Deployment Package
Software Architectural and Detailed Design
Basic Profile

[image: image1.emf]Verified by:

Identification

Number

 Text of the

need

Text of the

requirement

Verification

method

Title or ID of

Use Case

Title or ID of

Code Module

Title or ID of

test

Procedure

Verification

Date

Name of person who

performed the

verification

Result of

verification

Traceability Matrix

Date (yy-mm-dd): _______________

Title of project:__

___________________________________ ________________________________ ___________________

 Name (Print) Signature Date (yy-mm-dd)

Approved by: ___________________________________ ________________________________ __________________

Notes:

This document is the intellectual propriety of its author’s organization. However, information contained in this document is free of use. The distribution of all or parts of this document is authorized for non commercial use as long as the following legal notice is mentioned:

© École de Technologie Supérieure
Commercial use of this document is strictly forbidden. This document is distributed in order to enhance exchange of technical and scientific information.

This material is furnished on an “as-is” basis. The author(s) make(s) no warranties of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability, exclusivity, or results obtained from use of the material.

The processes described in this Deployment Package are not intended to preclude or discourage the use of additional processes that Very Small Entities may find useful.

	Authors
	F. GUILLEMOT – École de Technologie Supérieure (ETS), (Canada)

R. CHAMPAGNE – École de Technologie Supérieure (ETS), (Canada)

	Editors
	C. Y. LAPORTE – École de Technologie Supérieure (ETS), (Canada)

ANA VAZQUEZ – 5th level, (México)

	Creation date
	30th-July-2009

	Last update
	6th July-2011

	Version
	0.5

Version History
	Date

	Version
	Description
	Author

	2009-07-08
	0.1
	Document creation
	F. GUILLEMOT

	2009-08-07
	0.2
	Overall revision
	C.Y. Laporte

	2010-04-26
	0.3
	Revision and completion of matrices in section 9
	S. Tessier

W. Gonzalez

	2010-07-24
	0.4
	Major review all around.
	R. Champagne

	2011-07-06
	0.5
	Minor modifications
	C.Y. Laporte

Abbreviations/Acronyms

	Abre./Acro.
	Definitions

	DP
	Deployment Package - a set of artefacts developed to facilitate the implementation of a set of practices, of the selected framework, in a Very Small Entity.

	VSE
	Very Small Entity – an enterprise, organization, department or project having up to 25 people.

	VSEs
	Very Small Entities

	TL
	Technical Leader

	AN
	Analyst

	DES
	Designer

Table of Contents
41. Technical Description

4Purpose of this document

4Why Software Architectural and Detailed Design is Important?

62. Definitions

6Generic Terms

6Specific Terms

83. Relationships with ISO/IEC 29110

104. Description of Processes, Activities, Tasks, Steps, Roles and Products

15Role Description

15Product Description

19Artefact Description

205. Template

20Software Design Template

216. Example

21Example of Software design Practice Lifecycle

227. Checklists

248. Tools

24Traceability Tool

269. Reference to Other Standards and Models

26ISO 9001 Reference Matrix

27ISO/IEC 12207 Reference Matrix

30CMMI Reference Matrix

3110. References

3211. Evaluation Form

1. Technical Description
Purpose of this document

This Deployment Package (DP) supports the Basic Profile as defined in ISO/IEC 29110 Part 5-1-2: Management and engineering guide
. The Basic Profile is one profile of the Generic profile group. The Generic profile group is composed of 4 profiles: Entry, Basic, Intermediate and Advanced. The Generic profile group is applicable to VSEs that do not develop critical software. The Generic profile group does not imply any specific application domain.

A DP is a set of artefacts developed to facilitate the implementation of a set of practices in a Very Small Entity (VSE). A DP is not a process reference model (i.e. it is not prescriptive). The elements of a typical DP are: description of processes, activities, tasks, roles and products, template, checklist, example and reference to standards and models, and tools.
The purpose of this document, entitled “Deployment Package - Software Architectural and Detailed Design” is to provide VSEs with tailorable and easily usable guidelines and materials in order to implement a good Software Design.

The content of this document is entirely informative.

This document has been originally developed by Frédéric Guillemot, a software engineering graduate student at ÉTS (École de Technologie Supérieure - www.etsmtl.ca). It has since then been substantially reviewed by others, as indicated in the revision history.
Why Software Architectural and Detailed Design is Important?
Investing effort in the design activity ensures that the proposed solution (e.g. software to be built) will have been given some thought prior to implementation (e.g., coding). Building something without designing it typically yields a solution that doesn't meet the requirements, is delivered late, exceeds the budget or is of poor quality.

Investing effort in explicitly documenting the design enables communication and negotiation among project stakeholders, more specifically those that have an interest in the design. Capturing a design in some form (electronic document, paper document, models,...) is not only useful while a software project is active, but also for future maintenance and enhancements.

The figure below presents data from a real company. It shows that more than 20% of the defects are produced during the design phase.

The Software Architectural and Detailed Design activity produces a document termed the Software Design that enables stakeholders to understand the interactions in the software, and the tracing of design elements to the requirements. This provides a way to verify that each requirement has been addressed (e.g., design completeness). The Software Design is also used when maintaining software because it describes the components and their interfaces.

[image: image2.png]49.1%

8%

I U7% 0.1% 00%

Figure 1 Origins of software defects (
)
2. Definitions

In this section, the reader will find two sets of definitions. The first set defines the terms used in all Deployment Packages, i.e. generic terms. The second set defines terms used in this Deployment package, i.e. specific terms.
Generic Terms

Process: set of interrelated or interacting activities which transform inputs into outputs [ISO/IEC 12207].

Activity: a set of cohesive tasks of a process [ISO/IEC 12207].

Task: required, recommended, or permissible action, intended to contribute to the achievement of one or more outcomes of a process [ISO/IEC 12207].
Sub-Task: When a task is complex, it is divided into sub-tasks.
Step: In a deployment package, a task is decomposed in a sequence of steps.
Role: a defined function to be performed by a project team member, such as testing, filing, inspecting, coding. [ISO/IEC 24765]
Product: piece of information or deliverable that can be produced (not mandatory) by one or several tasks. (e. g. design document, source code).
Artefact: information, which is not listed in ISO/IEC 29110 Part 5, but can help a VSE during the execution of a project.
Specific Terms

Architectural design: 1. the process of defining a collection of hardware and software components and their interfaces to establish the framework for the development of a computer system 2. the result of defining a collection of hardware and software components and their interfaces to establish the framework for the development of a computer system. [ISO/IEC 24765]
Architectural mechanism: Common solutions to common problems that can be used during development to minimize complexity. They represent key technical concepts that will be standardized across the solution. [OpenUP] NOTE: architectural mechanisms are sometimes called "architectural tactics" or "heuristics".
Baseline: a specification or product that has been formally reviewed and agreed upon, that thereafter serves as the basis for further development, and that can be changed only through formal change control procedures. [ISO/IEC 12207]

Component: The principal computational elements and data stores that execute in system. [CLEMENTS 03, p. 107]
Customer: organization or person that pays the VSE to create a software product.
NOTE: acquirer or user is customer [ISO 9000]
Design concern: An area of interest with respect to a software design. [IEEE 1016]
Detailed design: 1. the process of refining and expanding the preliminary design of a system or component to the extent that the design is sufficiently complete to be implemented 2. the result of the process in (1). [ISO/IEC 24765]
Functional requirement: A requirement that specifies a function that a system or system component must be able to perform. [ISO/IEC 24765]
Module: An implementation unit of software that provides a coherent unit of functionality. [CLEMENTS 03, p. 43]
Nonfunctional requirement: 1. a software requirement that describes not what the software will do but how the software will do it. Syn: design constraints, non-functional requirement cf. functional requirement. EXAMPLE: software performance requirements, software external interface requirements, software design constraints, and software quality attributes. Nonfunctional requirements are sometimes difficult to test, so they are usually evaluated subjectively. [ISO/IEC 24765]
Software architecture: The structure or structures of a system, which consist of elements, their externally visible properties, and the relationships among them. [CLEMENTS 03, p. xxv]
Software design: In this Deployment package, the combination of Architectural design and Detailed design.

Software product: The set of computers programs, procedures, and possibly associated documentation and data. [ISO/IEC 12207]

Stakeholder: Individual or organization having a right, share, claim, or interest in a system or in its possession of characteristics that meet their needs and expectations. [ISO/IEC 12207]

Subsystem: 1. a secondary or subordinate system within a larger system. 2. a system that is part of a larger system. [ISO/IEC 24765]
Traceable: having components whose origin can be determined. [ISO/IEC 24765]

Traceability matrix: a matrix that records the relationship between two or more products of the development process. [ISO/IEC 24765]

Validation: Confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled. [ISO/IEC 12207]

Verification: Confirmation by examination and provision of objective evidence that specified requirements have been fulfilled. [ISO/IEC 12207]

View: A representation of a whole system from the perspective of a related set of concerns. [IEEE 1471]
3. Relationships with ISO/IEC 29110
This deployment package covers the activities related to Software Architectural and Detailed Design of the ISO Technical Report ISO/IEC 29110 Part 5-1-2 for Very Small Entities (VSEs) – Basic Profile [ISO/IEC 29110].
In this section, the reader will find a list Software Implementation (SI) process, activities, tasks and roles from Part 5 that is directly related to this topic. This topic is described in details in the next section.
· Process: Software Implementation (SI)
· Activity: SI.3 Software Architectural and Detailed Design
· Tasks and Roles:

	Tasks
	Roles

	· SI.3.1 Assign tasks to the Work Team members related to their role according to the current Project Plan.
	TL, AN

DES

	· SI.3.2 Understand Requirements Specifications.
	AN, DES

	· SI.3.3 Document or update the Software Design:

· Analyze the Requirements Specification to generate the architectural design, its arrangement in subsystems and components defining the internal and external interfaces.

· Describe in details, the appearance and the behaviour of the interface, based on the Requirements Specification in a way that resources for its implementation can be foreseen.

· Provide the detail of Components and their interfaces to allow the construction in an evident way.

· Generate or update the Traceability Record.
	AN

DES

	· SI.3.4 Verification and approval of the Software Design

· Verify correctness of Software Design documentation, its feasibility and consistency with their Requirement Specification.
· Verify that the Traceability Record contains the adequate relationships between requirements and the Software Design elements. The results found are documented in a Verification Results document and corrections are made until the document is approved by AN. If significant changes were needed, initiate a Change Request.
	AN

DES

	· SI.3.5 Establish or update Test Cases and Test Procedures for integration testing based on Requirements Specification and Software Design.

· Customer provides testing data, if needed.
	DES

	· SI.3.6 Verification and approval of the Test Cases and Test Procedures.

· Verify consistency among Requirements Specification, Software Design and Test Cases and Test Procedures. The results found are documented in a Verification Results and corrections are made until the document is approved by AN.
	DES

AN

	· SI.3.7 Update the Traceability Record incorporating the Test Cases and Test Procedures.
	DES

	· SI.3.8 Incorporate the Software Design and Traceability Record to the Software Configuration as part of the baseline and Test Cases and Test Procedures to the Project Repository.
	TL

4. Description of Processes, Activities, Tasks, Steps, Roles and Products
Process: Software Implementation (SI)

As defined in ISO/IEC 29110, the purpose of the Software Implementation process is the systematic performance of the analysis, design, construction, integration and tests activities for new or modified software products according to the specified requirements.

Activity: SI.3 Software Architectural and Detailed Design

The Software Architectural and Detailed Design activity transforms the software requirements to the system software architecture and software detailed design.
	Task List
	Roles

	SI.3.1 Assign tasks to the Work Team members related to their role according to the current Project Plan
	TL, AN, DES

	SI.3.2 Understand Requirements Specification.
	AN, DES

	SI.3.3 Document or update the Software Design
	AN, DES

	SI 3.4 Verification and approval of the Software Design
	AN, DES

	SI.3.5 Establish or update Test Cases and Test Procedures for integration testing based on Requirements Specification and Software Design.
	DES

	SI.3.6 Verification and approval of the Test Cases and Test Procedures.
	DES, AN

	SI.3.7 Update the Traceability Record incorporating the Test Cases and Test Procedures.
	DES

	SI.3.8 Incorporate the Software Design and Traceability Record to the Software Configuration as part of the baseline and Test Cases, Test Procedures to the Project Repository
	TL

Tasks
Software Architectural and Detailed Design

	

	Objectives:
	The main objective of this activity is the creation of a software design that will address the requirements. Another important objective is to ensure that the design is explicitly described, so that it can be communicated among the entire set of stakeholders.

	Rationale:
	Investing effort in properly designing a solution before implementing it maximizes the probability that it will address stated requirements, and that the project will be completed on time, within budget, and with an outcome of appropriate quality.
Software architecture is especially important if there are nontrivial system-wide requirements, typically termed "non-functional requirements" or "quality attribute requirements", such as performance, security, maintainability, scalability, etc. The architecture constrains detailed design such that the desired system-wide properties are obtained. The elements of a software architecture are the main building blocks of a software project, typically subsystems, major components, modules, etc.
Detailed design refines the elements of the software architecture and provides a detailed blueprint to the programmers responsible for the implementation of the software application.

	Roles:
	AN – Analyst

	
	DES – Designer

	
	TL – Technical Leader

	Products:
	Software Design

	
	Requirement specifications

	
	Traceability Record

	
	Test Cases and Test Procedures

	
	Software Configuration

	
	Validation Results

	Artifacts:
	Design Diagrams

	Steps:
	1. Assign tasks to the work team members related to their role, according to the current Project Plan.

	
	2. Understand Requirements Specification.

	
	3. Document or update the Software Design.

	
	4. Verify and approve the Software Design.

	
	5. Establish or update Test Cases and Test Procedures for integration testing based on Requirements Specification and Software Design.

	
	6. Verify and approve the Test Cases and Test Procedures.

	
	7. Update the Traceability Record incorporating the Test Cases and Test Procedures.

	
	8. Incorporate the Software Design and Traceability Record to the Software Configuration as part of the baseline. Incorporate the Test Cases, and Test Procedures to the Project Repository.

	Step Description:
	Step 1. Assign tasks to the work team members related to their role, according to the current Project Plan.
· Obtain requirement specifications from repository
· Obtain Test Cases and Test Procedures from repository
· Obtain Traceability Record from repository

· Use Requirement Specifications, Test Cases and Traceability Record to assign tasks.

Step 2. Understand Requirements Specification
· Examine each requirement and ensure they are understood
· DES groups functional requirements logically.

· DES groups non-functional requirements in groups.

· AN verify DES groups and checks if all requirements are understood.

· If needed, update the Requirements Specifications to add necessary clarification.

· Store updated document in repository

Step 3. Document or update the Software Design

· Analyze the Requirements Specification to generate the architectural design, its arrangement in subsystems and software components defining the internal and external interfaces.

· Identify design stakeholders and their concerns (e.g., what they expect to find in the Software Design).

· Identify the relevant architectural mechanisms that could be used to satisfy the requirements, paying special attention to the nonfunctional requirements. By architectural mechanisms we mean any pattern, heuristic, tactic, or event rule of thumb that is useful.

· Identify at least one type of architectural view that addresses each design concern.

· Design the software architecture by documenting relevant architectural views. This typically involves considering the various architectural mechanisms available, producing diagrams in various visual notations, and also documenting the rationale (e.g., alternatives considered, tradeoffs, assumptions, risks, results from various forms of analysis, ...) that lead to the view. The requirements (both functional and non-functional) and design concerns should all be addressed by the architecture. The architectural views should at least identify the major building blocks of the design (layers, subsystems, high-level components,...).

TIP: one way of performing this step is by recursive decomposition. You start with a set of requirements, and a single component (the whole system) that must satisfy all these requirements. You then subdivide this component in two or more components, assigning to each a subset of the requirements. You keep on decomposing in such a fashion until a satisfactory level of granularity is obtained. For functional requirements, this is relatively straightforward, because functional requirements can typically be mapped to specific portions of a system. For non-functional requirements however, this is hard, because such requirements affect the whole system (for example, it is hard to point to a portion of code that implements the "maintainability" or the "performance" in a software system.

· Describe in detail, the appearance and the behaviour of the interface, based on the Requirements Specification in a way that resources for its implementation can be foreseen.

· This point is worth considering for interactive systems where the development of the user interface is anticipated to be nontrivial.

· If the system under consideration does not have a user interface (e.g. a web service), this step is simply ignored.

· For a system that has a user interface which poses no specific challenges, the user interface can be considered simply as another feature of the system to be developed.

· Provide the detail of software components and their interfaces to allow the construction in an evident way.
· For each high-level component of the architecture, provide the component details in such a way that the design is clearly understood by the people who will implement the solution (e.g., the programmers). As for the architectural design, multiple views should be used to ensure that the various aspects of the design (structure, behaviour, allowable interactions) are clearly expressed.

· Verify that the detailed design of each architectural element is performed in accordance with the constraints imposed by the architecture.

· Generate or update the Traceability Record.
· The traceability record should have been produced during the requirement analysis activities.
· Verify that every design element can be traced to a requirement.
· Verify that every requirement is represented in the Software Design.

Step 4. Verify and approve the Software Design.
· Verify correctness of Software Design documentation, its feasibility and consistency with their Requirement Specification.

· Verify that the design:

· addresses stakeholders’ design concerns;

· is consistent with stated requirements;

· implements intended design decisions.

· Verify that the Traceability Record contains the relationships between requirements and the Software Design elements.
· The results found are documented in a Verification Results and corrections are made until the document is approved by AN. If significant changes were needed, initiate a Change Request.

· Document the results in a Verification Results document.
· Correct errors until the document is approved by AN. If significant changes were needed, initiate a Change Request.
Step 5. Establish or update Test Cases and Test Procedures for integration testing based on Requirements Specification and Software Design.

· Create Test Cases and Test Procedures document.
· If the customer provides test data, incorporate it in the document. If the test data is not easily expressed in a document (for instance, a large database), it should at least be identified and referred to in the Test Cases and Test Procedures document.
Step 6. Verify and approve the Test Cases and Test Procedures.
· Verify consistency among Requirements Specification, Software Design and Test Cases and Test Procedures.
· Document the results found in a Verification Results
· Correct errors until the document is approved by AN.
Step 7. Update the Traceability Record incorporating the Test Cases and Test Procedures.
· Update the Traceability Record with the new test procedures.
· Verify that every design and test element can be traced to a requirement.
· Verify that every requirement is represented in design.
· Verify that every requirement is represented in testing.
Step 8. Incorporate the Software Design and Traceability Record to the Software Configuration as part of the baseline. Incorporate the Test Cases, and Test Procedures to the Project. Repository.
· Store Software Design and Traceability Record in the configuration management tool as described in the project software configuration policy.
· Store Test Cases and Test Procedures into the project Repository.

Role Description
This is an alphabetical list of the roles, abbreviations and list of competencies as defined in Part 5-1-2.

	
	Role
	Abbreviation
	Competency

	1.
	Analyst
	AN
	Knowledge and experience eliciting, specifying and analyzing the requirements.

Knowledge in designing user interfaces and ergonomic criteria.

Knowledge of the revision techniques and experience on the software development and maintenance.

Knowledge of the editing techniques.

	2.
	Designer
	DES
	Knowledge and experience in the software components and architecture design.

Knowledge of the revision techniques and experience on the software development and maintenance.

Knowledge of the editing techniques.

Knowledge and experience in the planning and performance of integration and system tests.

	3.
	Technical Leader
	TL
	Knowledge and experience in the software development and maintenance.

Product Description
This is an alphabetical list of the input, output and internal process products, its descriptions, possible states and the source of the product.
IMPORTANT NOTE: Part 5.1.2 of ISO/IEC 29110 describes an example of Software Design content. This Deployment Package intentionally uses a different Software Design product content.

	
	Name
	Description
	Source

	1.
	Requirements Specification
	Includes an introduction and a description of the requirements. It may contain:

· Introduction –general description of software and its use within the scope of the customer business;

· Requirements description:

· functionality – established needs to be satisfied by the software when it is used in specific conditions. Functionality must be adequate, accurate and safe.

· user interface – definition of those user interface characteristics that allow to understand and learn the software easily so the user be able to perform his/her tasks efficiently including the interface exemplar description;
· external interfaces – definition of interfaces with other software or hardware;

· reliability – specification of the software execution level concerning the maturity, fault tolerance and recovery;

· efficiency – specification of the software execution level concerning the time and use of the resources;

· maintenance – description of the elements facilitating the understanding and execution of the future software modifications;

· portability – description of the software characteristics that allow its transfer from one place to other;

· design and construction limitations – needs imposed by the customer;

· interoperability – capability for two or more systems or components be able to change information each other and use it.

· reusability – feature of any product/sub-product, or a part of it, so that it can be used by several users as an end product, in the own software development, or in the execution of other software products.

· legal and regulative – needs imposed by laws, regulations, etc.

Each requirement is identified, unique and it is verifiable or can be assessed.

The applicable statuses are: verified, validated and baselined.
	Software Implementation

	2.
	Software Configuration

	A consistent set of software products including:

· Requirements Specification

· Software Design

· Traceability Record

· Components

· Software

· Test Cases and Test Procedures

· Test Report

· Product Operation Guide

· Software User Documentation

· Maintenance Documentation

The applicable statuses are: delivered and accepted.
	Software Implementation

	3.
	Software Design
	This document includes textual and graphical information on the software structure and behaviour. This may include the following parts:

Software Architectural Design – Describes the overall Software structure and behaviour:

· Identifies architectural design stakeholders and their concerns

· Identifies relevant architectural mechanisms (patterns, tactics, heuristics, rules of thumb, ...)

· Identifies the types of views that are relevant to convey the software architecture, taking into consideration the stakeholders concerns and the various requirements (functional and non-functional)

· Provides relevant software architectural views in various forms (diagrams, models, tables, plain text, ...)

· Identifies and describes the main elements of the software architecture (subsystems, layers, modules) and their relationships

· Identifies and describes the required software Components, their interfaces and the relationships among them

· Describes rationale, provides any analysis used to produce the solution, identifies known risks and inconsistencies.

Detailed Software Design – includes details of the Components to facilitate their construction and testing within the programming environment:

· Provides detailed design (could be represented as a prototype, flow chart, entity relationship diagram, pseudo code, etc.)

· Provides format of input / output data

· Provides specification of data storage needs

· Establishes required naming conventions

· Defines the format of required data structures

· Defines the data fields and purpose of each required data element

· Provides the specifications of the program structure

The applicable statuses are: verified and baselined.

	Software Implementation

	4.
	Test Cases and Test Procedures
	Test Case may include:

· Identifies the test case

· Test items

· Input specifications

· Output specifications

· Environmental needs

· Special procedural requirements

· Interface dependencies

Test Procedures may include:

· Identifies: test name, test description and test completion date

· Identifies potential implementation issues

· Identifies the person who completed the test procedure

· Identifies prerequisites

· Identifies procedure steps including the step number, the required action by the tester and the expected results

The applicable statuses are: verified and baselined.

	Software Implementation

	5.
	Traceability Record
	Relationship among the requirements included in the Requirements Specification, Software Design elements, Components, Test Cases and Test Procedures.

· Identifies requirements of Requirements Specification to be traced

· Provides forward and backwards mapping of requirements to Software Design elements, Components, Test Cases and Test Procedures.

The applicable statuses are: verified, baselined and updated.
	Software Implementation

	6.
	Validation Results
	May include the record of:

· Participants

· Date

· Place

· Duration

· Validation check-list

· Passed items of validation

· Failed items of validation

· Pending items of validation

· Defects identified during validation

	Project Management

Software Implementation

Artefact Description
This is an alphabetical list of the artefacts that could be produced to facilitate the documentation of a project. The artefacts are not required by Part 5, they are optional.

	
	Name
	Description

	1.
	Design Diagrams
	Diagrams facilitate the graphical representation of the design. Informal box-and-line diagrams or specialized notations such as the Unified Modelling Language (UML) can be used. Note however that not all design information is easily expressed as diagrams. Tables and prose, among others, are also very useful means of expressing some design concerns.

5. Template

Software Design Template
This Table of Content is adapted from [IEEE 1471], [IEEE 1016] and the SEI's "Views and beyond" template for software architecture
.
1
INTRODUCTION

1.1
Purpose
1.2
Scope
1.3
Definitions
1.4
References documents
2
DESIGN STAKEHOLDERS AND CONCERNS

2.1
Design stakeholders and their concerns

2.2
Design views and relationships to design concerns

3
SOFTWARE ARCHITECTURE DESCRIPTION

3.1
Overview of software architecture

3.2
Software architecture view 1
3.2.1
Overview

3.2.2
Design constraints that apply to this view

3.2.3
Design concerns and requirements addressed by this view

3.2.4
Description of view elements and their interfaces

3.2.5
Rationale

3.2.6
Other relevant views

3.3
Software architecture view 2

3.3.1 ...

...

3.x
Architectural information that is relevant to multiple views
4
DETAILED DESIGN DESCRIPTION

4.1
Overview of detailed design

4.2
Detailed design of element 1

4.2.1
Structural view

4.2.2
Behavioural view

4.2.3
Other relevant views

4.2.4
Rationale
4.3
Detailed design of element 2

4.3.1
...

...

4.x
Detailed design information that is relevant to multiple elements
5
ANNEXES

6. Example
Example of Software design Practice Lifecycle

To be developed
7. Checklists
The following checklists were adapted from the OpenUP
 checklists for work products "Architecture Notebook" and "Design" [OPENUP]:
Note: The elements of the checklist can be tailored to the needs of the project
Elements common to both Software Architecture and Detailed Design (SADD)
	SADD (UNDERSTANDABLE)
	The design is understandable.

	SADD (LEGEND)
	All diagrams have an appropriate key.

	SADD (TEXT)
	All views are supported with text, minimally describing the rationale behind the view, assumptions, responsibilities of elements in the view, interfaces to the elements in the view, pointers to other relevant views.

	SADD (MAINTAINABLE)
	The design is maintainable.

	SADD (USEFUL)
	Each view helps the designer reason about the design, or communicates key design decisions to the team.

	SADD (RELATIONSHIPS)
	The relationships between views are clear when several views are used to describe structure and behaviour.

	SADD (NAVIGABLE)
	It is easy to navigate between related views.

	SADD (COHERENCE)
	Each view focuses on a relevant perspective.

	SADD (COMPLETENESS)
	Each view is complete and minimal. It shows everything relevant to that view and nothing more.

	SADD (READABLE)
	The views are tidy and easy to interpret, with a minimum of clutter.

	SADD (VERIFIED)
	The Software Design document has been verified and corrected.

	SADD (APPROVED)
	The Software Design has been approved and signed by the customer.

	SADD (Repository)
	The Software Design, Traceability Record and Test Cases and Test Procedures have been baselined and stored in the project repository.

Elements specific to Software architecture (SA)

	SA (SCOPE)
	The architectural goals, constraints and requirements are adequately described and handled.

	SA (MECAHNISMS)
	Necessary architectural mechanisms are identified, described and justified.

	SA (TRACEABLE)
	All architecture elements are traceable to requirements.

	SA (BOUNDARIES)
	The system partitions are adequately defined.

	SA (KEY_ELEMENTS)
	The key architectural elements are adequately defined.

	SA (INTERFACES)
	The interfaces between architectural elements and to external systems are adequately represented.

	SA (EVOLVABLE)
	The architecture is built to evolve.

	SA (BUILDABLE)
	The architecture can be delivered by the team.

	SA (HARDWARE)
	The software elements are adequately mapped to hardware elements.

Elements specific to detailed design (DD)

	DD (COMPLETENESS)
	The detailed design, derived from the software architecture, is complete and correct.

	DD (TRACEABLE)
	All detailed design elements are traceable to architectural elements.

	DD (CONSISTENCY)
	The detailed design is consistent with the architecture and requirements.

	DD (CONFORMITY)
	The detailed design reflects the architectural objectives of the system.

	DD (MODULARITY)
	The detailed design elements are modular (high cohesion, low coupling, appropriate use of abstract interfaces).

	DD (BUILDABILITY)
	The system can be implemented from the information in the detailed design.

	DD (TESTABILITY)
	The design provides enough information for developer testing.

8. Tools
Version Control tools
· Subversion (SVN)

· Concurrent Version System (CVS)
· GIT

· Perforce

· Microsoft Visual Source Safe (VSS)

Design description software

· UML tools: Visual paradigm UML, Smart Draw, Omondo,...
· Standard office tools: OpenOffice Writer, Microsoft Visio, Microsoft Word,...

· Full development environments with modelling capabilities: Eclipse, Sparx Systems Enterprise Architect (Windows), Microsoft Visual Studio, ...

Traceability Tool

· Objectives:

· To maintain the linkage from the source of each requirement through its decomposition to implementation and test (verification).

· To ensure that all requirements are addressed and that only what is required is developed.

· Useful when conducting impact assessments of requirements, design or other configured item changes.
[image: image3.emf]Verified by:

Identification

Number

 Text of the

need

Text of the

requirement

Verification

method

Title or ID of

Use Case

Title or ID of

Code Module

Title or ID of

test

Procedure

Verification

Date

Name of person who

performed the

verification

Result of

verification

Traceability Matrix

Date (yy-mm-dd): _______________

Title of project:__

___________________________________ ________________________________ ___________________

 Name (Print) Signature Date (yy-mm-dd)

Approved by: ___________________________________ ________________________________ __________________

	Instructions

	The above table should be created in a spreadsheet or database such that it may be easily sorted by each column to achieve bi-directional traceability between columns. The unique identifiers for items should be assigned in a hierarchical outline form such that the lower level (i.e. more detailed) items can be traced to higher items.

	Unique Requirement Identification (ID)
	The Unique Requirement ID / System Requirement Statement where the requirement is referenced, and/or the unique identification (ID) for decomposed requirements

	Requirement Description
	Enter the description of the requirement (e.g., Change Request description).

	Design Reference
	Enter the paragraph number where the CR is referenced in the design documentation

	Module / Configured Item Reference
	Enter the unique identifier of the software module or configured item where the design is realized.

	Release Reference
	Enter the release/build version number where the requirement is fulfilled

	Test Script Name/Step Number Reference
	Enter the test script name/step number where the requirement is referenced (e.g., Step 1)

	Guideline
	Requirements traceability should:

· Ensure traceability for each level of decomposition performed on the project. In particular:

· Ensure that every lower level requirement can be traced to a higher level requirement or original source

· Ensure that every design, implementation, and test element can be traced to a requirement

· Ensure that every requirement is represented in design and implementation

· Ensure that every requirement is represented in testing/verification

· Ensure that traceability is used in conducting impact assessments of requirements changes on project plans, activities and work products

· Be maintained and updated as changes occur.

· Be consulted during the preparation of Impact Assessments for every proposed change to the project

· Be planned for, since maintaining the links/references is a labor intensive process that should be tracked/monitored and should be assigned to a project team member

· Be maintained as an electronic document

9. Reference to Other Standards and Models
This section provides references of this deployment package to selected ISO and ISO/IEC Standards and to the Capability Maturity Model IntegrationSM version 1.2 of the Software Engineering Institute (CMMI®
).
Notes:
· This section is provided for information purpose only.
· Only tasks covered by this Deployment Package are listed in each table.

· The tables use the following convention:

· Full Coverage = F

· Partial Coverage = P

· No Coverage = N
ISO 9001 Reference Matrix

	Clause of ISO 9001
	Coverage

F/P/N
	Title of the Task and Step
	Comments

	7.3.1 Plan product design and development.
	P
	Software Architectural and Detailed Design Step 1,4,6
	No planning in the deployment package except for the initial project plan

	7.3.2 Identify design and development inputs.
	F
	Software Architectural and Detailed Design Step 2,3
	

	7.3.3 Generate design and development outputs.
	P
	Software Architectural and Detailed Design Step 2,3
	No acceptance criteria in design phase

	7.3.4 Carry out design and development reviews.
	F
	Software Architectural and Detailed Design Step 4,8
	

	7.3.5 Perform design and development verifications.
	F
	Software Architectural and Detailed Design Step 6,7,8
	

	7.3.6 Conduct design and development validations.
	N
	
	No formal validation steps, just verification steps

	7.3.7 Manage design and development changes.
	F
	Software Architectural and Detailed Design Step 7,8
	

ISO/IEC 12207 Reference Matrix
	Clause of ISO/IEC 12207
	Coverage

F/P/N
	Title of the Task and Step
	Comments

	7.1.3.3.1.1 The implementer shall transform the requirements for the software item into an architecture that describes its top-level structure and identifies the software components. It shall be ensured that all the

requirements for the software item are allocated to its software components and further refined to facilitate detailed design. The architecture of the software item shall be documented.
	F
	Software Architectural and Detailed Design Step 2 and 3
	

	7.1.3.3.1.2 The implementer shall develop and document a top-level design for the interfaces external to the software item and between the software components of the software item.
	F
	Software Architectural and Detailed Design Step 2
	

	7.1.3.3.1.3 The implementer shall develop and document a top-level design for the database.
	F
	Software Architectural and Detailed Design Step 3
	

	7.1.3.3.1.4 The implementer should develop and document preliminary versions of user documentation.
	F
	Software Architectural and Detailed Design Step 3
	

	7.1.3.3.1.5 The implementer shall define and document preliminary test requirements and the schedule for Software Integration.
	P
	Software Architectural and Detailed Design Step 5
	Except scheduling

	7.1.3.3.1.6 The implementer shall evaluate the architecture of the software item and the interface and database designs considering the criteria listed below. The results of the evaluations shall be documented.

a) Traceability to the requirements of the software item.

b) External consistency with the requirements of the software item.

c) Internal consistency between the software components.

d) Appropriateness of design methods and standards used.

e) Feasibility of detailed design.

f) Feasibility of operation and maintenance.
	P
	Software Architectural and Detailed Design Step 2, 3,4, 7,8
	Except feasibility of operation and maintenance

	7.1.3.3.1.7 The implementer shall conduct review(s) in accordance with subclause 7.2.6

7.2.6 Conduct Software Review
	F
	Software Architectural and Detailed Design Step 4
	

	7.1.4.3.1.1 The implementer shall develop a detailed design for each software component of the software item. The software components shall be refined into lower levels containing software units that can be coded, compiled, and tested. It shall be ensured that all the software requirements are allocated from the software components to software units. The detailed design shall be documented.
	F
	Software Architectural and Detailed Design Step 3
	

	7.1.4.3.1.2 The implementer shall develop and document a detailed design for the interfaces external to the software item, between the software components, and between the software units. The detailed design of the interfaces shall permit coding without the need for further information.
	F
	Software Architectural and Detailed Design Step 3
	

	7.1.4.3.1.3 The implementer shall develop and document a detailed design for the database.
	N
	
	Nothing about SHALL develop

	7.1.4.3.1.4 The implementer shall update user documentation as necessary.
	F
	Software Architectural and Detailed Design Step 4
	

	7.1.4.3.1.5 The implementer shall define and document test requirements and the schedule for testing software units. The test requirements should include stressing the software unit at the limits of its requirements.
	P
	Software Architectural and Detailed Design Step 5 and 6
	Nothing specific about stress testing

	7.1.4.3.1.6 The implementer shall update the test requirements and the schedule for Software Integration.
	F
	Software Architectural and Detailed Design Step 5 and 6
	

	7.1.4.3.1.7 The implementer shall evaluate the software detailed design and test requirements considering the criteria listed below. The results of the evaluations shall be documented.

a) Traceability to the requirements of the software item;

b) External consistency with architectural design;

c) Internal consistency between software components and software units;

d) Appropriateness of design methods and standards used;

e) Feasibility of testing;

f) Feasibility of operation and maintenance.
	P
	Software Architectural and Detailed Design Step 3,4,5,6,7
	Except feasibility of operation and maintenance

	7.1.4.3.1.8 The implementer shall conduct review(s) in accordance with subclause 7.2.6.

7.2.6 Conduct Software Review
	F
	Software Architectural and Detailed Design Step 4,6
	Not all in accordance with clause 7.2.6

CMMI Reference Matrix
	Objective/ Practice of CMMI V1.2
	Coverage

F/P/N
	Title of the Task and Step
	Comments

	TS(SG 2) SP 2.1 Design the Product or Product Component

Develop a design for the product or product component.
	P
	Software Architectural and Detailed Design Step 3,4
	No specifics verifications included in the deployment package

	TS(SG 2) SP 2.2 Establish a Technical Data Package

Establish and maintain a technical data package.
	P
	Software Architectural and Detailed Design Step 2,3
	Not a real project package is created

	TS(SG 2) SP 2.3 Design Interfaces Using Criteria

Design product component interfaces using established criteria.
	P
	Software Architectural and Detailed Design Step 2,3
	Nothing about rationale for selected design or alternative

	TS(SG 2) SP 2.4 Perform Make, Buy, or Reuse Analyses

Evaluate whether the product components should be developed, purchased, or reused based on established criteria.
	N
	
	Nothing about reuse or buy a product instead of building it

10. References

	Key
	Reference

	[CLEMENTS 03]
	P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. Stafford, "Documenting Software Architectures - Views and Beyond", Addison Wesley, 512 pages, 2003, ISBN 0-201-70372-6.

	[ISO/IEC 12207]
	ISO/IEC 12207:2008 Systems and software engineering - Software life cycle processes.

	[ISO/IEC 24765]
	ISO/IEC 24765:2010, Systems and Software Engineering Vocabulary. (http://pascal.computer.org/sev_display/index.action)

	[ISO/IEC 29110]
	ISO/IEC 29110:2011, Software Engineering — Lifecycle Profiles for Very Small Entities (VSEs) — Part 5-1-2: Management and engineering guide – Generic profile group - Basic Profile.

	[IEEE 1471]
	IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems

	[IEEE 1016]
	IEEE recommended Practice for Software Design Description.

	[OPENUP]
	Open Unified Process (OpenUP), available online at http://epf.eclipse.org/wikis/openup/.

11. Evaluation Form

	Deployment Package - Design Description Version 0.4
Your feedback will allow us to improve this deployment package, your comments and suggestions are welcomed.

	1. How satisfied are you with the CONTENT of this deployment package?

 Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 2. The sequence in which the topics are discussed, are logical and easy to follow?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 3. How satisfied were you with the APPEARANCE/FORMAT of this deployment package?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 4. Have any unnecessary topics been included? (please describe)

	 5. What missing topic would you like to see in this package? (please describe)
· Proposed topic:

· Rationale for new topic

	 6. Any error in this deployment package?

· Please indicate:

· Description of error :

· Location of error (section #, figure #, table #) :

	 7. Other feedback or comments:

	 8. Would you recommend this Deployment package to a colleague from another VSE?

 Definitely  Probably  Not Sure  Probably Not  Definitely Not

Optional

· Name:

· e-mail address : __________________________________

Email this form to: claude.y.laporte@etsmtl.ca or Avumex2003@yahoo.com.mx
� EMBED Excel.Sheet.8 ���

2 ISO/IEC 29110-5-1-2 is available at no cost from ISO:

 � HYPERLINK "http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html" �http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html�

� Selby, P., Selby, R.W., Measurement-Driven Systems Engineering Using Six Sigma Techniques to Improve Software Defect Detection, Proceedings of 17th International Symposium, INCOSE, June 2007, San Diego.

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110 Part 5-1-2

� �HYPERLINK "http://www.sei.cmu.edu/architecture/tools/viewsandbeyond/index.cfm"�http://www.sei.cmu.edu/architecture/tools/viewsandbeyond/index.cfm� (consulted 2010-Jul-22).

� �HYPERLINK "http://epf.eclipse.org/wikis/openup/"�http://epf.eclipse.org/wikis/openup/�

� SM CMM Integration is a service mark of Carnegie Mellon University.

®	Capability Maturity Model, CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

� ISO 9001 clauses are extracted from: � HYPERLINK "http://www.praxiom.com/iso-9001.htm" �http://www.praxiom.com/iso-9001.htm�

© École de Technologie Supérieure

_1341838566.xls
Feuil1

		

						Date (yy-mm-dd): _______________

						Title of project:__

						Name (Print) Signature Date (yy-mm-dd)

						Verified by:		___________________________________ ________________________________ ___________________

						Approved by: ___________________________________ ________________________________ __________________

						Identification Number		Text of the need		Text of the requirement		Verification method		Title or ID of Use Case		Title or ID of Code Module		Title or ID of test Procedure		Verification Date		Name of person who performed the verification		Result of verification

								Verification Methods: Test (T), Demonstration (D), Analysis (A), Simulation (S), Inspection (I)

								Verification Date: Year-Month_Day (YYYY-MM-DD)

								Result of Verification: Success (S), Failure (F)

