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Function Points Analysis: An Empirical Study
of Its Measurement Processes

Alain Abran, Member, IEEE, and Pierre N. Robiliard, Member, IEEE

Abstract—Function point analysis (FPA) was initially designed on the basis of expert judgments, without explicit reference to any
theoretical foundation. From the point of view of the measurement scales used in its measurement process, FPA constitutes a pot-
pourri of scales not admissible without the transformations imbedded in the implicit models of expert judgments. The results of this
empirical study demonstrate that in a homogeneous environment not burdened with major differences in productivity factors there is
a clear relationship between FPA’ primary components and Work-Effort. This empirical study also indicates that there is such a
relationship for each step of the FPA measurement process prior to the mixing of scales and the assignments of weights.
Comparisons with FPA productivity models based on weights confirm, on the one hand, that the weights do not add information and,
on the other, that the weights are fairly robust and can be used when little historical data is available. The full data set is provided for

future studies.

Index Terms—Function point analysis, productivity models, estimation models, measurement process, functional metrics.

1 INTRODUCTION

UNCTION point analysis (FPA), developed by Allan Al-
brecht of IBM, was first published in 1979 [1], and, in
1984, the International Function Point Users Group (IFPUG)
was set up to clarify the rules, set standards, and promote
their use and evolution. FPA provides a standardized
methodology for measuring the various functions of a
software application. FPA measures functionality from the
user’s point of view, that is, on the basis of what the user
requests and receives in return.
The function points (FPs) are obtained by measuring the
software application from two distinct perspectives (Fig. 1):

1) The functional size, calculated by assigning weights
to each individual function. This will be referred to as
the functional size measurement process which pro-
duces the unadjusted function points (UFP). This per-
spective includes both a data function type measure-
ment process and a transaction function type meas-
urement process.

2) The value adjustment factor (VAF), calculated using
predefined general systems characteristics (GSC) to
assess the environment and processing complexity of
the software application as a whole. This will be re-
sferred to as the adjustment measurement process.

The value adjustment factor in 2) adjusts the functional
size determined in 1) to produce the adjusted function points
(AFP). This is referred to in Fig. 1 as the function points
measurement model.
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Process + Process

Fig. 1. Function points measurement model.

Over the years, various refinements have been made to
the 1979 initial description and, up until 1996, seven succes-
sive versions had been published (Table 1). The first three
addressed the structure of FPA, while the four IFPUG"
versions provided clarification of the rules and counting
guidelines.

TABLE 1
SEQUENCE OF OFFICIAL FPA VERSIONS

1 Albrecht 79 [1]
Albrecht 83 [2]
GUIDE 84 [3]
IFPUG 86 [4]
IFPUG 88 [5]
IFPUG 90 [6]
IFPUG 94 [7]

Njo|o|siw|N

The 1979 model had four function types, one set of func-
tion weights (Table 2, left-hand side) and 10 application
general systems characteristics (GSC), for a maximum value
adjustment factor of +25%. The 1983 model was expanded
to five function types, three sets of weights for each func-
tion type (Table 2, right-hand side) and 14 application gen-
eral systems characteristics, for a maximum value adjust-.
ment factor of +35%. :

1. IFPUG: International Function Point Users Group.
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TABLE 2
ALBRECHT 79 AND 83—-WEIGHTS
Albrecht 79 Albrecht 83

Function Types Weights Function Types Low Average High
1 ' Files 10 1 " Internal logical files 7 10 15

' I 2 ' External interface files 5 7 10
2 | Inputs 4 3 ' External inputs 3 4 6
3 ' Outputs 5 4 T External outputs 4 5 7
4 1 Inquiries 4 5 T External inquiries 3 4 6

TABLE 3

EXAMPLE OF A FUNCTION POINT COUNT—ALBRECHT 83 VERSION

Function Types No. Functions * Weights = UFP Complexity Adjustment Factor
Internal logical files 3*10=30 GSC 1to 11 =.00
External interface files 0*7=0
External inputs 2*4=8 GSC 1210 14 = .04 each
External Outputs 2*5=10
External Inquiries 5*4=20 Total = .12
Total UFP = 68 VAF = (.65 + .12) =.77
Adjusted Function points = UFP * VAF = 68 UFP * (0.77) = 52 AFP

TABLE 4
FPA oF PRIMARY COMPONENTS—IFPUG 1994
Types Abbreviation Definition

Data Element Type DET A unique user recognizable, nonrecursive field on an internal logical file or
external interface file.

Record Element Type RET A unique user recognizable subgroup of data elements within an internal
logical file or external interface file.

File Type Referenced FTR An internal logical file or external interface file read or maintained by a trans-
actional function type.

An example of a project count using the Albrecht 83 ver-
sion is presented in Table 3. The software measured in this
example contains three internal files, two inputs, twd out-
puts, and five inquiries, for a total of 68 unadjusted function
points (UFP) when all functions have an average weight clas-
sification. The total of the general system characteristics is
calculated as 0.12 (Table 3, right-hand side), with GSC 1 to 11
having no influence (value = 0) and GSC 12 to 14 rated as
significant with a degree of influence of 0.04 each. To get the
value adjustment factor (VAF), this adjustment factor of 0.12
is then added to 0.65 to fall within the adjustment range of
+35%. These two results, UFP and VAF, are then combined to
produce an adjusted size of 52 adjusted function points (AFP)
for this simplified example (Table 3, bottom line).

In the Albrecht 83 version, however, the assessment of
function-type complexity {low, average, or high) was a
subjective process. To transform this assessment into an
objective process consistent across individuals and organi-
zations, the GUIDE 84 version introduced a new dimension
to FPA: the function types were decomposed into primary
components and two-dimensional matrices with predeter-
mined ranges of values were used for classification pur-
poses. Table 4 presents the definitions of FPA primary
components, and Table 5 presents the two-dimensional
matrix designed for the data-type functions (internal logical
files and external interface files).

The four subsequent versions published by IFPUG pro-
vided further clarification of the rules, guidelines and criteria,

TABLE 5
MaTRIX STRUCTURE DESIGNED IN GUIDE 84
FOR DATA-TYPE FUNCTIONS

Record Element Data Element Types
Types (DET)
(RET) 11019 20 to 50 51+
1 L L A
2t05 L A H
6+ A H H
L = Low; A = Average; H = High

but did not introduce any change to the structure itself of
FPA measurement process. The current official version,
IFPUG 94, still uses the Albrecht 83 function types and
weights, as well as the GUIDE 84 matrices.

Most publications on FPA have addressed issues that are
not related to its structure, such as comparisons with other
software metrics based on lines of code [2], the accuracy of
estimates [8], the consistency of the counts when made by
different counters or the inter-rater reliability [9], [10], [11],
[12], and productivity analysis [8], [13], [14], [15], {16]. Only
a few authors have reviewed FPA methodology and identi-
fied some of its weaknesses in areas such as domain of ap-
plicability, the structure of its primary components, and the
impact of the adjustment algorithm [17], {18], [19], [20].

Function points were described by Albrecht as follows: “a
dimensionless number defined in function points, which we have
found to be an effective relative measure of function value delivered
to our customer” [1]. However, there is a descriptive disso-
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nance in saying that the size of an application can be ex-
pressed through a “dimensionless number.”

Measures should be supported by the discipline of
measurement theory and a measure should always repre-
sent a mapping to a specific model: An attribute can be
measured if there is a mapping from an empirical relation
system into a numerical relation system [21].

An implicit hypothesis in Albrecht’s original definition
of function points and in his empirical study with 22 proj-
ects seems to be that it explains the relationship of the work
effort required to deliver these functions. In his empirical
study, the work effort is used as the independent variable
in lieu of the “value delivered to the customer.” This has been
made possible through the assignment of weights to the
functions and certainly qualifies as an implicit transforma-
tion in the size measurement of a software application.

The research issues discussed in this paper can then be
stated as follows: Where does FPA stand with respect to
measurement systems, and what are the validity and im-
pact of each of its measurement step with respect to the
work-effort relationship? The domain of this analysis is
limited to these issues, within the constraints of the empiri-
cal designs, as opposed to the more global issue of general
productivity and estimation models.

In this paper, function point analysis (FPA) and function
points (FP) interpretation are reconsidered from a meas-
urement perspective and the issue of the implicit models is
addressed, as well as the measurement process itself with
respect to the measurement scales and transformations in
all the measurement steps. In this research work, there is no
attempt to describe these relationships. The research objec-
tive is strictly limited to verifying the external manifestation
of the existence and impact of the implicit transformations.

Section 2 presents an analysis of FPA from a measure-
ment perspective. It includes an analysis of the measure-
ment steps in the data measurement process: for each meas-
urement step, the scale is identified and verified against the
admissible mathematical transformations.

Section 3 presents a summary of published empirical evi-
dence of the relationship between function points and work
effort. Section 4 presents the empirical designs: the historical
database and the methodology for the study of projects that
qualify for a homogenous development environment unbur-
dened by major differences in productivity factors. Section 5
present the statistical analysis of productivity models based
on the primary components of FPA, prior to the mixing of
scales. This is followed in Section 6 by analyzes of productiv-
ity models built with variables which takes into account the
mixing of scales through the assignments of weights.

The interpretation of the results is presented in Section 7
which suggests that each FPA step adds information and
represents transformations which maintain, and often im-
prove, the relationship with respect to work effort.

2 ANALYSIS OF FPA MEASUREMENT PROCESS

The objectives in this section are twofold: to identify which
measurement scales {(nominal, ordinal, interval, and ratio)
are integrated in the formal measurement process of FPA,
and to analyze how they are transformed through the vari-
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ous steps of this measurement methodology. This approach
was also applied in [22], [23] for the analysis of lines of code
complexity metrics. This section presents a summary of
results discussed in [24], [25], [26].

FPA is modeled from a measurement perspective in Fig. 1:
the data measurement process, the transaction measurement
process, and the adjustment measurement process. These are
themselves complex processes [25]. Only the data meas-
urement process is used for illustrative purposes in this
section.

2.1 FPA Data Measurement Process Model

The data measurement process is decomposed into five

steps (Fig. 2):

F1). The first step takes as input the application/project
documentation and produces as output the list of logical
files. It should be noted that while this measurement
view is described in the FPA measurement methodology
in terms of rules and guidelines, its basic relationships
have not been formally analyzed.

F2). The second step analyzes the boundary between the
software application/project being measured and either
external applications or the user domain in order to clas-
sify the logical files into internal logical files or external
interface files. The output of this process consists of sub-
lists of internal logical files (ILF) and external interface files
(EIF).

F3). The third step counts the actual number of data element
types (DET) and record element types (RET) within each
file type, as defined in Table 4. Here, for the sake of clar-
ity, the term “data” refers to DET, and “record” refers to
RET.

F4). The fourth step applies the data algorithm with the fol-
lowing inputs: data counts (DET), record counts (RET),
data matrix structure (Table 5) and data weights (Table 2).
The output of this process is a list of points for all logical
files.

F5). The last data measurement step consists in adding all
points from step F4) to produce the unadjusted data count.

2.2 Measurement Scales Analysis
The measurement scales and the mathematical operations
permitted for each scale are summarized as follows.

1) Nominal Scale. This scale is used to name objects or
events for identification purposes only, and there are
no quantitative implications associated with it. Only
nonparametric statistics can be used.

2) Ordinal Scale. This scale is used to order or rank items,
based on a criterion that can be subjective or, prefera-
bly, objective. Rank order statistics and all that apply
to the nominal scale can be used.

3) Interval Scale. This scale is used to determine the dif-
ference between the ranks; it is continuous between
two end-points, neither of which is necessarily fixed.
With this scale, the items can be distinguished and
ranked, and the differences between ranks measured.
Arithmetic mean and all statistics that apply to the
ordinal scale can be applied.
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Fig. 2. Data measurement process.

4) Ratio Scale. With this scale, no negative values can be
used to multiply measurement values. Percentage cal-
culation and all statistics that apply to the interval
scale can be applied.

5) Absolute Scale. In addition to the properties of the ratio
scale, the absolute scale has a unique origin from
which to begin the measuremént. Within this scale,
entities can be counted.

The uses of the measurement scales are examined by
means of the data measurement process shown in Fig. 2. In
FPA methodology, the algorithm of Step F4) for the calcu-
lation of points is usually described as a two-step calcula-
tion: a file is first classified as being of low, average, or high
complexity, then a number of points (weight) is assigned
depending on this level of complexity.

For example, a software application has three internal
logical files as the output of step F2) and the following
characteristics as the output of step F3):

Internal logical file 1:  has one record (RET) and four
data elements (DET),

Internal logical file2: has two records (RET) and 21
data elements (DET),

Internal logical file 3: has six records (RET) and 26

data elements (DET),

In Step F4), file 1 is classified as low based on Table 5 of
the FPA methodology and, based on Table 2 (Albrecht 83-
weights), a weight of 7 is then assigned; similarly, file 2 is
classified as average with a weight of 10 and file 3 is classi-
fied as high with a weight of 15. The addition of these
weights gives a total number of 32 points for the three in-
ternal logical files described above.
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This descriptive procedure is, however, an oversimplifica-
tion of the FPA measurement process. In order to identify the
types of scales and to analyze their uses in the data meas-
urement process, step F4) has been further broken down into
four substeps in [25] for the purpose of identifying the meas-
urement transformations occurring in the utilisation of the
data matrix structure and the assignment of weights.

The results of the scale analysis are summarized in Table 6:
For each step, the measurement objects and the mathematical
operations on these objects are identified (columns 1 to 3).
The next two columns indicate the type of scale of the objects
prior to the mathematical operation (column 4—Scale: From)
and after (column 5—Scale: To). The second column from the
right indicates the mathematical validity of the operation: it is
valid to stay within the same scale or to move to a scale with
fewer mathematical properties, for example, from an ordinal
scale to a nominal scale, as in step F4b). The right-hand col-
umn indicates if a change of scale has occurred within the
step and, if so, whether some information is being lost or
added within the transformation that has occurred. This last
column indicates only that such an implicit transformation
has occurred, but does not describe it.

It can be observed that the measurement scales from step
F3) to step F4b) move from the absolute scale to the ordinal
scale and then to the nominal scale. These transformations
are mathematically admissible, but with a loss of measure-
ment information and mathematical flexibility: while the
information in step F3) can be added, the only mathemati-
cal operation still admissible in step F4b) is the ability to
identify and name (without ranking or addition properties).

However, step F4c) moves in the opposite direction
along the measurement scales. The transformation from a
nominal scale to an ordinal scale is not derived from the
mathematical properties only.

Similarly, step F4d) moves in the opposite direction
along the measurement scales: it assigns a weight to a rank,
based on whether it is an internal logical file or an external
interface file. These weights represent relative absolute
numbers from 5 to 15, depending on the data function type,
and the end number obtained in this step is taken as a ratio
number in subsequent steps. Again, this transformation
from an ordinal scale to a ratio scale is not derived from the
mathematical properties only.

Finally, in steps F5a) and F5b), the results of the assign-
ments of weights to each data function are added together.

All the above comments on the uses of the scales apply
to the transaction measurement process and to the adjust-
ment measurement process of Fig. 1. In the final step of FPA
measurement methodology, all the points are added to-
gether, whether they come from internal logical files, exter-
nal interface files, inputs, outputs, or inquiries. It must be
noted that this has been made possible only by the assign-
ment of the weights to transform five different types of ob-
jects into one single object of a different type and of an un-
specified nature, that is, a function point (FP). Again, this is
done only through implicit transformations, and not
through a strict measurement process with the proper use
of the different types of scales.
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TABLE 6
USES OF SCALES IN THE DATA MEASUREMENT PROCESS
Scale: Scale: Math. Implicit
Step Objects Operation From To validity transformation
F3) Data Count Absolute Absolute Yes No
Record Count Absolute Absolute Yes No
F4a) Data Identify Absolute Ordinal Yes Yes and loss of
range information
Record Identify Absolute Ordinal Yes Yes and loss of
range information
F4b) Function of ranges of Position in Ordinal Nominal Yes Yes and loss of
(data, record) matrix information
F4c) Function of positionin | Name and Nominal Ordinal
matrix order
F4d) Function of perceived Assign Ordinal Ratio
values weights
F5a) Weights of internal Add Ratio Ratio
files
Weights of external Add Ratio Ratio Yes No
files
F5b) Weights: internal + Add Ratio Ratio Yes No
external

The end results (unadjusted and adjusted function points)
become, therefore, very difficult to interpret: there are so
many dimensions involved and so many uses of different
types of scales that the end measure, which might look rather
simple and reasonable, is, in fact, a pot pourri that might not
have correct mathematical meaning. This confirms Eijogu’s
assertion that the end results may not be mathematically ad-
missible, especially with respect to units and dimensions [27].

However, the above analysis of the measurement scales
of FPA has identified the existence of implicit transforma-
tions (relationships) without which the FPA measurement
results would be invalid. The FPA measurement methodol-
ogy does not derive from a well-defined and proven theory:
currently, it is entirely empirically based on expert opinion.

The mapping, or measurement space, of FPA undoubt-
edly needs to be clarified if it is to be trusted as a valid
measurement system. The domain of relationships being
measured must be made more explicit if it is to be used
properly, and possibly modified to expand its domain of
applicability. In the next sections an approach is proposed
to explore FPA measurement space and the domain of the
relationships being measured.

3 EMPIRICAL EVIDENCE OF THE FP/WORK-EFFORT
RELATIONSHIP

Albrecht’s definition quoted in the introduction states that
Function points are “... found to be an effective relative meas-
ure of function value delivered to our customer.” This was dem-
onstrated in his research papers [1], [2] through an analysis
of the relationship between function points and work effort.

Various other researchers have verified that there is in-
deed a strong empirical relationship between the size of an
application measured with function points and work effort
[2], [8], [14], [15], [17], [18], [28]. Table 7 presents a sum-

mary of the regression coefficients (R%) of work effort rela-

tive to function points. Kemerer’'s and Desharnais’ results
concur in that they fall within the 0.50 to 0.55 range for the

Rz, while Albrecht’s results are much higher at 0.869. It was
pointed out [29], however, that three projects in Albrecht’s
sample were particularly large compared to the others, and

that without these three projects, the R® would be lower by
0.44 to 0.42. It should be noted, too, that the value adjust-
ment measurement process using the 14 general system

characteristics does not add much to the R® in either the

Kemerer or the Desharnais sample.

Empirical study on FPA and its relationship to work effort
has focused exclusively on the end product of the measure-
ment process: the total count of either the unadjusted or ad-
justed function points. Little empirical research has included
data on the intermediate steps of the FPA measurement
methodology. From the analysis of the measurement steps
and the empirical results on the FP/work-effort relationship,
an additional research question is defined as follows:

If FPA is a measurement system, rather than simply a

recipe for constructing a dimensionless number, then

each of the measurement steps, from the beginning to
the end result, has a specific meaning and contributes to
the measurement process.

If this is so, each of the measurement steps adds infor-
mation. Furthermore, if each step is valid, then not only is
the end result of the last step useful, but the intermediate
steps could also hold similar relationships. Some of the in-
termediate steps might possibly be even more meaningful
if, in subsequent steps, information is lost and not added.

4 EMPIRICAL DESIGNS

4.1 Sets of Independent Variables

In order to analyze both the validity and the impact of the
transformations in each of the measurement steps, 10 sets of
independent variables have been identified for the design
of productivity models based either on FPA primary com-
ponents or on the FP counts after the mixing of the scales.
These sets are listed in Table 8, together with the abbrevia-
tion of each variable.
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TABLE 7
EMPIRICAL RESEARCH ON THE FP/WORK-EFFORT RELATIONSHIP
Models Independent variable Comments R?
Albrecht 83 Adjusted FPs All 22 projects .869
Albrecht 83 Adjusted FPs Excluding three largest projects 42
[29]
Kemerer 87 Adjusted FPs .553
Unadjusted FPs 538
Desharnais 88 Adjusted FPs .540
Unadjusted FPs 498
Emrick 88 Adjusted FPs *Correlation Factor, instead of R® .66
TABLE 8
SETS OF INDEPENDENT VARIABLES FOR THE EMPIRICAL DESIGNS
No. of
independent
Basis variables The independent variables and their abbreviations
Primary 1 variable Total number of data elements (TDET)
components
Total number of logical groups of data elements’ (TGRE)
2 variables Total number of data elements and groups of elements (TDET + TGRE)
Subtotal of data and groups of data, in the Data Measurement Process only
(SDET-D and SGRE-D)
Subtotal of data and groups of data, in the Transactions Measurement Process only
(SDET-TR and SGRE-TR)
4 variables Subtotals of data and groups of data, in both the Data and Transactions Measurement
Processes
10 variables Subtotal of data and groups of data within each of the five function types
(DETIF—data element for internal files, GREIF—groups of elements for internal files, ...... )
Mixing of 1 variable Adjusted Function points (AFP)
scales: Unadijusted Function points (UFP)
weights 5 variables Subtotal of Function points for each of the five function point types (FP-IF: points for internal
files; FP-EF: Function points for external files; FP-IP: input; FP-OP: output; and FP-1Q: inquiry)

*Logical groups of elements = FTR for the transaction-type functions or RET for the data-type functions (GRE).

Using the primary components as a basis, five sets of in-
dependent variables were identified. The first two have
only one independent variable: Either the total number of
data elements (the DET on the horizontal axis of the FPA
matrix structure of Table 5), or the total number of logical
groups of data elements (the RET on the vertical axis of the
FPA matrix structure of Table 5). The third set includes
both data elements and logical groups of data elements into
a 2-variable set. The next three sets look into the two differ-
ent function-type groups—data and transactions, first indi-
vidually with 2-variable sets, and then combined into a 4-
variable set. The last set using FPA primary components as
its basis is a 10-variable set which investigates the implicit
model of five function types (internal logical files, external
interface files, inputs, outputs, and inquiries)

The next three sets of independent variables (lower por-
tion of Table 8) includes variables based on the FPA formula
after its mixing of scales and assignment of weights. The first
two sets are the standard 1-variable models found in the lit-
erature with either the unadjusted Function points (UFP) or
the adjusted Function points (AFP) as the independent vari-
able. The last set is a 5-variable model which utilizes the
subtotals of UFP for each of the five function types.

For our empirical designs, each set will then be used to
derive a productivity model based on the least-square re-
gression technique using the SAS statistical package. For
each of the regression models derived, the following four
statistics will be presented: the standard error of the esti-
mate (expressed in number of days), the coefficient of
variation with respect to the actual mean of the dependent
variable (expressed in percezntage), the coefficierzlt of single
or multiple determination R”, and the adjusted R" (the latter
is more relevant when there is a large number of independ-
ent variables). The productivity models derived from these
sets will then be used to verify the existence of the implicit
relationships, and the degree of them, throughout the FPA
measurement process.

4.2 Empirical Data Set :

An historical database of 37 projects (1986-1990) of a major
Canadian financial organization was used to carry out the
empirical designs. During the data collection period, this
organization was using the FPA rules as documented in the
work-in-progress of the IFPUG standards committee, which
were later published in the IFPUG 90 version [6]. All of the
IFPUG 90 rules were applied in the data collection process,
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with the following exception: the primary components
were identified based on the entity/relation model de-
scribed in [7], [17].

This data set is illustrated in Fig. 3, with the unadjusted
Function points on the x-axis (min: 39 FP, max: 1,542 FP), and
the actual effort-days on the y-axis (min: 52 days, max: 924
days). The average work effort (WE) size of these 37 projects
is 362 days and the average functional size is 213 FP.

1000
900 +
800 | o
700 |
600 | °

500 | @09 o
400 | ®

300 |
200 |

Actual effort-days

0
£o

100 +
o
0

o] 200 400 600 800 1000 1200 1400 1600

Unadjusted Function Points

Fig. 3. The full data set of 37 projects.

The model adequacy was analyzed, or the explanatory
power of the independent variable in accounting for the
variability of the dependent variable, typically measured by
the coefficient of determination R” [35). The coefficient of
determination R with the adjusted function points (AFP) as
the independent variable is 0.47 for the data set of 37 obser-
vations (Table 9). This value of the R* can be compared to
published results, as illustrated in Table 7. The standard error
is large at 171 days: the standard error deviation is, therefore,
47% of the average value of the actual days.

4.3 Identification of a Homogeneous Data Set

To analyze this data set unencumbered by the impact of the
recognized major productivity differences between differ-
ent programming workbenches, the data set was divided
into two: 33 projects developed on the IBM mainframe and
four projects developed on minicomputer platforms and
different programming workbenches (IBM S/36 and AS/
400 minicomputers).

After an analysis of the 33 mainframe-based projects, 32
of these were classified as major enhancements to existing
transaction-based software applications. A single project
developed a totally new software application, non-
transaction-based, using new technology and by-passing
the in-house standard development methodology; further-
more, this new application did not meet user requirements

and was never used. This observation was, therefore, con-
sidered to be an outlier and discarded.

This reduced data set of 32 observations corresponds
closely to the characteristics of a homogeneous develop-
ment environment as defined in [30], [31]: Many similar
projects developed for the same application domain and a
standard development process model used over the data
collection period. These 32 observations correspond to proj-
ects developed in a homogeneous development environ-
ment unburdened by major differences in production and
quality factors.

To investigate the research questions, additional infor-
mation was required from the data set: the end results in
terms of total FP counts were not sufficient, and the inter-
mediate results of each step of the FPA measurement proc-
ess were required. Unfortunately, the detailed information
on the primary components (data element: DET; logical
groups of data elements: RET and FIR) for each of the
function types for 11 of the 32 observations was not avail-
able, and these 11 projects had to be left out for the purpose
of analysing each of the measurement steps. This left 21
observations available for the empirical designs. The aver-
age size in terms of number of days for these 21 projects is
332 days, slightly lower than the average of 362 days for the
37 observations.

The reduced data set of 21 projects is illustrated in Fig. 4
and consists of projects within the same order of magni-
tude: the x-axis is now in FP (min: 39 FP, max: 258 FP) and
the actual work-effort is in days on the y-axis (min: 52 days,
max: 554 days). The average size in terms of number of
days for these 21 projecis is 332 days, slightly lower than
the average of 362 days for the 37 observations. The visual
analysis of Fig. 4 indicates clearly a linear relationship be-
tween the independent and the dependent variables. The
size of the data set is similar to other samples discussed in
the literature, within a range of 15 to 30 projects [35].

4.4 Statistical Analysis of the Data Variables

This data set also has many of the characteristics of the
well-behaved data set no. 5 described in [35]; this type of
data set does not have the undesirable characteristics of
non-normal distributions with strong heteroscedasticity of
the variables and resulting in V-shaped data sets when rep-
resented on two axes with a dependent and an independent
variable (ref. Fig. 5), such as some of the data sets used for
analytical purposes in [33], [35].

The regression models reported here are based on the
least-squares methods used in [2], [8], [14], [15], [18], [26],
[28]. When data sets include outliers it is recommended in
[35] to build models based on more robust techniques such
as the least-square of balanced errors or the least-square of

TABLE 9

EmMpPIRICAL DATA SETS: AFP AND UFP MODELS

Adjusted Function Points Unadjusted Function Points
AFP
Standard Coef. of Standard Coef. of . o,
Data sets error variation R? Adj. R? error variation R AdjR
37 Obs. 171 47 0.47 — 168 46 0.49 —
21 Obs. 67 20 081 ] 080 f 67 | 20
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inverted relative errors. However, for data sets that are fairly
homogeneous and with no outliers problem, such as in the
case with the data set reported here, it is known, as reported
in [35], that the least-square method performs as well as the
other two proposed methods; this was illustrated in [35] with
four sets of observations coming from heterogeneous envi-
ronments (multiple organizations or multiple distinct divi-
sions within organizations), and a set of observations from a
single and highly standardized environment.

600
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Actual effort-days
n
8
o}
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o

:

0 50 100 150 200 250 300
Unadjusted Function Points

Fig. 4. The empirical data set of 21 observations.
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Fig. 5. Data set without normal distribution and with strong heterosce-
dasticity.

The building of productivity models based on primary
components was also discussed in [33]; however, the data set
in [33] has many characteristics of heterogeneous data sets
and caution must be exercised in the interpretation of the
reported results. Furthermore, the analytical perspective was
different: In [33], they investigated whether models based on

primary components improved the goodness of fit of the

models, whereas the research reported here investigate the
contribution of primary components in the FPA measure-
ment process and in the building of estimation models.

For the data set used for this research, an analysis was
done for the dependent and all independent variables to be
used in building the empirical productivity models. The
summary statistics of these variables are presented in Table
10: it includes for each variable, the mean, median, mini-
mum and maximum values, skewness and kurtosis factors
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as well as the Shapiro-Wilk statistics W and Prob. < W for
the test of normality. For 20 of the 23 variables, the W value
is high and parametric tests such as regression analyzes are
appropriate; for only three variables with W values be-
tween 0.53 and 0.62 (SDET-D, DET-EF, DET-IP) caution
must be exercised when using regression techniques.

With respect to the independent variables, UFP and AFP
the regression models for this set of 21 projects have an R’ of
0.81 for both the ad]usted and the unadjusted FP models
(Table 9) and an adjusted R’ of 0.80. These results confirm the
relative accuracy of the graphical analysis of Fig. 4, which
exhibits a strictly increasing linear relationship between un-
adjusted function points (UFP) and work effort.

5 PRobpucTIiVITY MODELS BASED ON PRIMARY
COMPONENTS

The results of the set of regression models based on the pri-
mary components of FPA (e.g., without the weights) are pre-
sented next. These productivity models are built using the
data from the homogeneous data set of 21 projects from Fig.
4. Independent variables of the models based on the count of
primary components (data elements and logical groups of
data elements) do not take into consideration any of the
transformations and algorithms described in FPA measure-
ment process; these variables are not derived from classifica-
tion within ranges of values, attribution of a level of com-
plexity from an assignment of weights; they do not require a
transformation of values through different types of scale. In
fact, the independent variables of this set of models are based
strictly on numbers of the absolute scale type.

To analyze the adequacy of each regression model, the
regression equation is presented in the tables as well as the
standard error of the estimate, the coeff1c1ent of variation,
the coefﬁc1ents of multiple determination R’ and the ad-
justed R”. In addition to the models adequacy and models
stability, the models aptness concerns were looked at, as
recommended in [35]. The models aptness is defined in [35]
as the conformity of the residuals to the assumptions that the
error values in the regression models are distributed as inde-
pendent, normal random variables with mean zero and
identical variances (normality, independence and ho-
moschedasticity) [34], [35]. Therefore, the statistics W and
Prob. < W of the residuals, the Fischer statistics F and p
value (F) of the models as well as the Student’s statistics T
and the (Prob. > IT1) for each of the individual parameters
of the models are presented in Appendices B and C.

5.1 Models with Primary Components Only

The two regression models in Table 11 have only one inde-
pendent variable and are based on either the total number of
data elements (TDET) or the total number of groups of data
elements (TGRE). The model with TDET as the independent
variable does not produce good coefficients (Adj. R™ = 0.34),
while the model with TGRE gives much better results (Adj.

R® = 0.62), but they are still noticeably lower than those of the
AFP and UFP models (Table 9: Adj. R? = 0.80). Even then,

these two models (with TDET and TGRE) are interesting
since they indicate that at the initial stage of the FPA meas-
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TABLE 10
STATISTICS OF THE DATA SET VARIABLES (WITH 21 OBSERVATIONS)
Normal
*Variable Mean | Median [ Min Max Skewness | Kurtosis w | p(W)
Dependent variable
Days [ 332 [ 369 [ 52 [ 544 [ 039 | —0.98 ] 093 | .1557
Independent variables WITHOUT WEIGHTS
TDET 397 329 43 1092 117 0.72 0.87 .0081
TGRE 65 56 13 186 1.59 4.45 0.87 .0093
SDET-D 135 94 4 782 3.26 11.88 0.59 .0001
SGRE-D 23 22 3 65 1.12 1.59 0.92 .0896
SDET-TR 262 214 39 988 1.99 5.02 0.82 .0007
SGRE-TR 42 33 10 121 1.33 2.81 0.88 .0146
DET-IF 51 33 0 265 2.26 5.29 0.72 .0001
GRE-IF 6 6 0 20 0.84 0.90 0.92 .0859
DET-EF 84 52 3 517 3.27 12.56 0.62 .0001
GRE-EF 17 15 1 55 1.34 1.83 0.87 .0074
DET-IP 96 42 0 784 3.58 14.2 0.53 .0001
GRE-IP 14 8 0 56 1.76 2.84 0.79 .0003
DET-OP 130 99 0 348 0.67 --0.57 0.93 .1235
GRE-OP 22 17 0 100 2.37 6.43 0.73 .0001
DET-1Q 36 13 0 172 1.81 2.31 0.70 .0001
GRE-IQ 6 4 0 30 1.99 4.88 0.79 .0003
Independent variables WITH WEIGHTS
FPIF 25 24 0 84 1.16 2.10 0.90 .0399
FPEF 44 34 5 112 0.72 -0.29 0.93 .1494
FPIP 28 21 0 107 1.56 2.29 0.84 .0018
FPOP 42 40 0 133 1.04 1.52 0.93 .1383
FPIQ 14 9 0 55 1.40 1.41 0.83 .0013
UFP 1 154 | 157 ] 39 [ 258 | —-0.10 | -1.21] 095 | .3204
*Refer to Table 8 for the description of the abbreviated variable names.
TABLE 11
MODELS WITH PRIMARY COMPONENTS—ONE VARIABLE
Equation Std Coef. of ) -

Variable WE: Work-Effort error variation R Adj R

TDET WE =0.31 * TDET + 207.8 123 37 0.37 0.34

TGRE WE =3.21 * TGRE + 123.7 93 28 0.64 0.62

urement process, there is already a Work-Effort relationship
with respect to the primary components, albeit not as good,
in a homogeneous environment.

The next model (Table 12) has two independent variables
and takes into account both the total of data elements and the
total of groups of data. All coefﬁments of the regression are
improved and, with an Adj. R® of 0.76, this model is almost as
good as the models with the totals of FP (AFP and UFP).

5.2 Models with Primary Components by Function
Groups
The next models (Table 13) are based on the segregation of
the primary components into two groups, one for the data-
type functions, the other for the transaction-type functions.
It can be observed that the 2-variable model for the trans-
action-type group is better (Adj. R R® = 0.65) than the corre-
sgondmg 2-variable model for the data-function type (Adj.
= 0.36). However, the 4-variable model is not better (Ad]
R2 = 0.74) than the 2-variable model of Table 12 (Adj. R
0.76) based solely on the total number of data elements and
groups of elements which does not discriminate between
either data- or transaction-type functions.

These models, which segregate the primary compo-
nents by function groups, do not, on the one hand, signifi-
cantly improve the reliability of the coefficients of regres-
sion but, on the other hand, do not invalidate Albrecht’s
implicit model of two different groups of functions (data
and transaction type).

5.3 Model with Primary Components by the Five
Function Types

The model with 10 independent variables (Table 14) takes
into account Albrecht’s implicit model of five different
function types: the 10 variables are the number of data ele-
ments and the number of logical groups of data elements in
each of the five FPA function types. The results of this
model are interesting: the standard error at 68 and the coef-
ficient of variation at 21 are w1th1n the range of the AFP and
UFP models, while its Adj. R at 0. 79 is close to the 0.80 of
the former models. This adjusted R’ of 0.79 indicates that
even with 10 independent variables the regression model is
still reliable, but that cautlon should be exercised since they
differ from those of the R” of 0.90.
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) TABLE 12
MODEL WITH PRIMARY COMPONENTS—TWO VARIABLES
" Equation Std Coef. of - ,
Variables WE: Work-Effort error variation R Adj R
TDET.and TGRE WE = 0.20 TDET + 2.71 TGRE + 74.94 74 22 0.78 0.76
TABLE 13
MODELS WiTH DATA-TYPE AND TRANSACTION-TYPE FUNCTION GROUPS
Equation Std Coef. of . -
WE: Work-Effort error variation R Adj R
Data WE = 0.15 SDET-D + 6.01 SGRE-D + 173.44 120 36 0.43 0.36
(logical files)
Transactions | WE =0.22 SDET-TR + 3.66 SGRE-TR + 121.10 27
4 variables WE = 0.13 SDET-D + 3.30 SGRE-D + 0.26 SDET-TR 23
+2.31 SGRE-TR + 73.27
TABLE 14
MODEL WITH PRIMARY COMPONENTS BY FUNCTION TYPE
Regression Equation Std Coef. of
21 projects error variation
10 variables WE = 1.92 DETIF — 15.43 GREIF - 0.65 DETEF 68 21

+ 9.69 GREIQ + 55.28

+4.78 GREEF + 0.08 DETIP + 0.27 GREIP
+ 0.35 DETOP + 2.17 GREOP + 0.07 DETIQ

The results of this model are, again, very interesting from
several points of view:

1) Compared to the 2-variable model (TDET + TGRE),
this model, which differentiates the primary compo-
nents TDET and TGRE by function type, adds reli-
ability to the coefficients of the regression model.

2) It confirms the validity of Albrecht’s five-function-
type model, independently of the subsequent steps in
the methodology.

3) With respect to the 2- and 4-variable models, based on
the two different function groups (Data and Transac-
tion), the five-function-type model is more reliable,
and adds information to the measurement process.

4) With respect to the full Function point model (AFP
and UFP), the 10-variable model is as reliable for this
data set.

It should be noted in the above equation that the 10 de-
pendent variables represent the variable portion of the proj-
ect costs, or the slope of the regression line, while the con-
stant residual of 55.28 days can be interpreted as representing
the fixed costs of a project in this homogenous development
environment. It is worth mentioning that this data set derives
from an organization with a repeatable project management
process and a development life cycle methodology for all
development projects estimated at over 60 days of work ef-
fort. This project management structure represents a set of
management reports and controls not required from smaller
projects. The fixed costs associated with the project manage-
ment process put in place to reduce the uncertainties and
risks associated with large projects seems to be accurately
reflected by the residual of 55.28 days, or 16.6% of the aver-
age effort of 332 days for this sample.

The analysis of the residuals was carried out for each of
the previous models with the aid of diagnostics plots as
recommended in [35] with the residuals errors and the pre-

- dicted value on the axes: it confirmed the independence and

the homoscedasticity of the residuals (See Appendix B). The
analysis of the F and (Prob. < F) statistics for the models
and the T and (Prob > | T ) statistics for each variable of the
models (Appendix C) also confirmed the aptness of the
models.

6 MobDELS BASED ON FPA WEIGHTS

The results of the set of models based on the weights with
the mixing of scale types are presented next. The 1-variable
models based on either the unadjusted or adjusted FP (UFP
or AFP) have already been discussed in presenting the em-
pirical design in Section 4 (Table 9). This section will focus
on the model with five independent variables based on the
FP by function types: internal logical files, external interface .
files, inputs, outputs,and inquiries.

It was argued in [33] that the constituent parts of FP
should be independent and that there should not be any cor-
relation among the internal logical files (FPIF), the external
interface files (FPEF), inputs (FPIP), outputs (FPOP), and in-
quiries (FPIQ)). However, when building multiple-variable
models it should be verified that one variable is not an exact
substitute for another one (e.g., that the correlation coefficient
between the two variables is significantly different than 1)
rather than testing that they are totally independent (e.g.,
correlation = 0). When multiple variables are used to build
regression models, the analysis of each of the regression coef-
ficients will indicate how much each of the variables, inde-
pendently of the other variables, contribute to the explana-
tion of the relationship with the dependent variable.

The sample correlation coefficients between the depend-
ent and independent variables are presented in Table 15: it
can be seen that none are close to 1 {(or ~1) in pair-wise cor-
relation. The five independent variables can then be taken
into consideration for building a 5-variable model.
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TABLE 15
CORRELATION COEFFICIENTS BETWEEN FP TYPES
Days FPIF FPEF FPIP FPOP FPIQ
Days 1.0
FPIF 0.536 1.0
FPEF 0.494 —0.119 1.0
FPIP 0.506 =0.016 0.739 1.0
FPOP 0.449 0.064 0.166 0.018 1.0
FPIQ 0.482 0.541 —-0.075 0.055 —0.154 1.0
TABLE 16
MOoDEL WiTH THE FIVE FP TYPES
- Regression Equation Std Coef. of
WE: Work-Effort error variation
5 variables WE =219 FPIF + 1.70 FPEF + 1.41 FPIP 70 21
+1.99 FPOP + 3.64 FPIQ + 26.71

This 5-variable model (Table 16) takes into consideration
all the measurement steps of the Albrecht model, with the
exception of the last one which adds all types of function
points together. The results of this model are interesting: its

Adj. R’ at 0.79 is almost the same as the 0.80 of the AFP and

UFP models, and the standard error at 70 and the coeffi-
cient of variation at 21 are within the range of the former

models. The adjusted R’ of 0.79 indicates that even with
five independent variables, the regression model maintains
its reliability.

This model is particularly interesting for several reasons:

1) Because it includes all the transformations of FPA
measurement methodology with respect to range in-
tervals, complexity classification schema and assign-
ments of weights, it does not produce better coeffi-
cients of regression than the 10-variable model based
solely on the primary components.

2) This model does not, on the other hand, invalidate any
of the transformations of FPA measurement methodol-
ogy with respect to range intervals, complexity classifi-
cation schema and assignments of weights.

3) Albrecht’s 1983 weights are valid in this subset and
reference context. This also tends to confirm that the
scale. transformations, which are not valid when
viewed only from a mathematical standpoint, are car-
ried out through implicit valid transformations.

4) The transformations and weights do not add infor-
mation for this data set from a homogeneous devel-
opment environment.

5) The last step in the FPA measurement methodology
which adds all function-type points together to re-
duce them to a single number, UFP or AFP, does not
improve significantly the regression coefficients
(Table 9: Adj. R = 0.80; Table 15: Adj. R’ =079). In
fact, they are slightly increased, albeit not by much.

6) The results of the full FPA model (Table 9), based on
the sets of weights determined by debate and trial on
the Albrecht 79 data set, are nevertheless surprisingly
reliable. This would lead to the belief that they could
be fairly robust with respect to both the transforma-
tions of scale types and implicit models.

The analysis of the residuals was carried out for each of
the previous models with the aid of diagnostics plots as
recommended in [34], [35], [36] which confirmed the inde-
pendence and the homoscedasticity of the residuals
(Appendix B). The analysis of the statistical tests for the F
and p(F) tests for the models and the T and p(T) tests for
each variable of the models (Appendix C) also confirmed
the aptness of the models.

8 SUMMARY AND CONCLUSIONS

The various models and statistical tests utilized have
probed the impact of each of the measurement steps of FPA
with respect to the work-effort relationship in the reference
context of a set of 21 projects in a homogeneous develop-
ment environment characterized as follows: a mainframe
workbench, MIS applications, transaction-based applica-
tions, major enhancement projects to existing applications
and a defined and stable development process. This type of
empirical designs represents a significant contribution to
the study of FPA: It allows an analysis of the internal
structure of its measurement process. This type of empirical
design allows to focus on a single dependent variable, the
work-effort, but through multiple models built for each of
the sequential steps of the FPA measurement process, both
prior and after the mixing of scales. :

The analytical and empirical results derived from this
type of empirical designs are summarized below:

1) In a homogeneous environment, the 2-variable model
based only on the count of the primary components
(Table 12) compares favourably with the full FPA
model (Table 9). For the data set under scrutiny, this
model confirms the existence of an implicit relationship
between the primary components and work-effort.

2) In a homogeneous environment, the model based on
both the count of the primary components and their
grouping in the two function groups (Table 13,
4-variable model: data- and transaction type func-
tions) is almost equivalent to the full FPA model.

3) In a homogeneous environment, the model based on
both the count of the primary components and their
grouping by the five-function-type implicit FPA
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model (Table 14, 10-variable model) is almost
equivalent to the full FPA model. This model con-
firms the existence and reliability of the implicit rela-
tionship in the five-function-type FPA model.

4) None of the implicit models and transformations pre-
sent in the changes of measurement scales and
weights (Tables 9 and 16) adds significant information
when compared to the results of the model based on
the primary components by function-type (Table 14).

5) By the same token, it confirms the robustness of the
FPA measurement process with its set of different
function-type structure and weights: when the details
on the primary components are not known, or not
kept in a historical database, the information on FP by
the five-function-type FPA productivity model can be
used for productivity and estimation analysis.

It should be noted, however, that the historical
database utilized for this research has many of the
same characteristics of the Albrecht database of proj-
ects. This limits the generalisation of this interpreta-
tion; further research would be required to verify the
pertinence, and robustness, of the weights within
homogeneous environments significantly different
from the database utilized in this study.

6) The last step in the FPA measurement process, which
adds the points of all five function types together

(Table 9) adds little to the relationship with work effort.

7) However, for comparison purposes across projects
and organizations, the single end number of the FP
measurement process is still very useful in reducing
the results back to a single (and dimensionless!) num-
ber: its simplifies the communication process from a
management perspective.

Based on this analysis of FPA, it is recommended to keep
all the levels of the detailed counts in the FP historical data-
bases: this will enable more accurate analyzes without the
burden of the effects of the implicit models and transforma-
tions. This recommendation also applies to software vendors
who are currently working on automated FP counters.

This research project confirms the benefits, as mentioned
in [32], of storing the basic values produced by the measure-
ment process of algorithmic metrics such as FPA: it will fa-
cilitate the control of the measurement process as well as
more in-depth analysis of the relationship(s) under scrutiny.

In conclusion this research work illustrates the impact of
the implicit models, and their usefulness, of each step of the
FPA measurement process for the study of the work-effort
relationship. These results can be significant for both pro-
ductivity analysis and for estimating using FP. Further-
more, this research work provides a methodology for in-
depth studies of algorithmic metrics utilized in productivity
and estimation models.

APPENDIX A — DETAILED DATA SET OF 21 OBSERVATIONS

TABLE A1
Variables
VARIABLE | DESCRIPTION

Upper part of the table
0oBS Sequential number of the observation in the R&D Database
IDAP Identification number of the observation given by the organization
LEF Number of Data Element Type (DET) for the External Logical Files
NEF Number of Record Element Type (RET) for the External Logical Files
PEF Number of points for the External Logical Files
LIF Number of Data Element Type (DET) for the Internal Logical Files
NIF Number of Record Element Type (RET) for the Internal Logical Files
PIF Number of points for the Internal Logical Files
LIP Number of Data Element Type (DET) for the Inputs
NIP Number of File Type Referenced (FTR) for the Inputs
PIP Number of points of the Inputs
LOP Number of Data Element Type (DET) for the Qutputs
NOP Number of File Type Referenced (FTR) for the Outputs
POP Number of points of the Outputs
LiQi Number of Data Element Type (DET) of the input part of the Inquiries
NIQ1 Number of File Type Referenced (FTR) by the input part of the Inquiries
LiQ2 Number Data Element Type (DET) of the ouptut part of the Inquiries

Bottom part of the table
0oBS Sequential number of the observation in the R&D Database
NIQ2 Number of File Type Referenced (FTR) by the ouptut part of the Inquiries
PlQ Number of points of the Inquiries
UFP Unadjusted Function points
GSC Value adjustment Factor
AFP Adjusted Function points
ACD Number of Actual Days
LIQ Selected number of the DET for the Inquiries
NIQ Selected number of FTR for the Inquiries
TELE Number of DET
TENT Number of FTR/RET
REF FP ratio for the Internal Logical Files
RIF FP ratio for the External Interface Files
RIP FP ratio for the Inputs
ROP FP ratio for the Outputs
RIQ FP ratio for the Inquiries
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TABLE A2
Data
OBS | IDAP | LEF { NEF | PEF | LIF | NIF | PIF | LIP | NIP | PIP | LOP | NOP | POP | LIQ1 | NIQ1 | LIQ2
1 1 52 17 69 32 12 38 251 56] 107 0 0 0 6 4 34
2 2] 138 48] 112 0 0 0 0 0 0 0 0 13 13 172
3 3] 143 16 75 40 6 24 42 21 36 99 17 35 10 2 11
4 4] 111 27 84| 57 11 42| 105 24 41 133 17 45 24 9] 119
5 5 24 9 17 70 11 35 84 15 36| 178 42 71 25 5 66"
6 6 12 1 5 92 12 84 784 51 8i[ 204 16 51 ) 0 0
7 7 33 2 25 4 1 7 29 15 18 40 12 23 3 3 11
8 8] 103 8 57 34 4 17 57 8 18| 348 17 47 1 1 18
9 9 5 2 5] 22 6 21 44 12 24 68 7 23 2 2 25
? 10 11| 517 18 67f 265 5 29 90 1 21 66 22 40 0 0 0
f 11 24 49 14 29 79 8 31 78 17 51 320 24 83 2 1 64
12 25] 176 16 45] 199 20 61] 215 28 63[ 219 17 59 8 2| 160
13 27 78 13 34 6 1 7 7 7 21| 266 16 31 4 3 17
14 28 87 55 99 11 10 35 13 7 17 170{ 100 84 31 14 10
15 29 3 2 10 1 1 7 3 3 9 33 5 7 0 0 3"
16 33 44 17 30 57 5 271 112 8 24 116 25 64 0 0 o|| ‘
17 35 28 15 30 0 0 0 17 1] 4 50 9 17 0 0 0
18 36 59 3 30 33 7 17 41 1 4 58 10 18 3 1 4
19 37 65 28 55 0 0 0 2 2] 6] 246 64] 133 0 0 0
20 43 18 12 35 15 4 21 12 2 6 98 29 45 2 2 5
21 44 21 4 15 47 7 31 24 4 6 26 5 10 2 2 13
OBS [ NIQ2 | PIQ | UFP | GSC | AFP | ACD | LIQ | NIQ | TELE | TENT | REF | RIF | RIP { ROP | RIQ
1 11 19] 233 87 203] 418 34 11| 369 96 30 16 48 0 8
2 30 55| 167 79] 132| 4e8] 172 30] 310 76 67 0 0 0 33
3 6 9] 179 80] 143] 360 11 6] 335 66 42 13 20 20 5
4 16 43| 255 80] 204] 531 119 16] 525 95 33 16 16 18 17
5 9 22| 181 8o 145 471 66 9] 422 86 9 19 20 39 12
6] -0 o] 221 85| 188| 525] O o] 1092 80 2 38 37 23 0
7 5 80 80 64 225 11 5] 117 35 31 9 23 29
8 2 5] 144 79| 114] 229 18 2] 560 39 40 12 13 33
9 4 10 83 87 72| 143 25 4] 164 31 6 25 29 28 12
10 0 o] 157 86f 135] 369 0 o] 938 56 43 18 13 25 0
11 7 22] 216 66| 143] 416 64 7] 590 70 13 14 24 38 10
12 4 14] 242 72| 174] 428] 160 4] 969 85 19 25 26 24 6
13 11 39 132 78] 103] 377 17 11| 374 48 26 5 16 23] 30
14 5 23] 258 90| 232] 544 31 14" 312 186 38 14 7 33 9
15 2 6 39 80 31 52 3 2 43 13 26 18 23 18 15
16 0 o] 145 75 109] 400 0 o] 329 55 21 19 17 44 0
17 0 0 51 80 41| 187 0 0 95 25 59 0 8 33 0
18 2 3 72 89 64 198 4 2] 195 51 42 24 6 25 4
i 19 0 o] 194 74| 144] 363 0 o[ 313 94 28 0 3 69 0
20 2 9] 113 70 79] 195 5 2| 148 49 31 19 5 40 5
21 4 7 69 78] 54 69 13 4] 131 24 22 45 9 14 10
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APPENDIX B — ANALYSIS OF THE RESIDUALS OF THE LINEAR REGRESSION RESULTS

TABLE B1
MODELS BASED ON THE PRIMARY COMPONENTS (WITHOUT THE WEIGHTS)
’ RESIDUALS
Model and variables W Prob. < W
1 var: TDET 0.97 .6928
1 var.: TGRE 0.96 4169
2 var. TDETTGRE 0.94 .1674
2 var.: SDET-D, SGRE-D 0.99 .99
2 var.: SDET-TR, SGRE-TR. 0.96 43
4 var. 093 .1587
10 var. 0.91 .0590
’ TABLE B2
MODELS BASED ON THE UFP (WITH THE WEIGHTS)
RESIDUALS
Model and variables w Prob. <W
1 var: UFP 0.94 .1949
5 var. 0.94 .2240
APPENDIX C — LINEAR REGRESSION RESULTS
TABLE C1
MODELS BASED ON THE PRIMARY COMPONENTS (WITHOUT THE WEIGHTS)
Model and . MODEL VARIABLES
variables R Adj. R? F Prob.<F | Variable | Coef. T Prob. < T
1 var: TDET 0.37 0.34 11.26 .0033 | TDET 0.31 3.356 .0033
Constant 207.82 4.55 .0002
1 var.: TGRE 0.64 0.62 33,55 .0001 | TGRE 3.21 5.79 .0001
Constant 123.67 2.99 .0074
2 var: 0.78 0.76 32.40 .0001 | TDET 0.20 3.45 .0028
TDET and TGRE 2.71 5.89 .0001
TGRE . Constant 74.94 2.09 .0507
2 var.: 0.43 0.36 6.74 ,0065 | SDET-D 0.15 0.89 3819
SDET-D and SGRE-D 6.01 3.31 .0039
SGRE-D . constant 173.44 3.43 0030
2 var.: 0.69 0.66 19.88 .0001 | SDET-TR 0.22 2.23 .0390
SDET-TR and SGRE-TR 3.65 4.37 .0004
SGRE-TR ’ constant 121.10 3.13 .0057
4 var. 0.79 0.73 15.19 .0001 | SDET-TR 0.26 2.85 0116
SGRE-TR 2.31 2.37 .0306
SDET-D 0.13 1.23 2354
SGRE-D 3.29 2.11 .0510
constant 73.27 1.95 .0689
10 var. 0.90 0.79 8.72 0.0010 | DET-IF 1.92 1.58 1456
GRE-IF -15.43 [ -1.69 .1220
DET-EF -0.65 | -1.08 .3037
GRE-EF 4.78 1.81 .0995
DET-IP 0.08 0.39 .7048
GRE-IP 6.27 2.37 .0391
DET-OP 0.35 1.83 .0966
GRE-OP 217 1.85 .0945
DET-IQ 0.08 0.10 .9215
GRE-IQ 9.69 0.79 .1031
constant 55.26 1.39 .1960
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TABLE C2
- MODELS BASED ON THE UFP (WITH THE WEIGHTS)
Model
and MODEL VARIABLES

Variables R? Adj. R? F Prob.<F | Variable Coef. T Prob.<T

1 var: 0.81 0.80 83.48 .0001 UFP 1.95 914 | - .0001

UFP constant 30.85 0.86 4023

5var. .84 .78 15.48 .0001 FPIF 217 1.84 .0850
FPEF 1.72 2.75 0149
FPIP 1.44 1.67 1162
FPOP 1.99 3.91 0014
FPIQ 3.59 2.88 0114
constant 26.00 0.67 5142
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