Deployment Package
Construction and Unit Testing
Basic Profile

Notes:

This document is the intellectual propriety of its author’s organization. However, information contained in this document is free of use. The distribution of all or parts of this document is authorized for non commercial use as long as the following legal notice is mentioned:

© 5th level
Commercial use of this document is strictly forbidden. This document is distributed in order to enhance exchange of technical and scientific information.

This material is furnished on an “as-is” basis. The author(s) make(s) no warranties of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability, exclusivity, or results obtained from use of the material.

The processes described in this Deployment Package are not intended to preclude or discourage the use of additional processes that Very Small Entities may find useful.

	Author
	JAVIER FLORES – Universidad Nacional Autónoma de México (UNAM), (México)
ANA VAZQUEZ – 5th level (México)

	Editors
	R. CHAMPAGNE – École de Technologie Supérieure (ETS), (Canada)
C. Y. LAPORTE – École de technologie supérieure (ÉTS), (Canada)

	Creation date
	29/06/11

	Last update
	05/02/12

	Version
	0.5

Version History
	Date

(yyyy-mm-dd)
	Version
	Description
	Author

	2011-06-29
	0.5
	Document Creation
	Javier Flores

Abbreviations/Acronyms

	Abre./Acro.
	Definitions

	DP
	Deployment Package - a set of artefacts developed to facilitate the implementation of a set of practices, of the selected framework, in a Very Small Entity.

	VSE
	Very Small Entity – an enterprise, organization, department or project having up to 25 people.

	VSEs
	Very Small Entities

	TL
	Technical Leader

	AN
	Analyst

	DES
	Designer

	PR
	Programmer

	PM
	Project Manager

Table of Contents
51. Technical Description

5Purpose of this document

5Why are Construction and Unit Testing Important?

72. Definitions

7Generic Terms

7Specific Terms

83. Relationships with ISO/IEC 29110

104. Description of Processes, Activities, Tasks, Steps, Roles and Products

10Sub-task: Define construction standards

12Sub-task: Report defect taxonomy of previous phases

15Assign tasks to the members of the work team

19Construct or update software components

22Design or update unit test cases and apply them

28Correct the defects

29Update the Traceability Record

30Role Description

31Product Description

33Artefact Description

345. Template

345.1 Java construction template

366. Example

366.1 Example of a general construction standard

36Formatting

396.2 Pseudocode Example

406.3 Flow chart example

416.4 Hierarchy of strengths from weakest to strongest of coverage criterion

436.5 Test case design, unit test writing and use of a code coverage tool.

466.6 Unit testing following Structured testing technique and mapping to the steps of the task “Design or update unit tests cases and apply them”.

506.7 Defect correction

526.8 Test runners examples

536.9 C++ Example of an assertion macro

536.10 Unit tests life cycle

547. Checklist

54Task Checklists

547.1 Assign task to the members of the work team

547.2 Construct or update software components

547.3 Design or update unit test cases and apply them

547.4 Correct the defects

55Support Checklists

557.5 Code review checklist

567.6 What the architect and designer should provide

567.7 Sub-task: Select the user interface standard

578. Tool

578.1 Traceability Matrix

588.2 Code coverage tools

598.3 Unit testing frameworks

609. Reference to Other Standards and Models

60ISO 9001 Reference Matrix

61ISO/IEC 12207 Reference Matrix

62CMMI Reference Matrix

6410. References

6511. Evaluation Form

1. Technical Description
Purpose of this document

This Deployment Package (DP) supports the Basic Profile as defined in ISO/IEC TR 29110-5-1-2:2011 Management and Engineering Guide. The Basic Profile is one profile of the Generic profile group. The Generic profile group is composed of 4 profiles: Entry, Basic, Intermediate and Advanced. The Generic profile group is applicable to VSEs that do not develop critical software. The Generic profile group does not imply any specific application domain. The Basic Profile describes software development of a single application by a single project team with no special risk or situational factors.
A DP is a set of artefacts developed to facilitate the implementation of a set of practices in a Very Small Entity (VSE). A DP is not a process reference model (i.e. it is not prescriptive). The elements of a typical DP are: description of processes, activities, tasks, roles and products, template, checklist, example, reference and reference to standards and models, and tools.

The content of this document is entirely informative.

This document has been produced by Javier Flores (UNAM, México) and Ana Vazquez of 5th level (México) beyond her participation to ISO JTC1/SC7/WG24.

Why are Construction and Unit Testing Important?

All the stages in development software are important, but the central activity is software construction and here are some reasons:

· Real projects often skip requirements and design. But no matter how rushed a project is, you can’t drop construction. So, Improving construction is thus a way of improving any software-development effort, no matter how abbreviated it is.

· In many projects, the only documentation available to programmers is the code itself. Requirements specifications and design documents can go out of date, but the source code should be always up to date.

· 80% of development costs are consumed by software programmers identifying and correcting defects
.
As soon as the programmer develops a unit of code the next step is evaluates it to see if it works properly. Unit testing is the solution for this job since it is the first level of testing, and as illustrated in Table 1 the latest you found defects the bigger the cost is.

	Time introduced
	Time Detected

	
	Requirements
	Architecture
	Construction
	System Test
	Post-Release

	Requirements
	1
	3
	5-10
	10
	10-100

	Architecture

	1
	10
	15
	25-100

	Construction

	1
	10
	10-25

Table 1. Proportional average cost of fixing defects based on when they’re introduced and when they’re detected. [Code Complete]
As shown in chart 1 more than 70% of defects are injected before construction plus another 14% injected in this stage
, so if nothing is done at this point the cost in later stages will increase significantly.

[image: image1.png]200%

10.0%

51.4%

211%

72.5%
introuduced
before
construction

Chart 1. Origins of software defects (Selby 2007). Adequacy
2. Definitions

In this section, the reader will find two sets of definitions. The first set defines the terms used in all Deployment Packages, i.e. generic terms. The second set of terms used in this Deployment package, i.e. specific terms.

Generic Terms

Process: set of interrelated or interacting activities which transform inputs into outputs [ISO/IEC 12207].

Activity: a set of cohesive tasks of a process [ISO/IEC 12207].

Task: required, recommended, or permissible action, intended to contribute to the achievement of one or more outcomes of a process [ISO/IEC 12207].
Sub-Task: When a task is complex, it is divided into sub-tasks.
Step: In a deployment package, a task is decomposed in a sequence of steps.
Role: a defined function to be performed by a project team member, such as testing, filing, inspecting, coding. [ISO/IEC 24765]

Product: piece of information or deliverable that can be produced (not mandatory) by one or several tasks. (e. g. design document, source code).
Artefact: information, which is not listed in ISO/IEC 29110 Part 5, but can help a VSE during the execution of a project.
Specific Terms

Component: Set of functional services in the software, which, when implemented, represents a well-defined set of functions and is distinguishable by a unique name [ISO/IEC 29881:2008]

Defect: A problem which, if not corrected, could cause an application to either fail or to produce incorrect results [ISO/IEC 20926].
Traceability: Degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or master-subordinate relationship to one another [IEEE 1233-1998]
Unit test: Testing of individual routines and modules by the developer or an independent tester [ISO/IEC 24765]
Code coverage: Measure used in software testing. It describes the degree to which the source code of a program has been tested. [Practical Software Testing]
3. Relationships with ISO/IEC 29110

This deployment package covers the activities related to Construction and Unit Test of the ISO Technical Report ISO/IEC 29110 Part 5-1-2 for Very Small Entities (VSEs) – Basic Profile [ISO/IEC29110].

The construction activities should have been planned during the Project planning activity of the project. The construction activities should be described in the project plan. If this is not the case, the project manager should perform this activity before beginning construction. (see the Project Management Deployment Package)

In this section, the reader will find a list of Software Implementation (SI) process, activities, tasks and roles from Part 5 that are directly related to this topic. This topic is described in details in the next section.

· Process: SI - Software Implementation
· Activity: SI.2
 Software Requirement Analysis
· Tasks and Roles:
	Tasks
	Roles

	SI.2.2 Document or update the Requirements Specification.

Identify and consult information sources (customer, users, previous systems, documents, etc.) in order to get new requirements.
Analyze the identified requirements to determinate the scope and feasibility.

Generate or update the Requirements Specification.
	AN,
CUS

· Process: SI - Software Implementation
· Activity: SI.4 Software Construction
· Tasks and Roles:
	Tasks
	Roles

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan
	TL,
PR

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	PR

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	PR

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	PR

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	PR

4. Description of Processes, Activities, Tasks, Steps, Roles and Products

· Process: SI - Software Implementation
· Activity: SI.2 Software Requirements Analysis
· Tasks and roles
	Tasks
	Roles

	SI.2.2 Document or update the Requirements Specification.

Identify and consult information sources (customer, users, previous systems, documents, etc.) in order to get new requirements.
Analyze the identified requirements to determinate the scope and feasibility.

Generate or update the Requirements Specification.
	AN ,
CUS

This task is related with the following sub-tasks:

· Define construction standards
· Report defect taxonomy of previous phases
Sub-task: Define construction standards
	

	Objectives:
	Provide guidance on the software coding to produce software easy to maintain inside or outside of the project.

	Rationale:
	Maintainability requirements are directly addressed by this sub-task. These requirements should have been agreed as part of the Requirements Specification, however most of the times they are not explicitly stated, but they are always expected.

The lack of coding standards will be perceived by colleagues when trying to modify code, inside the team and out of it. Some Components could be replaced by new ones due the inability of understand them, if maintenance is performed by the development team, the cost of the project will increase, if it is performed by the client then they will absorb this cost.

Coding Standards should be used in at least in those components that perform key functionality.

Coding Standards are not directly address by 29110-5, however investing some effort can help increment the productivity of the project and the quality of the product.

Note: A general construction standard is provided in the example section

	Roles:
	Project Manager

	
	Technical Leader

	
	Programmer

	Artefacts:
	Construction Standards

	Steps:
	1. Plan the sub-task.

	
	2. Obtain available standards.

	
	3. Select the standards.

	
	4. Adopt the standards.

	
	5. Verify the adoption of the standards.

	Step Description:
	Step 1. Plan the sub-task

According to the project progress, the Project Manager includes in the plan these steps.

Assigning effort is very important because defining standards may be endless, and if standards are not adopted, then also will be useless.

Regarding the schedule, it is desirable to have the standards ready before start the construction however it is not always possible.

Step 2. Obtain available standards.

Find out if your customer has construction standards, if not look for them in the internet or any other available source.

Avoid defining them from the scratch, in most of the projects it is outside of the scope, creating them can take a lot of effort and time.

Step 3. Select the standards.

If your costumer has not standards then ask the programmers to select one of those that were found or a combination of them.

Regarding the documentation of the standard, the easiest way is to implement some components and use them as examples, if you have enough time, then create the construction standards.

Note 1: An example of a general coding standard is provided in the example section.

Note 2: A Java construction template is provided in the template section.
Step 4. Adopt the standards.

Ask the programmers to adopt the standards from now on, especially in those components that perform key functionality.

Step 5. Verify the adoption of the standards.

Make the components that perform key functionality to be verified regarding the adoption of construction standards by another programmer.

Sub-task: Report defect taxonomy of previous phases

	

	Objectives:
	Report defects of previous stages to the related area in charge.

	Rationale:
	As shown in chart 1 more than 70% of defects are injected before construction. So there is a big likelihood of finding defects of previous stages in the construction phase. So the best strategy is report defects to the area in charge before their corrections turns more expensive.

This task is not directly address by 29110-5, however investing some effort can help increment the productivity of the project and the quality of the product.

	Roles:
	Technical Leader

	
	Programmer

	Artefacts:
	Defect Taxonomy [Updated]

	Steps:

(Programmer)
	1. Confirm the defect

	
	2. Write a brief description of the defect

	
	3. Write the defect area

	
	4. Write the possible cause

	
	5. Write the damage extend

	Steps:

(Technical Leader)
	1. Verify the defect report

	
	2. Write a mitigation strategy

	
	3. Report the defect to the area in charge

	Step Description:

(Programmer)
	Step 1. Confirm the defect
If you found inconsistencies in detail design, software architecture or a part of the requirements, explain the details to your technical leader.

If your technical leader agrees with you that what you found is a defect. Continue with the next steps, otherwise skip the all sub-task. But remember that not reporting a defect at the right time means that after you code it, sometime you will have to change it anyway.

Step 2. Write a brief description of the defect
Write a brief description of the defect including how you found the defect and the conditions and circumstances where you found it.

Step 3. Write where the defect was injected
Write where the defect was discovered in the life cycle

· Requirements

· Software architecture

· Detail Design

Step 4. Write the possible cause
Writing the purpose of cause information is providing indications of the root cause of a defect:
· Systematic factor: guidelines and procedures; company culture; domain-specific information, such as documentation, -code, tools, etc.
· Human factors: an individual made a mistake for human reasons: omission, misapplication, didn´t look, didn´t find, incorrect solution etc.
· Unknown
Step 5. Write the damage extend
Write how widespread is its effect

· Function

· Object

· Process

· Compatibility

· Application

· Machine

· Server

· Clients

· Net

· Other

	Step Description:

(Technical Leader)
	Step 1. Verify the defect report

Verify the report made by the programmer. If there is some inconsistency ask the programmer to clarify the details.
Step 2. Write a mitigation strategy

If you know a mitigation strategy for the defect found add it to the report. Some of the mitigations could be:

Mitigation type:

· New tool
· Hardware
· Training
· Staff management
· Communication (groups/individuals)
· Knowledge access

· Process change

Step 3. Report the defect to the area in charge

Once the report is complete send it to the area in charge and if possible, reassign the tasks for the programmer who found the defect while the related area responds the request.

· Process: SI - Software Implementation
· Activity: SI.4 Software Construction
· Tasks and Roles:
	Tasks
	Roles

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan
	TL,
PR

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	PR

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	PR

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	PR

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	PR

Assign tasks to the members of the work team

Note: The tasks are related to their role, according to the Project Plan.
	

	Objective:
	Define the construction sequence and assign tasks to the members of the Work Team

	Rationale:
	Most of the times the first version of the Project Plan has identified the most of the components to be constructed, however at this stage of the project, when the Software Architectural and Detailed Design has been completed, the Project Plan should be updated to include construction and unit tests, in detail or in general manner, of all the components that have to be produced.

The sequence of construction of the components should be coordinated with the integration sequence to have the components (unit tested) ready to be integrated at the right time.
Defining the construction sequence is not included in 29110 part 5, however investing some effort to define the construction sequence can help optimize the construction calendar.

	Roles:
	Technical Leader

	Products:
	Project Plan

	Steps:
	1. Obtain software design documentation.

	
	2. Select the integration sequence strategy.

	
	3. Detail the project schedule.

	
	4. Allocate tasks to the members of the work team.

	
	5. Define exit criteria for unit testing

	Step Description:
	Step 1. Obtain software design documentation

· Obtain the software design documentation from the project repository; Detailed Low Level Software Design includes details of the software components to be constructed.
· Obtain the Traceability Record from repository

Step 2. Select the integration sequence strategy

There are several strategies to determine the integration sequence, but they are more heuristics than algorithms.

The most widespread integration approaches are:

Big bang: integrate all parts at once, in which the entire software is assembled and tested in one step (this approach may be risky because of the level of entropy injected).

- Bottom-up: Modules at the lowest levels are integrated at first, then by moving upward through the control structure. The process is repeated until the component at the top of the hierarchy is integrated.
- Top-down: Modules are integrated by moving downward through the control structure. The process is repeated until the components at the bottom of the hierarchy are integrated
Note: Implementing pure Bottom-up or Top-down integration is sometimes radical, so a better choice is a hybrid approach instead

Some hybrids approaches are:

Risk oriented integration
Risk-oriented integration tends to integrate the components at the top (high-level business-object classes) and the bottom (device-interface and utility classes) first, leaving the middle-level components for last. You prioritize according to the level of risk associated with each component.

[image: image2.png]C
CT [T . T

Most risk: Least risk:
Do first. B[l | Do last.

Figure 1 Risk-oriented integration strategy. [Code complete]
Feature-oriented integration
The idea is integrate components in groups that make up identifiable features. Each feature integrated brings an incremental addition in functionality. An advantage of this strategy is that it fits easily to with object oriented design.

[image: image3.png]Feature | skeleton
(menus, perhaps)

In = .
I 4h_| L w_l L T ——
T T r
000 ODOOD 00doc
Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Figure 2 Feature oriented integration strategy. [Code complete]
At the end you decide whether using a single integration approach or a combination of two or more and tailoring to your specific project.

Step 3. Detail the project schedule

Detail the project schedule including the activities to develop or modify all the identified components according with the selected strategy.
Do your best to keep time and cost project’s agreements, if it is necessary to modify them, then a change control request should be raised. For further details of project schedule go to the Project Management Deployment Package.
Step 4. Allocate tasks to the members of the work team

· Allocate tasks to members of work team

· Allocate tasks to code software components

· Allocate tasks to develop test cases and test software components

· Inform members of their tasks
To allocate tasks to the right people there are some aspects of programmers that you should consider. Always ask for the background of your team:

· Experience

· Skills

· Knowledge

This will help you to have the right person in the right activity. Also have in mind these considerations:

· Always try to assign the most critical components and tasks to the most experienced people.

· Leave the basic components to novice programmers; suddenly they will become expert programmers.
· Try to identify the skills of each programmer and take advantage of that.

5. Define exit criteria for unit testing
Testing all possible cases of a component is not feasible even for small projects. You should therefore decide an exit criterion which tells your programmers when they should stop testing or when there is enough testing for a kind of component.

A good start is defining a percentage of some code coverage criteria (see step 1 from task “Design or update unit test cases and apply them”) depending on how risky the code under test is. It could be divided into three categories:

Type of component
Description
High risk

Code could cause severe damage (wipe out data, injure someone, give non-obviously wrong answers that might cost a user a lot of money), or has many users (so the cost of even minor bugs is multiplied), or seems likely to have many mistakes whose costs will add up (it was a tricky algorithm, or it talks to an ill-defined and poorly-understood interface, or you have already found an unusual number of problems).

Low risk

Code is unlikely to have bugs important enough to stop or delay a shipment, even when all the bugs are summed together. They would be annoyance bugs in inessential features, ones with simple and obvious workarounds.

Medium risk

Code is somewhere in between. Bugs here would not be individually critical, but having too many of them would cause a schedule slip. There's good reason to find and fix them as soon - and as cheaply - as possible. But there are diminishing returns here - time spent doing a more thorough job might better be spent on other tasks

Table 2 Categories of code under test. [Misuse Code coverage]
There is no algorithm that can tell you which category corresponds to a component. In reality, some medium risk code might be high risk with respect to certain types of failures and the same might happen with the low risk code You should evaluate the impact of each component and select properly.

Once you have defined the risk of the component it is suitable to use stronger criteria for testing higher risk components.

Type of component

Coverage criteria recommended

Low risk

Statement

Medium Risk

Branch/Decision

High Risk

Decision and condition

Table 3 Example of coverage criteria for type of component

A common amount selected for some respectable companies is 85% of code coverage (Marick 1999). However this is not always the right amount since each project has different constraints. The chosen coverage percentage depends on several circumstances such as the importance of the project, the schedule and the available resources.

Achieving 100% code coverage is generally very difficult and sometimes is not cost effective. However achieving a high percentage can give you certain confidence that your code works properly even if is not entirely tested.

Construct or update software components
Note: Components are based on the detailed part of the software design

	

	Objective:
	Produce the Software Components as designed.

	Rationale:
	The quality of the construction substantially affects the quality of the software and the best way to do it is by improving developer’s practices and techniques.
Programmers may feel confidence enough to produce components without a systematic approach; however it still being useful for constructing complex or critical components.

There are several approaches to produce components, here we use the Pseudocode and Flow chart approaches which are two of the most widespread accepted. Steps were adapted from Code Complete (see reference).
Note: Sometimes there are inconsistencies from previous stages (Requirements, Detail design). If this is the case the best option is report them before constructing something inadequate. (See subtask “Report defect taxonomy of previous phases”).

	Roles:
	Programmer

	Products:
	Software Components

	Steps:
	1. Understand the detail design of the component and its contribution

	
	2. Search for available functionalities in the standard libraries.

	
	3. Define the logic of the component

	
	4. Code the component according to the construction standard

	
	5. Verify the component

	Step Description:
	Step 1. Understand the detail design of the component and its contribution
a) Verify the contribution
Verify the contribution of the component and see if the best way to solve the problem is with the creation of a new component or the adaptation of a previous one.

b) Detailed Enough
If Software detail design is not the clear enough the programmer should complete it with the support of the Designer.
Detailed Software Design should includes details of the Components to facilitate their construction and testing within the programming environment:
· Provides detailed design (classes diagram, activity diagram, entity relationship diagram, etc.)

· Provides format of input / output data

· Provides specification of data storage needs

· Defines the format of required data structures

· Defines the data fields and purpose of each required data element
Note: If you found any inconsistence in detail design tell your technical leader. See sub-task “Report defect taxonomy of previous phases”

Step 2. Research functionality available in the standard libraries
Find out whether some or all of the component’s functionality might already be available in the library code of the language, platform, or tools you're using. Improve your productivity by reusing code. Many algorithms have already been created, tested, and improved, so don’t invent the wheel, just use it.

Step 3. Define the logic of the component.
There are several approaches to produce components, here we use the Pseudocode and Work flow approaches which are two of the most widespread accepted. Steps were adapted from Code Complete (see reference).
a) Pseudocode programming process
One of the best ways to abstract and idea is making a simple draw of it at a very high level. Then refine the idea and start writing some lines of Pseudocode that describe a possible solution at medium level (In your natural language), then continue refining the Pseudocode until you reach a low level design (Very close to a source code). So that turn the Pseudocode into source code can be easy.

Always try as many ideas as you can in Pseudocode before you start coding. Once you start coding, you get emotionally involved with your code and it becomes harder to throw away a bad design and start over.

Note: An example of a Pseudocode is provided in the example section.
b) Flow chart
Another way to abstract an idea is making a graph or symbolic representation of the algorithm you have in mind. Each step in the algorithm is represented by a symbol and contains a short description of the process step. The flow chart symbols are linked together with arrows showing the algorithm flow direction.
You can start by defining an initial state and then adding steps, branches or loops to the process until you reach the end of the algorithm. Then you can refine each step as much as needed until turn it into source code can be easy.
Note: An example of a flow chart is in the example section.

Step 4.Code the component according to the construction standard

Coding should be a mechanic process once the algorithm is ready. Focusing on configuration and language issues more than in the logic of the component.

Some of the previous work can be reusable, for instance if you are using Pseudocode approach you can use the high level Pseudocode as comments and use the low level Pseudocode for coding the logic of the component.

For this kind of issues is important to follow the construction standard when coding, because not only makes your code clean but it becomes standardized and easy to maintain. See the subtask “Define construction standards”.

If your component needs an interface you should code it according to an Interface standard. If you don’t have one asks for it to your technical leader. See “Select the user interface standard” in the checklist section.
Check whether code should be further factored
You can consider create a subroutine if:

· Some of the steps in the process are very repetitive and instead of copy-paste lots of code you just call the properly subroutine that makes the job.

· Some steps in the algorithm are part of an independent sub-process that could be useful for another component. Creating a subroutine for it does not change the logic but make the code clear and more maintainable.

Step 5. Verify the component
Code review is a systematic examination in which software developers review their code, identifying bugs and keeping code more maintainable. It is intended to find and fix defects overlooked in the initial development phase, improving both quality of source code and the developers' skills.
Note: An example of a checklist for code review is provided in the checklist section.
Compile the code:
Let the computer check for undeclared variables, naming conflicts, and so on.

Design or update unit test cases and apply them
	

	Objective:
	Find and correct defects injected when coding through the design and application of unit test cases

	Rationale:
	There are two fundamental approaches for testing, namely black box and white box. Black box testing tests the functional requirements, without knowing the component internal structure. White box testing tests the internal structure and the logic of the component.

These components or units are the smallest building blocks of software and since it is easier and less costly to look for a defect in a small unit than in a larger part of the system, they should be performed as soon as units are ready.

Even if is not always possible it is highly recommended that programmers perform white box testing since they know the components they code. To be practical in this package that last suggestion is assumed and the approach selected is white box testing.

A major benefit of unit testing is that it lets you achieve parallelism, by enabling testing and debugging simultaneously by many programmers. With the help of tools and frameworks, testing efficiency can be improved.

Note: Unit testing is useful for all types of software. However, software implemented using an object-oriented language introduces additional considerations that must be taken into account when unit testing such software. The interested reader can consult [Introduction to Software Testing] for a discussion on the issues associated with testing object-oriented implementations.

	Roles:
	Programmer

	
	Project Manager

	Products:
	Software Components [unit tested]

	Artefacts:
	Test Cases, Set of unit tests

	Steps:
	1. Obtain the exit criteria

	
	2. Design the test cases

	
	3. Code the unit tests

	
	4. Execute the unit tests

	
	5. Analyze the results

	Step Description
	Step 1. Obtain the exit criteria

The exit criteria are composed of one or more code coverage
 criterion and a percentage to be achieved. It should have been previously defined by the Project Management.
Coverage criteria
Coverage criteria (adequacy criteria for some authors) are a white box framework that works as a stopping rule to determine whether or not sufficient test cases have been created.

Common coverage criteria include statement, branch/decision and decision and condition coverage. Statement coverage is considered the weakest of these criteria, in the sense that it is the one requiring the less testing effort to reach, but it is also the one that is less efficient to reveal faults.

a) Statement coverage

Satisfying this criterion ensures the execution of each line of code regardless of the path
. It is the weakest test coverage criteria because some defects are hidden in a particular path, which is not necessarily traversed when the only goal is to execute every line of code.
Note: This is the minimum level of testing that should be covered.
b) Branch/Decision coverage
This criterion requires that each possible outcome of each decision as a whole be exercised at least once (not for each individual condition contained in a compound predicate e.g. if(a&b), a&b as a whole instead of satisfying condition a and b separately).
Note: This could be a good goal to cover for components of medium complexity.

c) Decision and Condition coverage:

Satisfying this criterion not only covers branch/decision coverage but ensures that every condition takes each possible outcome at least once and the decision as a whole takes each possible outcomes at least once (for each individual condition contained in a compound predicate e.g. if(a&b), satisfying condition a and b separated).
Note: It is recommended for complex and critical units.
There are stronger criteria like: Multiple conditions, MDC, etc. But they are beyond the scope of this package.

Percentage for the coverage criteria selected

Depending on the difficulty or importance of the component, the Project Management should choose a suitable coverage criterion.

i.e. a component of medium complexity: Branch/decision coverage criterion of 85%. This means that once test cases are designed and that when they are collectively executed, at least 85% of the branches are covered, testing is "complete" for that goal.
Step 2. Design the test cases

A test case is a specific set of inputs values with which the programmer will determine whether the component is working properly, based on whether the outputs obtained are the expected ones or not.

Each test case should have:

Test case ID: To have a control of the number of test cases created.

Description: Describes the purpose of the test. The description might have additional information like the true or false outcome of certain decisions or conditions or perhaps the path covered if you are using a control flow graph (CFG). It depends on the strategy you are using for obtaining the test cases.

Inputs: the input values configuration that forms the test case.

Expected outputs: The expected results for the input configuration.
Note 1: An extra field to indicate if the test case passes or fails is needed, but remains empty until the execution step, where this information is obtained.

Pass/Fail: Use P or F to indicate if the test case passes or fails.

Structured Testing Technique
Structured Testing (also known as basis path testing) is a technique that optimizes the number of tests cases needed to reach 100% branch/decision coverage.
Note: A complete example of Structure Testing is provided in the example section.
Step 3. Code the Unit tests

A unit test is a test script (typically a function or method, depending on the nature of the implementation) which tests one or more test cases of a specific component.

To code the unit tests, the best option is to use a unit testing framework for the language you are using in the implementation. If there is no existing framework for your language, another option is to build your own testing framework.

Without an external unit testing framework
If there is no unit testing framework for the language you are using, you can write your own routines for testing. To do this, you need code that checks whether a call to the component under certain conditions returns true (if everything is working as expected) or false (if the call results in an unexpected output or error).

These kinds of routines are called assertions and they usually take two arguments: a Boolean expression that describes the assumption that’s expected to be true, and a message to display if it isn’t. The idea is that your test scripts use these assertions to verify if the test case can detect a defect. If your language doesn’t directly support assertion routines, they are relatively easy to write.
Note: An example of an assertion macro is provided in the example section.

With an external unit testing framework
These tools are language-dependent and let you write and run unit tests to see if they enable finding defects in the unit under test. Almost all of them have their own suite of assertions that help performing the tests.
The general idea is to write scripts that contain one or more assertions which receive an expected output and the unit under test with fixed inputs, so if some of the assertions fail, you know which one and you can compare the expected output against the output obtained.

The goal of this kind of tool is that once you have written a set of unit tests, if there are changes in the implementation, by running the unit tests again, you know that you have not "broken" functionality that was previously working.
An important advantage of these tools is that there is no need to remove anything, you keep your implementation and test sources separated from the start.
Note: In the tool section, links to the most popular unit testing frameworks for several languages are provided.

Step 4. Execute the unit tests
Note: Isolating the unit under test as much as possible is important to avoid inadequate behavior due to dependencies among units.
Without an external unit testing framework

Once you have coded your unit tests, you can create a mechanism to run them. It could be a separate program whose only purpose is running the unit tests, or a function or method inside the implementation code with the same objective.

With an external unit testing framework
Unit testing frameworks usually provides a Test Runner that basically is some form of command-line or graphical application that can be used to run the automated tests and report on the result.

a) Command-line Test Runner
Command-Line Test Runners are designed to be used from an OS command line or from batch files or shell scripts. They are very useful when working remotely via remote shells or when running the tests from a build script such as "make" or "ant". If the test suite is too large you can let it run overnight and see the results in a log file the next day.
Note: An example is provided in the example section.

b) Graphical Test Runner
A Graphical Test Runner is typically a desktop application or part of an IDE
 (either built-in or a plug-in) for running tests that makes their usage easier and more convenient. The most common feature of these applications is some sort of real-time progress indicator. Some of them also include a running count of test failures and a colored progress bar which starts off green and turns red as soon as an error or failure is encountered.
Note: An example is provided in the example section.

Step 5. Analyze the results
Depending on how you execute the unit tests, you can either analyze the results stored in the log file or in the output window if you run them via a command line or simply look at the results graphically if you are using a GUI implementation.

In any case the next step is to determine if any test fails. If this is the case, you should make the relevant corrections either in the implementation code or in the test code itself, and run the tests again.
Once all your unit tests pass, you should look for the exit criteria defined by the Project Management and see if you need to create more test cases or if you have enough.

It is highly recommended to use a Code coverage tool to see how much code your test cases cover, and what percentage you achieved in the selected criteria. Some popular code coverage tools are listed in the tool section and all of them consider at least statement and branch/decision coverage criteria.

Correct the defects
Note: Defects are corrected until successful unit test (e.g. reaching exit criteria) is achieved.

	

	Objective:
	Correct the defects found by the Unit Tests

	Rationale:
	Correct the defects just found by the Unit Test by the person in charge of the Component construction, is the fastest and cheapest way of correcting the defect.

	Roles:
	Programmer

	Products:
	Software Components [corrected]

	Steps:
	1. Confirm the defect

	
	2. Determine the nature and location of the defect

	
	3. Correct the defect

	
	4. Verify the corrections

	Step Description:
	Step 1. Confirm the defect

Verify that what you found is a defect in the implementation code (the purpose of the test cases) and not a defect in the test code itself.

Step 2. Determine the location of the defect

Error locating practices:

· Use code review checklist: If you don´t find the error you can support on a checklist for code review (An example is provided in the example section). It could give you an idea of where to look.
· Step through the code in the debugger:

Once the routine compiles, put it into the debugger and step through each line of code. Make sure each line executes as you expect it to.
· Find the source of an error. Trying to reproduce it by several different ways to determine its exact cause. Some advices could be:

· Narrow the suspicious region of the code

· Use different data

· Refine the test cases
[image: image4.png]Program Program
First
test
Defegt ©. Defegr
I —
Program Program
\ \
Defe¢t efe¢t

T
Third test

Second
test

Subsequent
tests

Figure 1. Reproduce an error several ways to determine its exact cause. [Code complete]
· Use experimentation as a last resource: The most common mistake some programmers make is trying to solve a problem by making experimental changes to the program. But usually it injects more defects.
Step 3. Correct the defect.

Once you have found the source of the defect, save the original source code and then make the corresponding changes.

Note: Another common failing is repairing the symptoms of the error, or just one instance of the error, rather than the error itself. So be aware of this.
Step 4. Verify the corrections
Run the unit tests again to verify that the corrections you made works properly.

Repeat from step 1 each a unit test finds a defect. If the unit tests do not find defects anymore you should look for achieving the exit criterion selected for your component.

Update the Traceability Record

Note: Incorporating Software Components constructed or modified.
	

	Objective:
	Ensure that all software components can be traced to a design element and that all design elements have been constructed.

	Rationale:
	The traceability record should have been developed in the previous phases of the project to ensure traceability from requirements to design elements. This task is devoted to ensure traceability between design and construction elements.

	Roles:
	Programmer

	Products:
	Traceability Record [updated]

	Steps:
	1. Update the Traceability Record

	
	Step 1. Update the Traceability Record

This record should be updated with the following information:

- Identification of software components

- Identification of test cases (optional)

- Verification date (i.e. date the software component had been tested and no defect is left)

Role Description

This is an alphabetical list of the roles, abbreviations and list of competencies as defined in ISO 29110 Part 5-1-2.

	
	Role
	Abbreviation
	Competency

	1.
	Analyst
	AN
	Knowledge and experience eliciting, specifying and analyzing the requirements.

Knowledge in designing user interfaces and ergonomic criteria.

Knowledge of the revision techniques.

Knowledge of the editing techniques.

Experience on the software development and maintenance.

	2.
	Customer
	CUS
	Knowledge of the Customer processes and ability to explain the Customer requirements.

The Customer (representative) must have the authority to approve the requirements and their changes.

The Customer includes user representatives in order to ensure that the operational environment is addressed.
Knowledge and experience in the application domain.

	3.
	Programmer
	PR
	Knowledge and/or experience in programming, integration and unit tests.

Knowledge of the revision techniques.

Knowledge of the editing techniques.

Experience on the software development and maintenance.

	4.
	Technical Leader
	TL
	Knowledge and experience in the software process domain.

	5.
	Project Manager
	PM
	Leadership capability with experience making decisions, planning, personnel management, delegation and supervision, finances and software development.

Product Description

This is an alphabetical list of the input, output and internal process products, its descriptions, possible states and the source of the product.

	
	Name
	Description
	Source

	1.
	Project Plan
	Presents how the project processes and activities will be executed to assure the project’s successful completion, and the quality of the deliverable products. It Includes the following elements which may have the characteristics as follows:

· Product Description

· Purpose

· General Customer requirements

· Scope description of what is included and what is not
· Objectives of the project
· Deliverables - list of products to be delivered to Customer

· Tasks, including verification, validation and reviews with Customer and Work Team, to assure the quality of work products. Tasks may be represented as a Work Breakdown Structure (WBS).

· Relationship and Dependence of the Tasks
· Estimated Duration of tasks

· Resources (humans, materials, equipment and tools) including the required training, and the schedule when the resources are needed.
· Composition of Work Team

· Schedule of the Project Tasks, the expected start and completion date, for each task.
· Estimated Effort and Cost

· Identification of Project Risks

· Version Control Strategy

· Product repository tools or mechanism identified

· Location and access mechanisms for the repository specified

· Version identification and control defined

· Backup and recovery mechanisms defined

· Storage, handling and delivery (including archival and retrieval) mechanisms specified

· Delivery Instructions

· Elements required for product release identified (i.e., hardware, software, documentation etc.)

· Delivery requirements

· Sequential ordering of tasks to be performed

· Applicable releases identified

· Identifies all delivered software components with version information

· Identifies any necessary backup and recovery procedures

The applicable statuses are: verified, validated, changed and reviewed.

	Project Management

	2.
	Software Component
	A set of related code units.

The applicable statuses are: unit tested, corrected and baselined.
	Software Implementation

	3.
	Software Design
	This document includes textual and graphical information on the software structure. This structure may includes the following parts:

Architectural High Level Software Design – Describes the overall Software structure:

· Identifies the required software Components
· Identifies the relationship between software Components
· Consideration is given to any required:

· software performance characteristics

· hardware, software and human interfaces

· security characteristics

· database design requirements

· error handling and recovery attributes

Detailed Low Level Software Design – includes details of the Software Components to facilitate its construction and test within the programming environment;

· Provides detailed design (could be represented as a prototype, flow chart, entity relationship diagram, pseudo code, etc.)

· Provides format of input / output data

· Provides specification of data storage needs

· Establishes required data naming conventions

· Defines the format of required data structures

· Defines the data fields and purpose of each required data element

· Provides the specifications of the program structure

The applicable statuses are: verified and baselined.

	Software Implementation

	4.
	Traceability Record
	Documents the relationship among the requirements included in the Requirements Specification, Software Design elements, Software Components, Test Cases and Test Procedures. It may include:
· Identifies requirements of Requirements Specification to be traced

· Provides forward and backwards mapping of requirements to Software Design elements, Software Components, Test Cases and Test Procedures.

The applicable statuses are: verified, baselined and updated
	Software Implementation

Artefact Description

This is an alphabetical list of the artefacts that could be produced to facilitate the documentation of a project. The artefacts are not required by Part 5, they are optional.

	
	Name
	Description

	1.
	Construction Standards
	Provides conventions, rules, idioms, and styles for:
· Source code organization (into statements, routines, classes, packages, or other structures)

· Code documentation

· Modules and files

· Variables and constants

· Expressions

· Control structures

· Functions
· Handling of error conditions—both planned errors and exceptions (input of bad data, for example)

among others.

	2.
	Test Cases
	A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. [IEEE 1012-2004]

	3.
	Set of unit tests
	Set of routines written in a specific language designed for testing the test cases.

	4.
	Defect taxonomy
	A method to reduce the number of product defects by learning about the kinds of errors being made in the product development process so that they can be analyzed to improve the process to reduce or eliminate the likelihood of the same kind of error being made in the future.
The applicable statuses are: Verified, Updated

5. Template

5.1 Java construction template
	/***

* Copyright (c) 20XX [Organization Name], Inc. All rights reserved.

**

 Version Number - $Revision$

 Last Updated - $Date$

 Updated By - $Author$

 Summary of module purpose

 Low-level design, physical design discussions, build dependencies,

 assumptions, implementation issues, notes, etc.

/***

 Package and import statements

*/

package com.mycompany.mypackage;

import com.somepackage;

/***

 Use these dividers to split the module into logical groups.

*/

/***

 Class Definitions

*/

/*==

 Summary of class goal

 ..

 Description of class

==*/

public class JavaClass extends SuperClass

 implements SomeInterface

 {

 /*--

 Constructors

 ...

 Description of constructors

 --*/

 // Constructor 1 summary

 public JavaClass()

 {

 }

 /*==

 Public Member Functions

 */

 /*--

 Summary of member function

 ..

 Description of function

 Describe function's exceptions and return values

 --*/

 public RETURN_TYPE

 SomeMethod(

 PARAM1_TYPE param1, // Description of param1

 PARAM2_TYPE param2 // Description of param2

)

 throws SomeException

 {

 }

 /*==

 Private Member Functions

 */

 /*==

 Protected Data Members

 */

 protected boolean aBooleanValue;

 /*==

 Private Data Members

 */

 private int anIntValue;

 }

/***/

6. Example
6.1 Example of a general construction standard

Formatting
	1
	All source files should be based on the appropriate construction template.

	2
	If no discernable style is present in existing code or style differs from construction standard, reformat the file according to it.

	3
	Avoid create lines greater than 79 characters in length. But if you need them, indent the next line one level. If the new line also exceeds 79 characters, insert another line break after the last operator within the 79-character limit, but do not indent the next line further. Continue until all lines of the statement are less than 79 characters in length.

If (PreliminarySize = 0 And CalculatedMeanSizeInLoc(Module) <> 0) Or
 (PreliminarySize = CalculatedMeanSizeInLoc(Module)) Then

 Call CalibrationData.GetProjectPhaseFromId(
 ProjectCharacteristics.CurrentProjectPhase, ProjectPhase)

End If

	4
	Use blank lines liberally to separate and organize code, 1 inside function or comment, 2 between functions, 3 or 4 for sections.

	5
	Place spaces to visually separate the variables or functions.
If (3 == x)

func1 (param1, param2);

int array [MAX_NUM_THINGS];

Comments

	1
	Use comments to describe the intentions of the programmer describing ‘why’ rather than ‘how’ or ‘what’.

	2
	Only for critical pieces of code you should explain in detail the action or how it works. But in that case add an special mark.

	3
	The best way to comment is doing in natural language (English, Spanish), not more code or pseudo-code.

	4
	Others developers should understand the comment (information useful).

	5
	Try to not use redundant or unnecessary comments.

	6
	Comment each major block of code with a brief description of its intention.

	7
	Indent comments at the same indentation level as the code they’re commenting, because they are not more neither less important than code itself.

	8
	Where possible, use a machine-parsable comment format such as JavaDoc to allow examination of code-level documentation separately from the code itself.

	9
	Range of numeric data should be commented.

	10
	Limitations on input or output data should be commented.

Modules and files

	1
	When naming a file capitalize the first letter and the first letter of any words or acronyms within the filename; use lowercase for all other alphabetic characters (use only alphanumeric characters).
FileName.java

FileName2.cpp

	2
	Files with similar purposes should be named similarly.

	3
	Begin all source files with the standard comment header describing the purpose of the file and giving a brief synopsis of its contents.

	4
	Placing more than one module or component into a single source file is not recommended.

	5
	Try to use relative path to prevent include the file in another environment.

Variables

	1
	Use each variable for exactly one purpose.

	2
	Capitalize the first character of words and acronyms within a variable name; use lowercase for all other alphabetic characters. First character of a variable name should be a lowercase alphabetic character.

balance // One-word variable name

monthlyTotal // Two-word variable name

exportDoc // Variable name with acronym

Precede a variable declaration with a brief comment describing the variable’s purpose. Because Even the most descriptive variable names are terse.

	3
	Try not to use Hungarian style notation to tie variable type to variable name because it can distract from the main purpose of the variable name, which is to describe what the data contained in the variable means.

Hungarian notation: float fbalance

	4
	Initialize a variable when declared, because ensures a known value for the variable.

Constants

	1
	 Use upper-case alphanumeric characters in constant names. Separate words within a constant name by underscores.

THIS_IS_A_CONSTANT

	2
	Try not to use a bare numeric constant (magic number), even if it is only used once.

	3
	Text strings that will be displayed to the user should always be pulled out into string constants or string tables. This allows them to be translated or updated as needed.

OPTION1 = “Select a tool”

OPTION1 = “Selecciona una herramienta”

Expression and statements

	1
	In languages where the assignment and comparison operators differ, be care with ambiguity when performing assignment inside conditional expressions.

Cause of ambiguity: If (value = 3 + i)

	2
	Try to have an order for comparison because is easier to understand. For example use < and <=, instead of > or >=.

Control structures

	1
	Indent blocks using the ‘begin-end block boundaries’ style and indent them at the same level as the code contained in the block.

if (true == success)

{

// Do something.

}

	2
	Use descriptive names for loop indices, such as “row” and “col”. If the loop is simple and small, traditional loop indices such as ‘i’, ‘j’, and ‘k’ are acceptable.

	3
	Using a break or return statement to exit a loop is not recommended.

	4
	Prefer for loops when they’re appropriate, because makes the loop more readable and maintainable and prevent falling in infinite loops.

	5
	If you’re including other statements in the for loop header, you should probably be using a while loop.

Functions

	1
	Follow the same form as variable names when naming functions, with the distinction that the first character of a function name should be capitalized

	2
	For a function whose main purpose is to perform an action, use a verb-object function name. If the method belongs to an object just use a verb.

PrintDocument(document); //verb-object function name

document.Print(); //verb function name

	3
	For a function whose main purpose is to return a value, use a name that describes the value returned.
if (FILE_OPEN == file.State())

	4
	Precede each function declaration with a comment describing the intent of the function, the purpose of each argument, and the function’s return value. Note: Javadoc has its own tags to perform this action.

	5
	Using multiple return statements to exit a function is not recommended.

6.2 Pseudocode Example
Specification
A procedure must compute the insurance premium for a car driver, based on the following information:

· The person's age (integer).
· The person's sex ("M" for male, "F" for female).
· The person's marital status (married or not).

The business rules to compute the premium are the following:

· A basic premium of $500 applies for everyone.

· If the person is an unmarried male less than 25 years old, an extra cost of $1500 is added to the basic premium.

· If the person is married or is female, a rebate of $200 is applied on the basic premium.

· If the person is 45 years old or more and less than 65 years old, a rebate of $100 is applied on the basic premium.

The procedure must return the related premium

Pseudocode based on the above specification

6.3 Flow chart example

This flow chart corresponds to the specification provided in example 6.2

6.4 Hierarchy of strengths from weakest to strongest of coverage criterion
	Routine

	x = 0
if(age < 65 && married == true)
{
 x = 2
 y = y + age
}
return (age/x)

The stronger the criterion, the more defects will be revealed by the tests.
Test cases for Statement coverage: All statements have to be executed at least once; only one test case is required to test this code with 100% statement coverage.

	Test case ID
	Description
	Input
	Expected output
	Pass/Fail

	
	
	age
	married
	
	

	TC1
	A married person of 30 years old
	30
	True
	15
	P

Note: With this test case you execute all lines of code, but the case where the decision is false is never tested, so it doesn’t detect the arithmetic defect age/x when x = 0.

Test cases for Branch/Decision coverage: Each decision must take each possible outcome at least once.

Decision: age < 65 && married == true
	Test case ID
	Description
	Input
	Decision outcome (Compound predicate as a whole)
	Expected output
	Pass/Fail

	
	
	age
	Married
	
	
	

	TC1
	A married person of 30 years old
	30
	True
	True
	15
	P

	TC2
	A married person of 75 years old
	75
	True
	False
	0
	F

Notes:

· The test case TC2 detects a defect that statement coverage didn’t.

· The value for married = False is never considered and even so 100% decision coverage is achieved. It happens because all possible values of each condition were not analyzed. So if a defect was hidden in condition 2 (married==true) it may not be detected.
Test cases for Decision and Condition coverage

Each decision must take each possible outcome at least once, and each condition must take each possible outcome at least once.

Decision: age < 65 && married == true
Condition 1: age < 65
Condition 2: married == true
	Test case ID
	Description
	Input
	Condition 1 outcome
	Condition2 outcome
	Decision outcome
	Expected output
	Pass/Fail

	
	
	Age
	married
	
	
	
	
	

	TC1
	A married person of 30 years old
	30
	True
	True
	True
	True
	15
	P

	TC2
	A married person of 75 years old
	75
	True
	False
	True
	False
	0
	F

	TC3
	An unmarried person of 30 years old
	30
	False
	True
	False
	False
	0
	F

Notes: If condition 2 had a logical defect in its false outcome, then test case TC3 will detect it. Anyway this is not the case.

The criteria described above do not require the coverage of all the possible combinations of conditions. However, since the compilers usually stop evaluating an “and” expression as soon as it determines that one operand is false or an “or” expression as soon as it determines that one operand is true. Some of the conditions will not be evaluated regardless of their value.

To solve this problem it is recommended to test the “and” and “or” operators with the following order:

	if(a && b && c && d)

Inputs

Values (T=true, F=false)

a,b,c,d

T T T T

a,b,c,d

F T T T

a,b,c,d

T F T T

a,b,c,d

T T F T

a,b,c,d

T T T F

	if(a || b || c || d)

Inputs

Values (T=true, F=false)

a,b,c,d

F F F F
a,b,c,d

T F F F
a,b,c,d

F T F F
a,b,c,d

F F T F
a,b,c,d

F F F T

This way you ensure each condition takes its true and false outcome inside the execution of the program.

For satisfying the decision part of decision and condition coverage:

In the case of the “and” operators, the first set (T T T T) will work to evaluate the true outcome of the decision and any of the other cases will work to evaluate the false outcome.

In the case of the “or” operators, the set (F F F F) will work to evaluate the false outcome of the decision and any of the other cases will work to evaluate the true outcome.
Note: If the decision is compound of a mix between “and” and “or” operators you can use brackets “(,)” to determine the hierarchy of operators that bests suits you.
6.5 Test case design, unit test writing and use of a code coverage tool.
	Routine

	public int getPremium() {

int premium = 500;

if ((age < 25) && !married && sex.equals("M")) {

premium += 1500;

} else {

if (married || sex.equals("F")) {

premium -= 200;

}

if ((age >= 45) && (age < 65)) {

premium -= 100;

}

}

return premium;
}

Note: The unit tests were written using assertions with the input values of each test case and the expected output. For convenience the language chosen is Java, the Unit testing framework is Junit and the code coverage tool is Codecover.

Statement Coverage
To test all the statements is necessary to test the true and false outcomes of the first decision (first if)
	Test Case ID
	Description
	Inputs
	Expected outputs

	TC1
	An unmarried male of 20 years old
	Age = 20, Unmarried, Male
	2000

	TC2
	An married male of 50 years old
	Age= 50, Married, Male
	200

Table 4 Test cases required to satisfy 100% of statement coverage
	Unit tests
	Code coverage achieved

	public void testStatement(){

// TC1

pa1.setAge(20);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 2000);

// TC2

pa1.setAge(50);

pa1.setMarried(true);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 200);

}
	[image: image5.png]E) ce 26 sex.equals (M)

£ (() s (age < 65)) ¢

jems @ Javadoc (2, Declration [Boolean Anayzer [=8 Coverage 57 =

Statement Branch
-1000% —567%

05 %

Table 5 the unit tests satisfy 100% of Statement coverage. The color code has the following meaning: Green-Completely covered, Yellow-Partially covered, Red-Never reached (Codecover plugin for the Eclipse Java IDE)

As you see in the figure above, all statements were executed but not every outcome of each decision or condition has been exercised.
Branch/Decision Coverage
The decisions of the routine are:

	D1
	if ((age < 25) && !married && sex.equals("M"))

	D2
	if (married || sex.equals("F"))

	D3
	if ((age >= 45) && (age < 65))

	Decision
	True Outcome
	False Outcome

	D1
	An unmarried male less than 25 years old
	A 25 year old or more, or a married, or a female driver

	D2
	A married or female driver
	An unmarried male driver

	D3
	A driver between 45 and 64 years old
	A driver less than 45 years old or 65 years old or more

Table 6 Input situations to exercise all decision outcomes

	Test Case ID
	Description

(Testing the outcomes)
	Inputs
	Expected outputs

	TC1
	D1T
	Age = 20, Unmarried, male
	2000

	TC2
	D1F,D2T,D3T
	Age= 45, Married, male (irrelevant)
	200

	TC3
	D1F,D2F,D3F
	Age = 35, Unmarried, male
	500

Table 7 Test cases obtained. Note: D#T means testing the true outcome of the related decision. D#F means testing the false outcome of the related decision.

	Unit tests
	Code coverage achieved

	public void testDecision(){

// TC1

pa1.setAge(20);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 2000);

// TC2

pa1.setAge(45);

pa1.setMarie(true);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 200);

// TC3

pa1.setAge(35);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 500);
}
	[image: image6.png]E) cs 26 sex.equals (M) ¢
» <

)

E) ss (age < 65)) ¢

ms | @ Javadoc |2 Declaration | [l Boolean Analyzer [Coverage £3 - (=1

Statement Branch.
-1000% -1000%

05 %

Table 8 the unit tests satisfy 100% of Branch/Decision coverage. The color code has the following meaning: Green-Completely covered, Yellow-Partially covered (Codecover plugin for Eclipse Java IDE)

As you see in the figure above, the conditions of the decisions are partially covered (yellow colored code) since all their possible outcomes were not tested.
Decision and Condition Coverage
	D1
	if ((age < 25) && !married && sex.equals("M"))

	D2
	if (married || sex.equals("F"))

	D3
	if ((age >= 45) && (age < 65))

The conditions of the decisions are:
	D1
	C1
	age < 25

	D1
	C2
	!married

	D1
	C3
	sex.equals("M")

	D2
	C4
	married

	D2
	C5
	sex.equals("F")

	D3
	C6
	age >= 45

	D3
	C7
	age < 65

	Condition
	True Outcome
	False Outcome

	C1
	A driver less than 25 years old
	A driver of 25 years old or older

	C2
	An unmarried driver
	A married driver

	C3
	A male driver
	A female driver

	C4
	A married driver
	An unmarried driver

	C5
	A female driver
	A male driver

	C6
	A driver of 45 years old or older
	A driver less than 45 years old

	C7
	A driver less than 65 years old
	A driver of 65 years old or older

Table 9 Input situations to evoke all condition outcomes

	Test Case ID
	Description

(Testing the outcomes)
	Input
	Expected output

	
	Decisions
	Conditions
	
	

	TC1
	D1T
	C1T,C2T,C3T
	Age= 20, Unmarried, Male
	2000

	TC2
	D1F
	C1F,C2T,C3T
	Age= 50, Unmarried, Male
	400

	TC3
	D1F
	C1T,C2F,C3T
	Age= 20, Married, Male
	300

	TC4
	D1F
	C1T,C2T,C3F
	Age= 20, Unmarried, Female
	300

	TC2
	D2F
	C4F,C5F
	Age= 50, Unmarried, Male
	400

	TC3
	D2T
	C4T,C5F
	Age= 20, Married, Male
	200

	TC4
	D2T
	C4F,C5T
	Age= 20, Unmarried, Female
	200

	TC2
	D3T
	C6T,C7T
	Age= 50, Unmarried, Male
	400

	TC5
	D3F
	C6F,C7T
	Age= 30, Unmarried, Male
	500

	TC6
	D3F
	C6T,C7F
	Age= 70, Unmarried, Male
	500

Table 10 Test cases obtained. Note: C#T means testing the true outcome of the related condition. C#F means testing the false outcome of the related decision

Note 1: The test cases were obtained following the advice given in the example 6.4 for this coverage criterion.

Note 2: Remember that sometimes the same input configuration can test more than one test case. So always try to optimize the number of test cases.

	Unit tests

	public void testDecisionCondition(){

// TC1

pa1.setAge(20);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 2000);

// TC2

pa1.setAge(50);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 400);

// TC3

pa1.setAge(20);

pa1.setMarried(true);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 300);

// TC4

pa1.setAge(20);

pa1.setMarried(false);

pa1.setSex("F");

assertEquals(pa1.getPremium(), 300);

// TC5

pa1.setAge(30);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 500);

// TC6

pa1.setAge(70);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 500);
}

Table 11 the unit tests satisfy 100% of decision and condition coverage. But the coverage tool used does not measure this criterion. However there are other tools that can measure this criterion.
With this set of unit tests each decision and condition takes each possible outcome at least once.
As you see to satisfy stronger criteria are needed typically more test cases. But the components become better tested and with less holes where defects can hide.

6.6 Unit testing following Structured testing technique and mapping to the steps of the task “Design or update unit tests cases and apply them”.
The purpose of the structured testing is automatically guarantee both branch/decision and statement coverage. The structured testing process consists of the following steps:
1. Derive the control flow graph from the software module
All structured programs can be built from three basic structures: sequential (e.g., assignment statements), decision (e.g., if/then/else statements), and iterative (e.g., while, for loops).
	Sequence
	Condition
	Iteration

	
	
	

Figure 5 Graphical representations for the three basic structures
Using these structures and a combination of them a control flow graph for the software under test can be developed.

	Routine
	Control flow graph

	1 public int getPremium() {
2
int premium = 500;
3
if ((age < 25) && !married && sex.equals("M")) {
4

premium += 1500;
5
} else {
6

if (married || sex.equals("F")) {
7

premium -= 200;
8

}
9

if ((age >= 45) && (age < 65)) {
10

premium -= 100;
11

}
12
}
13
return premium;
14 }
	

Note: There are commercial tools that will generate control flow graphs from code and in some cases from pseudo code.
2. Compute the graph’s cyclomatic complexity (C)
Once you have the control flow graph of the unit you want to test, you determine the minimum number of test cases needed to cover all the statements and decisions. This number is called cyclomatic complexity
 and is calculated by the following equation (assuming a single entry node and a single output node):

C = edges – nodes + 2

In our example, the cyclomatic complexity is: C = 9 – 7 + 2 = 4. You therefore need at least four test cases to satisfy this criterion.
Note: The step 1 “Obtain the exit criteria” of the task “Design or update unit tests cases and apply them” is set by default to satisfy Branch/Decision coverage, since it is the objective of structure testing.
3. Select a set of basis paths

To determine the set of basis paths
 you should follow this process:

· Pick a "baseline" path. This path should be a reasonably "typical" path of execution rather than an exception processing path.

· To choose the next path, change the outcome of the first decision along the baseline path while keeping the maximum number of other decisions the same as the baseline path.

· To generate the third path, begin again with the baseline but vary the outcome of the second decision rather than the first.

· To generate the fourth path, begin again with the baseline but vary the outcome of the third decision rather than the second. Continue varying each decision, one by one, until the bottom of the graph is reached.
· This pattern is continued until the basis path set is complete.

Following the steps from above and choosing as baseline A-B-G the resulting basis paths are:

· A-B-G

· A-C-D-E-F-G

· A-C-E-F-G

· A-C-D-E-G

4. Create a test case for each basis path
The next step is to create a test case for each path. This set of test cases will guarantee both statement and branch coverage. Note that multiple sets of basis paths can be created and are not necessarily unique. Each set, however, has the property that a set of test cases based on it will execute every statement and every branch.

	Test case ID
	Description (Path covered)
	Input
	Expected output

	
	
	Age
	Married
	Sex
	

	TC1
	A-B-G
	20
	False
	M
	2000

	TC2
	A-C-D-E-F-G
	45
	True
	M
	200

	TC3
	A-C-E-F-G
	50
	False
	M
	400

	TC4
	A-C-D-E-G
	30
	True
	M
	300

Note: The step 2 “Design the test cases” of the task “Design or update unit tests cases and apply them” is covered with this step.
Note: This set of test cases never tests the input Sex with the value = “False” and even so it covers the whole graph. To be stricter a Decision and Condition criterion could cover this issue

5. Execute the tests
This step can be divided into two sub-steps:

5.1. Code the unit tests

The unit tests for the test cases are
	Unit tests

	public void testBasisPath(){

// TC1 Path:A-B-G

pa1.setAge(20);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 2000);

// TC2 Path:A-C-D-E-F-G

pa1.setAge(45);

pa1.setMarried(true);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 200);

// TC3 Path:A-C-E-F-G

pa1.setAge(50);

pa1.setMarried(false);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 400);

// TC4 Path:A-C-D-E-G

pa1.setAge(30);

pa1.setMarried(true);

pa1.setSex("M");

assertEquals(pa1.getPremium(), 300);
}

Note: The step 3 “Code the unit tests” of the task “Design or update unit tests cases and apply them” is covered with this sub-step

5.2. Execute the unit tests
For the unit tests execution you can use a command line or a graphical test runner. At the end if some of them fail the framework will show you which one. So in that case you need to make the pertinent corrections. (See the example 6.7 for defect correction)
For this example all the unit tests passed.

	Test case ID
	Description: Path covered
	Input
	Expected output
	Pass/Fail

	
	
	Age
	Married
	Sex
	
	

	1
	A-B-G
	20
	False
	M
	2000
	P

	2
	A-C-D-E-F-G
	45
	True
	M
	200
	P

	3
	A-C-E-F-G
	50
	False
	M
	400
	P

	4
	A-C-D-E-G
	30
	True
	M
	300
	P

Note: The step 4 “Execute the unit tests” of the task “Design or update unit tests cases and apply them” is covered with this sub-step
Note: The step 5 “Analyze the results” of the task “Design or update unit tests cases and apply them” could be covered after this step. The structured testing process does not mention it but it would be implicit.
6.7 Defect correction
The following change to the source code of the example 6.5 injects a defect:

	Routine

	1 public int getPremium() {
2
int premium = 500;
3
if ((age < 25) && !married && sex.equals("M")) {
4

premium += 1500;
5
} else {
6

if (married || sex.equals("F")) {
7

premium -= 200;
8

}
9

if ((age > 45) && (age < 65)) {
10

premium -= 100;
11

}
12
}
13
return premium;
14 }

When the unit tests designed for Decision coverage are executed an error is revealed and one of the tests failed.

	Test Case ID
	Description
	Inputs
	Expected outputs
	Pass/Fail

	TC1
	An unmarried male driver of 20 years old
	Age= 20, Unmarried, Male
	2000
	P

	TC2
	A married driver of 45 years old
	Age= 45, Married, Male
	200
	F

	TC3
	An unmarried male driver of 35 years old
	Age= 35, Unmarried, Male
	500
	P

	Unit tests
	Test runner outcome for Junit

	public void testDecision(){

// TC1

pa1.setAge(20);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 2000);

// TC2

pa1.setAge(45);

pa1.setMarie(true);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 200);

// TC3

pa1.setAge(35);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 500);
}
	[image: image7.png]&0 Junit 57 £ Package Explorer| =0)
Finished after 0119 seconds <

O Ga"RE BB EE -

Runs: 4/4 8 Errors: 0 B Failures: 1

EEltetSatement - 1og240.ssurance PersonnehssureeTesBoteBlanc
& testDecision - log240.assurance PersonnessureeTestBoitBlanchy
{EltestCondition - log240 sssurance PersonnessurceTestBoieBlanc
EEltestDecisonContion - log240 sssurance PersomneAssurceTestic

Table 12 when executing the unit tests the Test runner shows a defect. Expected output: 200, Output obtained: 300
Since the error is not in the test method but in the implementation code. The next step is finding the location of the defect.
Line 9 if ((age > 45) && (age < 65)) {
Once you have found the defect, you should see if there is no other defect around the code. If it is not the case you should perform the fix and then run the set of unit test again to see if have not "broken" functionality that was previously working.
Line 9 if ((age >= 45) && (age < 65)) {
	Test Case ID
	Description
	Inputs
	Expected outputs
	Pass/Fail

	TC1
	An unmarried male driver of 20 years old
	Age= 20, Unmarried, Male
	2000
	P

	TC2
	A married driver of 45 years old
	Age= 45, Married, Male
	200
	P

	TC3
	An unmarried male driver of 35 years old
	Age= 35, Unmarried, Male
	500
	P

	Unit tests
	Test runner outcome for Junit

	public void testDecision(){

// TC1

pa1.setAge(20);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 2000);

// TC2

pa1.setAge(45);

pa1.setMarie(true);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 200);

// TC3

pa1.setAge(35);

pa1.setMarie(false);

pa1.setSexe("M");

assertEquals(pa1.getPrime(), 500);
}
	[image: image8.png]£ Package Explorer| =0
after 0135 seconds <

$Ga"RE BB EE -

Runs: 474 8 Errors: 0 8 Failures: 0

EltctSatement - 10g240.assurance PersonncAssureeT csBoitedlan
EEtestDecision - log20.assurance PersonneAssureeTestBoitelanch
EEltestCondition - oG240 sssurance PersonnessureeTestBoieBlanc
EEltetDecisonConition - log240 asurance PersomneAssureeTest

Table 13 once the defect is corrected the unit tests are executed again and they passed successfully.
Now that your component passed all your tests you should decide if you stop testing or continue creating more test cases. This depends on the exit criteria that your project manager asked you.
6.8 Test runners examples
Command line Test runner
The following is an example of running a unit test in rubyUnit from the command line:
>ruby testrunner.rb c:/examples/tests/MySuiteTest.rb

Loaded suite MySuiteTest

Started

....Finished in 0.014 seconds.4 tests, 5 assertions, 0 failures, 0 errors

>Exit code: 0

The first line is the invocation at the command prompt. In this example it is running the tests defined in MySuiteTest. The next two lines are the initial feedback as it starts up. The series of dots indicate progress, one per test completed. The last two lines are the summary statistics that provide an overview of what happened. Typically, the exit code is set to the total number of failed tests.

Graphical Test runner

The following are screenshots of two graphical test runners.
	[image: image9.png]Test Results.

»
T o @ cartest passea
4| & © UnctenTest passea
o @ orderTest passed
G| ¢ @ ProductTest FaILED
o f testUnvalia_vitn_empty_at
@ test_positive_price passed|
@ test_unique_titie1 passed
o @ AdminControllerTest passed
o @ InfocontrollerTest passed
o @ LoginControllerTest passed
o @ StoreControllerTest passed
¢ @ DslUserStoriesTest FAILED

Zusr/1ib/ruby/1.8/test/unit/autorunner

usr/Vib/ruby/1.8 /test/unit. rh: 278
Zusr/Vib/ruby/1.8/rake/rake_test_oads

Status: 500 Internal Server Error
Content-Type: text/ntnl

5) Error:
test_buying_a_product (UserStoriesTest,
NoMethotError: You have a nil object

usr/11b/ruby/Gens /L. 8/gens/acti onpacl
uSr/11b/ruby/ens/L.8/Gens/acti onpacl
uSr/11b/ruby/ens/L.8/Gens/acti onpacl
usr/11b/ruby/ens/1.8/gens/acti onpacl

—/LeST/iNtenrati on/user_stories_test.

usr/11b/ruby/Gens/L.8/Gens/act vesu
uSr/11b/ruby/Gens/L. 8/Gens/act vesu
usr/11b/ruby/gens/L.8/gens/acti onpack

uSr/11b/ruby/L.B/Test/uni t/testsuite.

e
| - I

< i

Figure 6. Test runner for Ruby on Rails

	[image: image10.png]o JUnit 53 _[E Package Explorer| = 8]
Finished after0.13 seconds <

Hlansa-
W 55 BEwos 0 Bl 0

EEltetSatement - 1og240.ssurance PersonneAssreeTesBrteblanc
EEltestDecision - log2A0.assurance PersonnessureeTestBoitelanchi
EEtestCondition - log240 sssurance PersonneAssurceTestBoieBlanc
EEtestDecisonContion - oG240 sssurance PersomneAssurceTestic
EEtestBassPath - log240 ssurance PersomneAssurceTestBoiteBlanct

Figure 7. Test runner for Junit4 in Eclipse Java EE IDE

6.9 C++ Example of an assertion macro
	#define ASSERT (condition, message){

if(!(condition)){

fprintf (stderr, “Assertion %s failed: %s\n”,

 #condition, message);

exit(EXIT_FAILURE);

 }

}

6.10 Unit tests life cycle

7. Checklist

Task Checklists

7.1 Assign task to the members of the work team

	(
	Have you obtained the software design documentation?

	(
	Have you selected a integration sequence strategy?

	(
	Have you detailed the project schedule?

	(
	Have you allocated tasks to members of the work team?

	(
	Have you defined exit criteria for unit testing?

7.2 Construct or update software components
	(
	Have you understood the detail design and component contribution?

	(
	Have you looked for functionalities available in the standard libraries?

	(
	Have you defined the logic of the component?

	(
	Have you followed the construction standard while coding?

	(
	Have you verified the component?

7.3 Design or update unit test cases and apply them
	(
	Have you obtained the exit criteria?

	(
	Have you designed the test cases?

	(
	Have you coded the unit tests?

	(
	Have you executed the unit tests?

	(
	Have you analyzed the results?

7.4 Correct the defects

	(
	Have you confirmed the defect?

	(
	Have you determined the location of the suspected error?

	(
	Have you looked for similar errors around the code you just found?

	(
	Are you correcting the error from the source and not just patched?

	(
	Have you verified the corrections?

	(
	Do your fix changes totally the design of the component? (If it does, say it to your technical leader).

Support Checklists

7.5 Code review checklist

Note: This checklist can be adapted to apply to the language you are programming in.

A tag is added in front of each item of the checklist to help accelerate the recording anomalies

	TAG - Subject
	Description

	(
	CR1 Complete
	· Verify that all functions in the design are coded and that all necessary functions and procedures have been implemented.

	(
	CR2 Logic
	· Verify that the program flow and all procedure and function logic is consistent with the detailed design.

	(
	CR3 Loops
	· Ensure that every loop is properly initiated and terminated.

· Check that every loop is executed the correct number of times.

	(
	CR4 Calls
	· Check every function and procedure call to insure that it exactly matches the definition for formats and types.

	(
	CR5 Declarations
	Verify that each variable and parameter:

· has exactly one declaration

· is only used within its declared scope

· is spelled correctly wherever used

	(
	CR6 Initialization
	· Check that every variable is initialized.

	(
	CR7 Limits
	· Check all variables, arrays, and indexes to ensure that their use does not exceed declared limits.

	(
	CR8 Begin-end
	· Check all begin-end pairs or equivalents, including cases where nested ifs could be misinterpreted.

	(
	CR9 Boolean
	· Check Boolean conditions

	(
	CR10 Format
	· Check every program line for instruction format, spelling, and punctuation.

	(
	CR11 Pointers
	· Check that all pointers are properly used.

	(
	CR12 Input-output
	· Check all input-output formats.

	(
	CR13 Spelling
	· Check that every variable, parameter, and key work is properly spelled.

	(
	CR14 Comments
	· Ensure that all commenting is accurate and according to standard.

	(
	CR15 Calculation
	· Check that all arithmetic operations and equations express what the algorithm indicate.

	(
	CR16 Data Base
	· Ensure that all connections are closed

· Verify that the driver connection is written properly

7.6 What the architect and designer should provide

Requirements
	(
	Should any requirement be specified in more detail before construction?

	(
	Are the inputs specified, including their source, accuracy, range of values, and frequency?

	(
	Are the outputs specified, including their destination, accuracy, range of values, frequency, and format (including web pages, reports, and so on)?

	(
	Are all the external hardware and software interfaces specified?

	(
	Is maximum memory/storage specified?

	(
	Are timing considerations specified, such as expected response time, processing time, data- transfer rate, and system throughput?

	(
	Is the level of security specified?

Architecture and Design

	(
	Are the most critical components or data design described and justified?

	(
	Is the database organization and content specified?

	(
	Is a strategy for the user interface design described?

	(
	Is a strategy for handling I/O described and justified?

	(
	Are the architecture’s security requirements described?

	(
	Is a coherent error-handling strategy provided?

7.7 Sub-task: Select the user interface standard
	(
	Have you planned the sub-task?

	(
	Have you obtained available interface standards?

	(
	Have you selected the interface standard?

	(
	Have you obtained approval from customer?

	(
	Have your programmers adopted the standard?

	(
	Have you verified the adoption of the standard?

8. Tool

8.1 Traceability Matrix
· Objectives:

· To maintain the linkage from the source of each requirement through its decomposition to implementation and test (verification).

· To ensure that all requirements are addressed and that only what is required is developed.

· Useful when conducting impact assessments of requirements, design or other configured item changes.
Note: A Traceability Matrix is a widespread used tool to implement the Traceability Record.

[image: image11.emf]Verified by:

Identification

Number

 Text of the

need

Text of the

requirement

Verification

method

Title or ID of

Use Case

Title or ID of

Code Module

Title or ID of

test

Procedure

Verification

Date

Name of person who

performed the

verification

Result of

verification

Traceability Matrix

Date (yy-mm-dd): _______________

Title of project:__

___________________________________ ________________________________ ___________________

 Name (Print) Signature Date (yy-mm-dd)

Approved by: ___________________________________ ________________________________ __________________

	Instructions

	The above table should be created in a spreadsheet or database such that it may be easily sorted by each column to achieve bi-directional traceability between columns. The unique identifiers for items should be assigned in a hierarchical outline form such that the lower level (i.e. more detailed) items can be traced to higher items.

	Unique Requirement Identification (ID)
	The Unique Requirement ID / System Requirement Statement where the requirement is referenced, and/or the unique identification (ID) for decomposed requirements

	Requirement Description
	Enter the description of the requirement (e.g., Change Request description).

	Design Reference
	Enter the paragraph number where the CR is referenced in the design documentation

	Module / Configured Item Reference
	Enter the unique identifier of the software module or configured item where the design is realized.

	Release Reference
	Enter the release/build version number where the requirement is fulfilled

	Test Script Name/Step Number Reference
	Enter the test script name/step number where the requirement is referenced (e.g., Step 1)

	Guideline
	Requirements traceability should:

· Ensure traceability for each level of decomposition performed on the project. In particular:

· Ensure that every lower level requirement can be traced to a higher level requirement or original source

· Ensure that every design, implementation, and test element can be traced to a requirement

· Ensure that every requirement is represented in design and implementation

· Ensure that every requirement is represented in testing/verification

· Ensure that traceability is used in conducting impact assessments of requirements changes on project plans, activities and work products

· Be maintained and updated as changes occur.

· Be consulted during the preparation of Impact Assessments for every proposed change to the project

· Be planned for, since maintaining the links/references is a labor intensive process that should be tracked/monitored and should be assigned to a project team member

· Be maintained as an electronic document

8.2 Code coverage tools
Links to the most popular coverage tools
	Tool
	Language
	Source

	CodeCover
	Java
	http://codecover.org/

	Cobertura
	Java
	http://cobertura.sourceforge.net/

	Bullseye
	C/C++
	http://www.bullseye.com/

	NCover
	C# .NET
	http://www.ncover.com/

	PHPUnit - Xdebug
	PHP
	http://xdebug.org/

8.3 Unit testing frameworks
Links to the most popular Unit testing frameworks
	Tool
	Language
	Source

	JUnit
	Java
	http://www.junit.org/

	NUnit
	C# .NET
	http://www.nunit.org/

	CppUnit 2
	C++
	https://launchpad.net/cppunit2

	PHPUnit
	PHP
	http://phpunit.sourceforge.net/

	DUnit
	Delphi
	http://dunit.sourceforge.net/

	PyUnit
	Python
	http://pyunit.sourceforge.net/

9. Reference to Other Standards and Models

This section provides references of this deployment package to selected ISO and ISO/IEC Standards and to the Capability Maturity Model IntegrationSM version 1.2 of the Software Engineering Institute (CMMI®
).

Notes:

· This section is provided for information purpose only.

· Only tasks covered by this Deployment Package are listed in each table.

· The tables use the following convention:

· Full Coverage = F

· Partial Coverage = P

· No Coverage = N

ISO 9001 Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	Clause of ISO 9001
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	7.3.2 Design and development inputs
d) other requirements essential for design and development.
	

	Sub-task: Define Construction Standards.
	
	
	Most of the cases they are not specified by customers, but are essential for some components.

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	7.3.1 Design and development planning

	It only includes communicating tasks.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	7.3.3 Design and development outputs.
a) meet the input requirements for design and development.
	

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	7.3.4 Design and development review

a) to evaluate the ability of the results of design and development to meet requirements, and

b) to identify any problems and propose necessary actions.
	

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	7.3.4 Design and development review

a) to evaluate the ability of the results of design and development to meet requirements, and

b) to identify any problems and propose necessary actions.
	

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	7.3.7 Manage design and development changes.
	

ISO/IEC 12207 Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	Clause of ISO/IEC 12207
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	7.1.2.3.1 Software requirements analysis.
7.1.2.3.1.1 The implementer shall establish and document software requirements (including the quality

characteristics specifications) described below.
b) Interfaces external to the software item.

k) User maintenance requirements.

	a) Only covers requirements that affect the Construction phase.
b) Is related with UI, and k) with Construction Standards.

	Sub-task: Select the User Interface standard.
	
	7.1.4.3.1 Software detailed design.

7.1.4.3.1.2 The implementer shall develop and document a detailed design for the interfaces external to the software item, between the software components, and between the software units. The detailed design of the interfaces shall permit coding without the need for further information.
	The UI standard will be useful when performing 7.1.4.3.1.2

	Sub-task: Define Construction Standards.
	
	7.1.5.3.1 Software construction.
7.1.5.3.1.5 The implementer shall evaluate software code and test results considering the criteria listed below. The results of the evaluations shall be documented.

e) Appropriateness of coding methods and standards used.
	Construction Standards will be useful when performing 7.1.5.3.1.5

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	6.3.1.3.3 Project activation.
6.3.1.3.3.3 The manager shall initiate the implementation and criteria set, exercising control over the project.

	This task only activates the Construction phase.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.1 The implementer shall develop and document the following:

a) Each software unit and database.

	

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.1 The implementer shall develop and document the following:

b) Test procedures and data for testing each software unit and database.

	

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.2 The implementer shall test each software unit and database ensuring that it satisfies its requirements. The test results shall be documented.

	

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	7.1.5.3.1 Software construction.

7.1.5.3.1.5 The implementer shall evaluate software code and test results considering the criteria listed below. The results of the evaluations shall be documented.

a) Traceability to the requirements and design of the software item.

	

CMMI Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	PA/Objective/ Practice of CMMI V1.2
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	Requirements Development (RD)
SG 1 Develop Customer Requirements

SP 1.2 Develop the Customer Requirements
	Constraints for verification and validation are not covered.

	Sub-task: Select the User Interface standard.
	
	
	Stakeholders of the Construction phase may provide them

	Sub-task: Define Construction Standards.
	
	
	Stakeholders of the Construction phase may provide them

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

GP 2.8 Monitor and Control the Process
	It only activates the plan execution.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design
	Covers subpractices 1. Use effective methods to implement the product components.

and
2. Adhere to applicable standards and criteria.

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design.
	Covers subpractice

4. Perform unit testing of the product component as appropriate.

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design.
	Covers subpractice

4. Perform unit testing of the product component as appropriate.

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	Requirements Management (REQM)

SG 1 Manage Requirements

SP 1.4 Maintain Bidirectional Traceability of Requirements

	It only covers the traceability of Components constructed.

10. References

	Key
	Reference

	[Code Complete]
	Steve McConnell, Code Complete, Second Edition, Redmond, Washington, Microsoft Press, 2004.

	[Art of Software testing]
	Glenford J. Myers, The Art of Software Testing, Second Edition, 2004.

	[Practitioner’s Guide]
	Lee Copeland, A Practitioner's Guide to Software Test Design, 2004

	[Defect Prevention]
	Marc McDonald, The Practical Guide To Defect Prevention, 2008

	[Introduction to Software Testing]
	Paul Ammann & Jeff Offutt, Introduction to Software testing, 2008

	[Testing Computer Software]
	Cem Kaner, Testing Computer Software

	[Pratical Software Testing]
	Ilene Burnstein, Practical Software Testing, 2002

	[SE Support Activities for VSE]
	Vincent Ribaud, Software Engineering Support Activities for Very Small Entities, 2010

	[Application of ISES in VSE]
	Claude Y. Laporte, The application of International Software Engineering Standards in Very Small Enterprises, 2008

	[A SE Lifecycle Standard for VSEs]
	Claude Y. Laporte, A Software Engineering Lifecycle Standard for Very Small Enterprises, 2008

	[Misuse Code Coverage]
	Brian Marick, How to Misuse Code Coverage, 1999

	[IEEE 1012-2004]
	IEEE 1012-2004 IEEE Standard for Software Verification and Validation, IEEE Computer Society

	[ISO/IEC 12207]

	ISO/IEC 12207:2008 Systems and software engineering – Software life cycle processes.

	[ISO/IEC TR 29110-5-1-2]
	ISO/IEC TR 29110-5-1-2:2011, Software Engineering—Lifecycle Profiles for Very Small Entities (VSEs) – Part 5-1-2: Management and Engineering Guide – Generic Profile Group -Basic Profile

	[ISO/IEC 24765]
	ISO/IEC 24765:2010 Systems and software engineering vocabulary

	[ISO/IEC 20926]
	ISO/IEC 20926:2003 Software engineering -- IFPUG 4.1 Unadjusted functional size measurement method -- Counting practices manual

	[ISO/IEC 29881:2008]
	ISO/IEC 29881:2008 Information technology--Software and systems engineering--FiSMA 1.1 functional size measurement method,

	[IEEE 1233-1998]
	IEEE Guide for Developing System Requirements Specifications

11. Evaluation Form

	Deployment Package Construction and Unit Test Version 0.4
Your feedback will allow us to improve this Deployment Package, your comments and suggestions are welcomed.

	1. How satisfied are you with the CONTENT of this deployment package?

 Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 2. The sequence in which the topics are discussed, are logical and easy to follow?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 3. How satisfied were you with the APPEARANCE/FORMAT of this deployment package?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 4. Have any unnecessary topics been included? (please describe)

	 5. What missing topic would you like to see in this package? (please describe)
· Proposed topic:

· Rationale for new topic

	 6. Any error in this deployment package?

· Please indicate:

· Description of error :

· Location of error (section #, figure #, table #) :

	 7. Other feedback or comments:

	 8. Would you recommend this Deployment package to a colleague from another VSE?

 Definitely  Probably  Not Sure  Probably Not  Definitely Not

Optional

· Name:

· e-mail address : __________________________________

Email this form to: claude.y.laporte@etsmtl.ca or Avumex2003@yahoo.com.mx or thexaviermail@gmail.com
More

Less

Efficiency/Effort

Decision and Condition

Branch/Decision

Statement

No

Yes

No

Yes

No

Set the cost of the basic premium to $500

If the car driver is an unmarried man less than 25 years old

	A cost of $1500 is added to the basic premium

Else

	If the driver is married or is female

		A rebate of $200 is applied on the basic premium

	If the driver is 45 years old or more and less than 65 years old

		A rebate of $100 is applied on the basic premium

Return premium	

Yes

Return Premium

Premium = Premium - 100

Premium = Premium - 200

Is the age of the Driver equal or more than 45 years old and less than 65 years old?

Is the driver Married or is Female?

Is the driver an Unmarried Male less than 25 years old?

Start

End

Premium = Premium + 1500

Premium = 500

True

False

False

True

F

T

A

C

B

D

E

F

G<G

1-3

10

13

4

T

F

6

7

9

T

F

Yes

No

Yes

No

Fin

Exit criteria achieved?

Defect found?

Correct defect(s)

Execute unit tests

(Recommendation: Use some Test runner)

Code unit tests

(Recommendation: Use some unit testing framework)

Define test cases

(Recommendation: Follow some coverage criteria)

Start

� NIST, Department of Commerce's National Institute of Standards and Technology

� Selby, P., Selby, R.W., Measurement-Driven Systems Engineering Using Six Sigma Techniques to Improve Software Defect Detection, Proceedings of 17th International Symposium, INCOSE, June 2007, San Diego.

� These numbers refer to processes, activities, tasks of ISO/IEC 29110 Part 5-1-2

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110 Part 5-1-2

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110-5.1

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110-5.1

� Measure used in software testing. It describes the degree to which the source code of a program has been tested

� Path: A sequence of statement execution that begins at an entry and ends at an exit. (Lee Copeland, 2004)

� IDE - from Integrated Development Environment. Software application that provides facilities to programmers for software development, like: source code editor, compiler or interpreter, build automation, debuggers, etc.

� McCabe (December 1976). �HYPERLINK "http://www.literateprogramming.com/mccabe.pdf"�"A Complexity Measure"�

� A basis path set is the minimum number of independent, non-looping paths that can, in linear combination, generate all possible paths through the module. In terms of a control flow graph, each basis path traverses at least one edge that no other path does.

SM CMM Integration is a service mark of Carnegie Mellon University.

® Capability Maturity Model, CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

_1333217466.xls
Feuil1

		

						Traceability Matrix

						Date (yy-mm-dd): _______________

						Title of project:__

						Name (Print) Signature Date (yy-mm-dd)

						Verified by:		___________________________________ ________________________________ ___________________

						Approved by: ___________________________________ ________________________________ __________________

						Identification Number		Text of the need		Text of the requirement		Verification method		Title or ID of Use Case		Title or ID of Code Module		Title or ID of test Procedure		Verification Date		Name of person who performed the verification		Result of verification

						Legend:		Verification Methods: Test (T), Demonstration (D), Analysis (A), Simulation (S), Inspection (I)

								Verification Date: Year-Month_Day (YYYY-MM-DD)

								Result of Verification: Success (S), Failure (F)

