is an architecture based on broker

75

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

agent to support the development of context-aware
applications in an intelligent space. The broker is an
autonomous agent that manages and controls the
context model of a specific domain. It runs on a
dedicated computer (server) with powerful resources.
The broker agent has a layered architecture (figure
10) containing the following components: context
knowledge, context reasoner engine, context
acquisition module and privacy management module.
The broker agent collects context from devices, other
agents and sensors of its surrounding environment
and makes their fusion in a coherent model which
will be shared among devices and their
corresponding agents. CoBrA uses ontology for
context description which allows a good reasoning
and a better sharing of contextual information. It uses
a centralized model for the storage and the
processing of context in order to save the limited
resources of mobile devices and uses a
confidentiality policy for the user. The architecture
requires a dedicated server for the broker which
increases its cost and limits its usability in addition to
the problem of a centralized architecture.

• Reasoning: (not present in all architecture)
deduces and predicts new contextual
information.

• Storage and management: basic operation in
managing contextual information (add,
remove, research, update, etc.)

• Adaptation: adaptation of provided services
according to the current context

The proposed architectures are mostly specific to an
application domain (localization systems, human-
computer interaction, etc.) and require additional
effort for their adaptation to other domains.
Architectures based on a server suffer from the
problem attributed to a centralized system: when the
server breaks down, all other system components
will be affected also it requires a dedicated hardware
and software which increases its implementation cost.
A centralized architecture contradicts the nature of
contextual information in a pervasive computing
system which is in general distributed and the
mobility characteristic of devices in such
environment. Rare are the architectures which
contain all the layers mentioned above and most of
them do not use a sound and reliable context model
which permits efficient reasoning and eases the
adaptation task. Context modeling is out of the scope
of this paper but it is key concept for architecture
design (context management layer and reasoning
layer), A survey made by Strang et al. [19]
containing an interesting comparative study of
different modeling methods concludes that ontology

SOAP + RDF/OWL FIPA-ACL + RDF/OWL

makes the best description of context compared to
other methods. A pervasive system is characterized
by its rapidly changing environment due to mobility;
hence devices can be added or removed dynamically
without affecting the entire operation of the global
system which requires a dynamic and automatic
devices and resources discovery mechanism. This

Figure 10: The CoBrA architecture

5 DISCUSSION

Except for primitive localization-aware system
architecture, most of the proposed architectures make
distinction between context sensing processes from
its use. This permits an abstraction of low level
sensing details and increases the extensibility and
reusability of architecture components. Among
proposed architecture, there are two approaches
depending on whether contextual information are
centralized or distributed. Most of these architectures
are layered and composed of the following
components:

• Sensor: physical sensing of contextual
information.

• Interpretation: transformation of crude
information into a more significant and
useful information.

aspect was not deeply discussed in most architectures
and needs more attention in future systems.
Architectural design of context-aware systems needs
more efforts in order to provide an appropriate
architecture that suits pervasive system requirements.
The table below summarizes characteristics of
surveyed architectures (table1).

6 CONCLUSION

Context awareness is an important feature of
applications in pervasive computing. In this survey,
we presented relevant context-aware architectures
that were proposed to support and ease the
development of such system. For each architecture,
we discuss its strength and weakness based on
criteria that are related to pervasive computing. This
survey shows that most of the proposed architectures
are layered which allows the separation of context
acquisition and context use in order to increase the
level of context abstraction and hide the physical

76

Ubiquitous Computing and Communication Journal

Volume 3 Number 3 Page www.ubicc.org

ab
str

ac
tio

n

sensing complexity. This enhances both reusability
and extensibility of the system. In order to offer
proactive systems, architectures embed a reasoning
system to ease adaptation task which is not present in
all architectures but it becomes a vital requirement
for future systems. This survey aim is to serve as a
guide to offer a useful recommendation to developers
and designers of context-aware systems and help
them decide on available architectural choice.

Table 1: Characteristics of surveyed architectures

C
on

te
xt

 C

om
m

un
ic

at
io

n

m
od

el

 B
as

ic
 so

ftw
ar

e
co

m
po

ne
nt

s

C
on

te
xt

re

as
on

in
g

Ex
te

ns
ib

ili
ty

R
eu

sa
bi

lit
y

Active
badge

-- C/S - -- - -
ParcTab -- C/S - -- - -
Stick-e-

note
- P2P - -- - -

Cyberguid
e

- Hybrid - -- - -
Context
toolkit

+
+

P2P Widget - - +
+

CASS +
+

C/S Object ++ + +
+

SOCAM + C/S - ++ - +
CORTEX +

+
P2P Sentient

object
+ + +

CoBrA + C/S Agent ++ + +
Hydrogen - P2P Object -- + +

JCAF +
+

P2P context
service

-- + +
+

CMF +
+

C/S - - +
+

+

C/S: Client/Server P2P: Peer-to-peer

7 REFERENCES

[1] M. Baldauf, S. Dustdar, F. Rosenberg, "A Survey
On Context-Aware Systems", International Journal
of Ad Hoc and Ubiquitous Computing, 2(4), 63-277,
Inderscience Publishers, 2007.
[2] K.E. Kjær, "A Survey of Context-Aware
Middleware", Proceedings of the IASTED software
engineering conference, 2007.
[3] A. Singh, M. Conway, "Survey of Context aware
Frameworks – Analysis and Criticism", UNC-Chapel
Hill ITS Version: 1, 2006.
[4] T. Winograd, "Architectures for Context", in
Human-Computer Interaction Journal, 16:2-3,
Special Issue on Context Aware Computing, 2001.
[5]K. Henricksen, J. Indulska, T. McFadden, S.
Balasubramaniam, "Middleware for Distributed
Context-Aware Systems", OTM Conferences, pp.
846-863, 2005
[6] R. Want, A. Hopper, V. Falcao, and J. Gibbons,
"The Active Badge Location System", ACM

Transcation onInformation Systems 10 (1), pp. 42-47,
1992.
[7] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K.
Petersen, D. Goldberg, J. R. Ellis and M. Weiser,
"An overview of the ParcTab ubiquitous computing
experiment", IEEE Personal Communications, vol. 2,
n. 6, pp. 28–43, December 1995.
[8] J. Pascoe, "The Stick-e Note Architecture:
Extending the Interface Beyond the User", In
Proceedings of International Conference on
Intelligent User Interfaces. pp. 261-264, 1997.
[9] G. Abowd, C. Atkeson, .J Hong, S. Long, R.
Kooper, and M. Pinkerton, "Cyberguide: A mobile
context-aware tour guide" CHI'96 Short paper, 1997.
[10] K. Cheverest, D. Nigel, M. Keith, F. Adrian,
E.Christos, "Developing a Context-aware Electronic
Tourist Guide: Some Issues and Experiences", CHI
Letters, Volume 2, Issue No. 1, 2000.
[11] P. Fahy, S. Clarke, "CASS – a middleware for
mobile context-aware applications", Workshop on
Context-Awareness, MobiSys 2004.
[12] G. Biegel, V. Cahill, "A framework for
developing mobile, context-aware applications",
Proceedings of the 2nd IEEE Conference on
Pervasive Computing and Communication, pp.361–
365, 2004.
[13] P. Korpipää, J. Mantyjarvi, J. Kela, H. Keranen,
E-J. Malm, "Managing context information in
mobile devices", IEEE Pervasive Computing, Vol. 2,
No. 3, July–September, pp.42–51, 2003.
[14] J. E. Bardram, "The Java Context Awareness
Framework (JCAF) – A Service Infrastructure and
Programming Framework for Context-Aware
Applications", In Hans Gellersen, Roy Want, and
Albrecht Schmidt, editors, Proceedings of the 3rd
International Conference on Pervasive Computing
(Pervasive 2005), volume 3468 of Lecture Notes in
Computer Science, pages 98–115, Munich, Germany,
May 2005. Springer Verlag.
[15] A. Dey, G. D. Abowd, and D. Salber, "A
conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications",
Human- Computer Interaction, 16:97–166, 2001.
[16] T. Hofer, W. Schwinger, M. Pichler, G.
Leonhartsberger, J. Altmann, "Context-awareness on
mobile devices – the hydrogen approach",
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences, 2002 pp.292–302.
[17] T. Gu, X H. Wang, H. K. Pung, D. Q. Zhang.
"A Middleware for Context-Aware Mobile Services",
IEEE Vehicular Technology Conference. Milan,
Italy, 2004.
[18] H. Chen, "An Intelligent Broker Architecture
for Pervasive Context-Aware systems", PhD Thesis,
University of Maryland, Baltimore County, 2004.
[19] T. Strang, C. Linnhoff-Popien, "A Context
Modeling survey", In the first International
Workshop on Advanced context modeling,
Reasoning and management, UbiComp 2004.

