Engineering & Economics Concepts for Understanding Software Process Performance (Chapter 2 – Software Project Estimation)

Alain Abran

(Tutorial Contribution: Dr. Monica Villavicencio)

Topics covered

- **1**. The production process
- 2. Engineering & Management perspective
- **3.** Simple quantitative process models
- 4. Quantitative models & Economics concepts
- **5.** Datasets and distributions
- 6. Explicit & implicit variables
- 7. Multi-dimensional vs multiple simpler models

2.1 The production (development) process

Concerns about the development process

- How can we figure out the performance of a software development process?
- How can we build quantitative models of development processes?

The development process can be modeled as a production process.

The production process

- Process order
- Inputs
- Process activities
- Outputs

A process order

Engineering plans

http://homearchitecturedesign.com/architecture-house-plans/luxury-architecture-house-plans-on-architecture-with-modern-houses-architectural-plans-home-design-ideas-dokity/

Requirements (Ex. UML Diagrams)

 $[\]label{eq:http://vustudents.ning.com/group/cs619finalproject/forum/topics/complete-information-about-srs-document-and-other-project$

Inputs

Resources for construction

http://imgkid.com/construction-worker-tools-clip-art.shtml http://imgkid.com/laying-bricks-clipart.shtml

Human Resources

http://openexhibits.org/downloads/

Activities

Construction activities

http://www.energyland.emsd.gov.hk/en/building/assessment/

http://www.atksolutions.com/articles/software_devel opment_life_cycle.html

9

Outputs

A house

http://osc-vector.com/tag/colonial-house-clip-art

The software

http://www.clker.com/clipart-software.html

A production process of software

2.2 Engineering & Management perspective on a production process

Engineering & Management perspective

Monitoring & Control Process

- This process includes:
 - A collection of measurement results about the current and past performance of the process.
 - An analysis of the process performance against the project objectives and the goals of the organization.
 - Decisions to make adjustments (through evaluation and decision models)

Project objectives

- Specific to a project
- Generally multiple and concurrent:
 - Deliver a number of software functions,
 - within a specified time frame,
 - within a specified (limited) budget, and
 - with a level of quality (not always precisely specified)

In the Agile methodology, these correspond to Sprint objectives.

http://projectplanonline.com/risk-management/motherhood statements-project-management-objectives/

Organizational objectives

- Broader scope, not limited by the project objectives.
- Longer term view.
- Concerned with issues that extend beyond the life of the project.
 - Impact of the quality delivered by a development project over the many years of maintenance of the software being developed.
 - Usage of standards

https://www.managingamericans.com/business-templates.htm

2.3 Simple Quantitative Process Models

Productivity

Examples of productivity

- Web-based catalog application:
 - Average productivity of organization A = 30 Function Points per person-month
 - Average productivity of organization B = 33 Function Points per person-month.

The productivity ratio

Unit effort (unit cost)

Unit effort = Inputs / Outputs

Examples of unit effort

- Web-based catalog application:
 - Organization A:
 - 210 work-hours in a person-month
 - 30 Function Points per month
 - unit effort = 210 hours/30 Function Points = 7 hours/Function Point
 - Organization B:
 - 210 work-hours
 - 10 Function Points per month
 - Unit effort = 210 hours/10 Function Points = 21 hours/Function Point

Average

- The average productivity is built by:
 - calculating the productivity ratios of each individual project in a sample
 - adding them up, and
 - dividing the total by the number of projects in the sample

Characteristics related to the Average

- Minimum
- Maximum
- First quartile
- Last quartile
- 1 standard deviation
- 2 standard deviations
- Skewness
- Kurtosis

Standard deviation

- Shows how much variation (or dispersion) there is from the average.
 - Low standard deviation: the data points tend to be very close to the average.
 - High standard deviation: the data points are spread out over a large range of values.

Average

A normal distribution and standards deviations

26

Skewness and Kurtosis

- Skewness is a measure of the asymmetry of the probability distribution of a random variable with a real value.
 - It can be positive or negative
- Kurtosis is a description of the 'peakedness' of a distribution.

Linear & non-linear models

- Technique: statistical regression
- The Least-Squares Regression method is typically used to derive the regression equations.

Power models with exponents larger (blue line) or smaller than-1 (red line)

Nonlinear production models

- A model of a production process could be represented by any shape.
- Statistical techniques are available to model any shape.
- Example

Y (effort) = A * (Size)B Y = A + BX + CX^2

Production model with negative slope

2.4 Quantitative Models & Economics Concepts

Variable and Fixed costs

- Variable:
 - Expenses that depend directly on the number of outputs produced.
 - Ej: Number of work hours
- Fixed:
 - Expenses that not depend on the number of outputs.
 - Ej: Project management plans, change control procedures, quality controls, audits, etc.

Variable and fixed costs

A linear model

Y (effort in hours) = f(x) = a * Size + b

Size = number of Function Points (FP)

a = variable cost = number of hours per Function Point (hours/FP)

b = fixed cost in hours

Units:

Y (hours) = (hours/FP) x FP + hours = hours

Production models and fixed costs

Economies and diseconomies of scale

- Economies of scales
 - The increase in output units requires a smaller increase in input units.
- Diseconomies of scales
 - The increase in output units requires a larger increase in input units.

Economies and diseconomies of scale

2.5 Software Engineering Datasets & their Distribution

Wedge-shaped data sets

- Behaviour: Increasing dispersion of effort as size increases.
- Consequence (when all the projects are combined into a single set)
 - Size alone does not adequately describe the relationship with effort.
 - Additional independent variables are necessary.

Wedge-shaped data sets

Wedge-shaped data sets

- Behaviour: Increasing dispersion of effort as size increases.
- Consequence (when all the projects are combined into a single set)
 - Size alone does not adequately describe the relationship with effort.
 - Additional independent variables are necessary.

Wedge-shaped data sets: Causes of high dispersion in productivity

- The project data come from organizations with distinct production processes (distinct productivity behavior).
- The project data represent the development of software products with major differences (software domains, non functional requirements, etc.).
- The development process is out of control (unpredictable productivity performance from projects developed in an ad hoc manner).
- Data collected is based on post-event opinions, outside a sound measurement program.

Homogeneous data sets

- The dispersion of the effort as size increases is highly consistent.
- The increases in functional size explain 80% to 90% of the increases in effort.
 - All the other factors together explain only 10% to 20% of those increases.

under

control

Homogeneous data sets

Homogeneous data sets: Causes of low dispersion in productivity

- The project data come from a single organization with well implemented development standards.
- The project data represent the development of software products with very similar characteristics.
- The development process is under control, with predictable productivity performance (levels 4 or 5 of the CMMi model).
- The data were collected in an organization based on a sound in-process measurement program.

2.6 Productivity Models: Explicit & Implicit variables

Explicit variables

• The output (size) \rightarrow independent variable

• The input (effort) \rightarrow dependent variable

Implicit variables

- Team experience
- Project manager experience
- Software engineering environment platform
- Design methodology
- Quality controls

Size: Dominant variable in datasets

• Size is dominant if:

- Most of the implicit variables in a set of projects are similar for all the projects in the sample.
 - These variables should have minimal impact on the unit cost.
 - The functional size will be the dominant independent variable impacting size.

Example 1: Size as a dominant variable in a dataset

The TELON dataset in the ISBSG 1999 Release (Abran, Ndiaye, Bourque, 2007)

Example 2: Size as a dominant variable in a dataset

Homogeneous dataset of 21 projects (Abran 1994)

2.7 Multi-Dimensional vs Simpler Models

A classical approach

To build a single multi-variable estimation model and include in it as many cost drivers (i.e. independent variables) as possible (a 'catch-all' model).

Building models

- From available data.
- On opinions on cost-drivers.
- Multiple models with coexisting economies and diseconomies of scale.

Models from available data

- The builders have access to a reasonable set of data points on completed projects.
 - The largest possible number of variables included in the available dataset
 - Cost drivers (the authors' own definition)
 - Measurement rules for these costs drivers (authors' own definition)
 - Impact factors (authors' own assignment).
- Complex models with a large number of variables 'n'

Models built on opinions on cost-drivers

http://blog.capterra.com/much-membership-management-software-cost

- Feel good estimation models
- Based on practitioners' opinions
 - about various variables and the corresponding estimated impact.
- This 'expert judgment approach'
 - It is used when an organization does not collect data.

A more realistic approach

A single model cannot be the best in all circumstances.

There is a very large diversity of development processes, different mixes of costs drivers, and most probably different impacts of these cost drivers, depending on the contexts.

A more realistic approach

The classical concepts of economies and diseconomies of scale are applicable to software development processes.

Economies and diseconomies of scale

- Zone 1: The lower part of the wedge-shaped dataset represents the set of projects demonstrating large economies of scale.
- Zone 2: Middle of the wedge-shaped dataset.
- Zone 3: The upper part of the wedge-shaped dataset represents the set of projects demonstrating diseconomies of scale.

Economies and diseconomies of scale

• Three distinct productivity models within this single dataset:

f1(x) = a1*x + b1	zone 1
f2(x) = a2*x + b2	zone 2
f3(x) = a3*x + b3	zone 3

Discussion

Group discussion on Figure 2.19 with multiple candidate models from a wedge-shape dataset.

Exercises 1 to 5

Term Assignments 1 to 3