
INTRODUCTION

Software measurement is essen-
tial for effective software manage-
ment. Measures can be used to
quantify the software product as
well as the process by which it is
developed. Once these measures
are obtained, they can be used,
for example, to build cost estima-
tion models, productivity mod-
els, and cost-benefit models.

One important measure is the
size of a software product. There
are basically two kinds of size
measures: technical measures and
functional measures. Technical
measures are used to measure
software products and processes
from a developer’s point of view.
They can be used in efficiency
analysis to improve, for example,
the performance of designs.
Functional measures are used
to measure software products
and services from a user’s

perspective. Being independent
of technical development and
implementation decisions, func-
tional measures can therefore
be used to compare the produc-
tivity of different techniques and
technologies.

Function points, first intro-
duced by Allan Albrecht of IBM
in 1979 [1], are an example of a
functional size measure. FPs
measure the size of software in
terms of its delivered functional-
ity, measuring such objects as in-
puts, outputs, and files. Since
FPs were developed in an MIS
environment, their concepts,
rules, and guidelines are adapted
to MIS-oriented software. As a
result, FPs have gained a wide
audience in this specific area of
software applications and are
now being used extensively to,
among other things, analyze pro-
ductivity and estimate project
costs. Nevertheless, FPs have not

achieved the same degree of ac-
ceptance in other software areas.

In this article, we present a
measurement technique for ex-
tending FPs to take into account
functional characteristics specific
to real-time software. We call this
new measure the Full Function
Point (FFP). The FFP was de-
signed with the objective of re-
taining the actual FP quality char-
acteristics from a measurement
technique perspective, including
instrumentation, repetitiveness,
and applicability. This extension
takes into consideration current
industry practices in the design
of real-time software and what is
currently documented regarding
the user requirements from a
functional perspective.

The FFP is based on the ob-
servation that real-time software
has the following specific transac-
tional and data characteristics:

10101001010101000101010001010100001010101001010100100100001010101010100101010100010101000101010000101010100101010010010000101010 10010101001011001010100101
01001010101010101010101010101010101010101001010010100100000101010100101010101010101010101010101010101010100101001010010000010101 00010101001010001010100101
01010100010101010010101010011010110101001010101000101010001010100101010001010101001010101001101011010100101010100010101000101010 00010101010010001010101001
01010010010000101010100101010010101001010101010101010101010101010101001001000010101010010101001010100101010101010101010101010101 01010101010010101010101001
01001010010000010101000101010010101010100011010100101010100010100100101001000001010100010101001010101010001101010010101010001010 10001010100001000101010000
10101010010101001001000010101010010101001010100101010101010101011010101001010100100100001010101001010100101010010101010101010101 01010101010100101010101010
10101010010100101001000001010100010101001010101010001010101001011010101001010010100100000101010001010100101010101000101010100101 0101 1010100101010101001010
10100010101000101010000101010100101010010010000101010100101010011010001010100010101000010101010010101001001000010101010010101001 01010010101010101001010101
01010101010101010101010101010100101001010010000010101000101010010101010101010101010101010101010010100101001000001010100010101001 01010101000100101010100010
10101001010101001101011010100101010100010101000101010000101010101010100101010100110101101010010101010001010100010101000010101010 01010100100100101010010010
00010101010010101001010100101010101010101010101010101010101010100001010101001010100101010010101010101010101010101010101010101010 01010010100100101001010010
00001010100010101001010101010001101010010101010001010100010101000000101010001010100101010101000110101001010101000101010001010100 00101010100100010101010010
10100100100001010101001010100101010010101010101010101010101010101010010010000101010100101010010101001010101010101010101010101010 10101010100101010101010010
10010100100000101010001010100101010101000101010100101011001010010000010101000101010010101010100010101010010101 10101001010101000101011010100101010100010101
00010101000010101010010101001001000010101010010101001010100101010001010100001010101001010100100100001010101001010100101010010101 01010101010100101010101010
10101010101010101010010100101001000001010100010101001010101010001010101010101010101001010010100100000101010001010100101010101000 10101010010101010101001010
10100110101101010010101010001010100010101000010101010010101001001010011010110101001010101000101010001010100001010101001010100100 10000101010101000010101010
01010100101010010101010101010101010101010101010101010010100101000101010010101001010101010101010101010101010101010101001010010100 10000010101001000001010100
01010100101010101000110101001010101000101010001010100001010101000101010010101010100011010100101010100010101000101010000101010100 10101001001001010100100100
00101010100101010010101001010101010101010101010101010101010101000010101010010101001010100101010101010101010101010101010101010100 10100101001001010010100100
0001010100010101001010101010001010101001010100010101000101010010101010100010101010010101 101010010101010001010100010101000101010010101010001010100010101000
01010101001010100100100001010101001010100101010010101010101010100101010100101010010010000101010100101010010101001010101010101010 10101010101011010101010101
01010101001010010100100000101010001010100101010101000101010100100101010100101001010010000010101000101010010101010100010101010010 10101001101011010100110101
10101001010101000101010001010100001010101001010100100100001010101010100101010100010101000101010000101010100101010010010000101010 10010101001011001010100101
01001010101010101010101010101010101010101001010010100100000101010100101010101010101010101010101010101010100101001010010000010101 00010101001010001010100101
01010100011010100101010100010101000101010000101010100101010010010101010001101010010101010001010100010101000010101010010101001001 00001010101000000101010100
10101001010100101010101010101010101010101010101010100101001010011010100101010010101010101010101010101010101010101010010100101001 00000101010000000010101000
101010010101010100010101010010101101010010101010100010101010010101 1010100101010100010101000101010000101010100110101001010101000101010001010100001010101001
01010010010000101010100101010010101001010101010101010101010101010101001001000010101010010101001010100101010101010101010101010101 01010101010010101010101001
01001010010000010101000101010010101010100010101010010101010011010100101001000001010100010101001010101010001010101001010101001101 01101010010100110101001010
10100010101000101010000101010100101010010010000101010100101010011010001010100010101000010101010010101001001000010101010010101001 01010010101010101001010101
01010101010101010101010101010100101001010010000010101000101010010101010101010101010101010101010010100101001000001010100010101001 01010101000110101010100011
01010010101010001010100010101000010101010010101001001000010101010101001010101000101010001010100001010101001010100100100001010101 00101010010100010101001010
10010101010101010101010101010101010101010010100101001000001010101001010101010101010101010101010101010101001010010100100000101010 00101010010100010101001010

10101000101010100101011010100010101010010101 010011010101010100101010100110101010011010101010100101010100110101

10101001010101000101010001010100101010100010101000
10101000010101010010101001010100001010101001010100
10010000101010100101010011001000010101010010101001
01010010101010101010101010101001010101010101010101
01010101010101010100101000101010101010101010010100
10100100000101010001010101010010000010101000101010
01010101010001010101001010101010101000101010100101
01010011010110101001010100101001101011010100101010
10001010100010101000010101000101010001010100001010
10100101010010010000101011010010101001001000010101
01001010100101010010101010100101010010101001010101
01010101010101010101010100101010101010101010101010
10101001010010100100000101010100101001010010000010

32 November 1997

★ Transactions. The number of
subprocesses of a real-time
process varies substantially. By
contrast, processes of the
same type in the MIS domain
have a more stable number of
subprocesses.

★ Data. In a real-time software
system, there exists a large
number of single control data;
that is, data characterized by
the fact that there is one and
only one occurrence of each
data point in the whole appli-
cation. These data are used to
control, directly or indirectly,
the behavior of an application
or a mechanical device.
New data and transactional

function types were therefore in-
troduced to take into account
these characteristics: four control
transactional function types (En-
try, Exit, Read, and Write) and
two control data function types
(Updated Control Group and
Read-Only Control Group).

To verify whether or not the
FFP has met its stated objective
of measuring the user functional
requirements and the quality
characteristics required for meas-
urement techniques, field tests
were conducted. The results of
the field tests were positive: ac-
cording to the real-time special-
ists present at the field tests, the
FFP has met its stated objective
of measuring the user’s func-
tional requirements adequately.
These specialists believe that this
has been done objectively, pre-
cisely, and in an auditable man-
ner, and that someone else with
the same set of rules would come
up with the same results. They
also believe that FFP counting
procedures and rules are based

on practices that are really being
documented at the present time.

The FFP is now being pro-
moted to IFPUG and to other na-
tional software metrics associa-
tions. The FFP was presented at
the IFPUG 1997 Fall Conference
[16], and three public reports are
now available: an FFP definition
and concepts [14], FFP counting
procedures and rules [15] and a
complete case study [11]. In the
remainder of this article, we will
present the key highlights of the
new FFP measure.

LITERATURE REVIEW

For this project, we carried out
an extensive literature review on
function points. Most of the pub-
lications on FPs do not deal with
their application to real-time soft-
ware, and the data sets used in
most publications originated
from MIS software applications.
Furthermore, several authors [3,
9, 13, 18] concur that FPs, with
their current structure, are not
adequate for measuring processor-
intensive software with a high
number of control functions and
internal calculations.

Six previous attempts to adapt
FP to real-time software have
been identified: Feature Points
[9], Mark II [17], Asset-R [13],
3D Function Points [18], Appli-
cation Features [11], and IFPUG
Case Study 4 [6]. These attempts
can be classified into five types of
solutions:

★ Addition of new function
types (Feature Points, Asset-
R, 3D Function Points)

★ Adjustment of the final func-
tion point count (Asset-R)

★ Approximation of the final
function point count (Applica-
tion Features)

★ Continuous adjustment tables
(Mark II)

★ Orthodox approach (IFPUG
Case Study 4)
It seems, however, that none

of these approaches has succeeded
in gaining market acceptance.

As the 3D Function Points
proposal had often been referred
to as a potential candidate for
real-time software in the FP elec-
tronic discussion forum,1 we
decided to pretest it on some in-
dustrial applications in order
to obtain empirical observations
and, perhaps, use it as the start-
ing point for the project.

We measured two different
software applications from two
different domains (telecommuni-
cations and power supply) and
encountered the following
problems:

★ The concepts and a few exam-
ples in [18] and the proce-
dures and rules in [3] were
not detailed enough to allow
the identification, without am-
biguity, of the proposed new
function types (Transforma-
tions, States, and Transitions).

★ For the identification of the pro-
posed States and Transitions
function types, documentation
for the finite state machines
(FSM) was a prerequisite. How-
ever, at the industrial sites where
this proposal was tested, this
type of documentation was

1FPlist: function point listserv (function.
point.list@crim.ca)

November 1997 33

not in use. Based on feedback
from many real-time designers
at other organizations, we dis-
covered that even though
practitioners all know about
this type of notation system,
they did not document FSM.
To our surprise, we found
that FSM was not an industry
practice and that it was felt
that a measurement technique
based on such a documenta-
tion requirement would not
be practical. The feedback
from these field tests and
from other contacts gave us
an indication that the industry
might be very reluctant to en-
dorse a measurement tech-
nique based on the
documentation of FSM, as
our contacts were not even
doing it for the design of their
own software.2

PROJECT OBJECTIVES
AND PROJECT PLAN

The objective of the project was
to propose an extension to FPs
that, on the one hand, would
take into account the specific
functional characteristics of real-
time software, and, on the other
hand, would retain the quality
characteristics of FP as a “de facto”
standard for a measurement tech-
nique in the MIS domain.

Since “real-time software” is
one of those generic expressions
that often mean different things
to different people (indeed, there
is not even a consensus on a

single definition among researchers
in the field), here we use this ex-
pression to refer to software with
the characteristics described in
the following definitions:

★ “A system in which computa-
tion is performed during the
actual time that an external
process occurs, in order that
the computation results can
be used to control, monitor,
or respond in a timely manner
to the external process” [4].

★ “Any system in which the
time at which the output is
produced is significant. This is
usually because the input cor-
responds to some movement
in the physical world, and the
output has to relate to that
same movement. The lag
from input time to output
time must be sufficiently small
for acceptable timeliness” [7].
Our focus was therefore on

software that reacts to an exter-
nal process or event subject to
very tight time constraints.

The proposed FP extension
would have to retain the key
quality characteristics of the FP
from a measurement perspective,
such as:

★ Relevance. Practitioners per-
ceive that the measurement
adequately measures the func-
tional size of their applications.

★ Measurement instrumenta-
tion. Instrumentation is an es-
sential factor in achieving one
of the quality attributes of a
good measurement technique:
repetitiveness. This means
that different individuals, in
different contexts, at different
times, and following the same

measurement procedures, will
obtain measurement results
that are relatively similar, that
have been obtained with mini-
mal judgment, and that can
be audited. With FPs, the ba-
sis of the measurement instru-
mentation is the measurement
standard published by the In-
ternational Function Point Us-
ers Group,3 a measurement
technique in the public domain.

★ Practicality. The measure-
ment technique must be prac-
tical: that is, based on current
software design practices and
on the content of the software
documentation.

★ Transferability. Preferably,
the measure would allow
transferability to a standard-
setting and monitoring body.
(This has been a key concept
in measurement and measure-
ment instrumentation since
the time of the pharaohs in an-
cient Egypt!)
We followed the following

five major steps in this project:

1 Literature review. This step
consisted in conducting a lit-
erature review on three aspects:
utilization of FPs to measure
real-time software, identifica-
tion of extensions that had
been proposed to adapt FP to
this type of software, and
analysis of these proposals.

2 Proposal of an extension to
FPs for real-time software.
From the analysis of previous

2It is important to note that in more re-
cent publications of 3D function points
[3, 19], the states are no longer counted,
only the transitions. However, the prob-
lem of the unavailability of documenta-
tion to count transitions still exists.

3Counting Practices Manual: This docu-
ment clarifies the measurement objec-
tives and perspective and defines very
precisely the measurement procedures.

34 November 1997

attempts to extend FP, we
developed a new approach to
adapting FP for the measure-
ment of real-time software.

3 Field tests of the proposal.
The third step of the project
consisted in measuring some
real-time software applica-
tions. Since this project was
supported and financed by
three large North American
organizations (in the power
supply and telecommunica-
tions areas) and a Japanese or-
ganization (automotive), we
measured at least one real-
time application from each
partner.

4 Analysis of the counting re-
sults. The fourth step of the
project consisted in carrying
out an analysis of the measure-
ment results and of the meas-
urement process [8], including:

✩ Perception of the applica-
tion specialists participat-

ing in the measurement ses-
sions with respect to the
coherence between the
counting results and the
size of the application
measured

✩ Time required to identify
and measure the function
types

✩ Difficulty in learning and
applying the basic con-
cepts, as well as the count-
ing procedures and rules of
the proposal

✩ Comparison between the
measurement procedures
and results obtained with
the proposal and the stan-
dard version of FP [5]

5 Public release. The last step
of the project consisted in pre-
paring a public release of the
proposed measurement tech-
nique, including a description
of the extension proposed,
the counting procedures and

rules, an overview of the field
tests, and comments on the
counting results from a meas-
urement instrumentation
perspective.

Figure 1 illustrates the project
steps, their inputs, and their de-
liverables. It is important to note
that steps 2 and 3 are strongly re-
lated and interactive; that is, as
the field tests progressed, the pro-
posal was improved based on the
feedback obtained from the par-
ticipants at the counting sessions.

PROPOSAL OF A FUNCTION
POINT EXTENSION FOR
REAL-TIME SOFTWARE

Characteristics of Real-Time
Software

To measure the functional size of
software, FPs consider two func-
tion types: the transactional func-
tion type and the data function
type. We identified the following
transactional and data charac-
teristics specific to real-time soft-
ware that are difficult to capture
with the current version of FPs:

Transactional Characteristics

According to FP rules, transac-
tional function types are based
on the concept of the elementary
process.4 However, FPs do not
take into account the number and
nature of the steps or subprocesses
required to execute the elementary
process. According to empirical

Public release

F
ee

db
ac

k

Literature Review

Proposal of an
extension for

real-time software

Field-testing of
the proposal

Analysis of the
counting results

• Articles
• Books
• Reports, etc.

Analysis of
previous
attempts to
adapt FP to
real-time
software

FPA counting
manual (IFPUG
version 4.0)

Proposal 1.0
(concepts,
procedures
and rules)

• Doc. application
• Application specialists

• Proposal 2.0
(enhanced)

• Counting
reports

Confidential
reports by
industrial
partner

Public reports

1.

2.

3.

4.

5.

Figure 1: Project steps, inputs, and deliverables

4Elementary process: the smallest unit of
activity that is meaningful to the end
user of the business [5]. This elementary
process must be self-contained and leave
the business of the application being
counted in a consistent state.

November 1997 35

observations, MIS processes of
the same type have a relatively
stable number of subprocesses.
For example, a process that gen-
erates data sent to the user has, in
general, four subprocesses:

1 Receive the request from the
user

2 Read the information needed

3 Make some calculations

4 Send the information to the
user

In the MIS environment, the
number of subprocesses does not
add any important information
to the functional size of a given
process.

In real-time software proc-
esses, by contrast, the number of
subprocesses varies substantially.
To illustrate this, consider the fol-
lowing two control processes:

Example 1: An engine tem-
perature control process. The
main purpose of this process is to
turn on the engine’s cooling sys-
tem when necessary. A sensor en-
ters the temperature in the appli-
cation (subprocess 1). The
temperature is compared to the
overheating threshold tempera-
ture (subprocess 2). Finally, a

turn-on message could be sent to
the cooling system if needed
(subprocess 3). The application is
not in a consistent state until all
subprocesses of the temperature
control process are completed.
The temperature control process
has, therefore, three subprocesses
(see Table 1). According to
standard FP rules, only one trans-
actional function would be identi-
fied, because there is only one
elementary process.

Example 2: An engine diag-
nostic process. The main pur-
pose of this process is to turn on
an engine alarm when necessary.
Fifteen different engine sensors
send data to the diagnostic proc-
ess (15 subprocesses, one unique
subprocess for each kind of sen-
sor). For each sensor, the set of
external data received is com-
pared to threshold values read
from an internal file, with one
unique file for each kind of sensor
(15 other subprocesses, one
unique subprocess for each kind
of sensor). Depending on a num-
ber of conditions, an alarm on
the dashboard may be turned on
(one subprocess).

In this example, the engine di-
agnostic process consists of 31
subprocesses (see Table 2). The

application is not in a consistent
state until all subprocesses of the
diagnostic process are completed.
According to IFPUG rules, only a
minimum of transactional points
would be counted, because trans-
actional function types are based
on elementary processes rather
than on subprocesses. Therefore,
when the IFPUG rules are used,
examples 1 and 2 would have ap-
proximately the same number of
points related to transactions, even
though the real-time community
would strongly disagree that these
two processes have similar func-
tional sizes.

There is a strong case to be
made that an adequate functional
measure of real-time software
should take into account the fact
that some processes have only a few
subprocesses, while others have a
large number of subprocesses.

Data Characteristics

The typical MIS logical file has
the following data structure: mul-
tiple occurrences of a record,
with each record having one or
more fields. For example, an en-
gine control application could
have a group of data containing
information on each cylinder (cyl-
inder number, ignition timing,
pressure, etc.). The cylinder rec-
ord is repeated more than once.
This kind of group of data, called
a multiple occurrence group of
data here, therefore has the same
typical structure5 as an Internal
Logical File (ILF) or an External
Interface File (EIF) in FP analysis.

Process Subprocess description Number of subprocesses
Engine control Temperature entry 1

Read threshold for comparison 1
Send turn-on message 1
Total 3

Table 1: Subprocesses of Example 1

Process Subprocess description Number of subprocesses
Engine
diagnostic

Sensor data entry 15
Read thresholds for comparison 15
Send alarm message 1
Total 31

Table 2: Subprocesses of Example 2

5IFPUG CS Committee, Function Point
Counting Practices, Case Study 1, Inter-
national Function Point Users Group,
Westerville, OH, May 1994.

36 November 1997

Real-time software typically
contains a large number of single-
occurrence control data. These data
are used to control, directly or indi-
rectly, the behavior of an applica-
tion or a mechanical device, and
there is one and only one occur-
rence of each data point in the
whole application. For example, the
navigational system of an airplane
periodically calculates the air-
plane’s position according to data
received from external signals.
These data are then used to control
the airplane’s position. The air-
plane’s position is a single control
datum with only one occurrence in
the whole application, assuming the
system does not store old positions.
The number of single control data
in real-time software can be very
important. However, these kinds of
data are very difficult to group into
an ILF or EIF. An extension of the
ILF/EIF rules is therefore neces-
sary to adequately measure single-
occurrence control data.

FP Real-Time Extension:
Full Function Points

To measure these functional
characteristics of real-time soft-
ware adequately, it is necessary to
consider both the subprocesses
executed by a control process as
well as the single-occurrence con-
trol data. The extension we pro-
pose, called the Full Function
Point (FFP), introduces new
transactional function types
(Entry, Exit, Read, and Write)6

and data function types (Up-
dated Control Groups and Read-
only Control Groups) to meas-
ure these characteristics [14, 15]
(see box, p. 38).

The new function types are
only used to measure real-time
control data and processes. The
other types of data and processes,
called management data and
processes in the FFP context, are
measured with the standard
IFPUG rules, as illustrated in
Figure 2.

Thus, the unadjusted count of
an application using the pro-
posed extension can be expressed
as follows:

FFP = Management FP + Control FP
 = (FP - Control information) +
Control FP

The identification of the
new control transactional func-
tion types of an application
includes the following major
steps [15]:

1 Look for the different
processes executed by the
application from a functional
perspective.

2 Determine if the process is
a management process or a
control process.7 If it is a
management process, the
FP transactional function
types are identified using
IFPUG counting procedures
and rules. If it is a control
process, the following steps
are followed:
a Identify the different sub-

processes, from a function
perspective, executed by
the process.

User 1
(Person or application)

User 2
(Person, application or

mechanical device)

Management
Processes

Control
Processes

ILF UCG RCG

EIF

E
I

E
O

E
Q

E
C

E

E
C

X

ICW ICR ICR

ECE: External Control Entry
ECX: External Control Exit
EI: Enternal Input
EIF: External Interface File
EO: External Output
EQ: External Inquiry
ICR: Internal Control Read
ICW: Internal Control Write
ILF: Internal Logical File
UCG: Updated Control Group
RCG: Read-only Control Group

: Process

: Group of data

: User

Boundary

Figure 2: FFP framework

7Management process: a process the pur-
pose of which is to support the user in
managing information, particularly busi-
ness and administrative information.
Control process: a process that controls
directly or indirectly the behavior of an
application or a mechanical device.

6The complete names of the new func-
tion types are the following: External
Control Entry (ECE), External Control
Exit (ECX), Internal Control Read
(ICR), and Internal Control Write
(ICW). The short name is used in the
text for simplicity.

November 1997 37

b For each subprocess, deter-
mine whether to count it
as an Entry, Exit, Read, or
Write function type, ac-
cording to their definitions
and counting rules.

c Assign the corresponding
points.

The complete set of FFP
counting procedures and rules,
as well as a counting example,
can be found in [15].

Comparing FFP and FP
Function Types

To illustrate the key differences
between FFP and FP function
types, let us compare two of
them that seem similar: Entries
from FFP and Inputs from FP.
An Entry refers to a group of
control data received by a proc-
ess from a user outside the appli-
cation boundary (see Figure 3a):
that is, the action (or subprocess)
of receiving a group of data from
the user. An Input, in contrast,
refers to a whole process that
receives a group of data from
the user and updates a logical
file in some cases (depending on
the type of data). An Input, as de-
fined by IFPUG, can also read a
logical file and send information
to the user (see Figure 3b). In
the FFP, the subprocesses of up-
dating logical files, reading logi-
cal files, and sending information
to the user are counted as sepa-
rate function types.

We can say that the FFP takes
into account a finer level of
granularity, the subprocess level,
while the FP considers only the
process level. A finer level of
granularity is important in real-time
software, since its processes have a
variable number of subprocesses

FFP NEW FUNCTION TYPES
New Control Data Function Types
★ Updated Control Group (UCG): A UCG is a group of control data up-

dated by the application being counted. It is identified from a functional
perspective.8 The control data live for more than one transaction.9

★ Read-Only Control Group (RCG): An RCG is a group of control data
used, but not updated, by the application being counted. It is identified
from a functional perspective. The control data live for more than one
transaction.

New Control Transactional Function Types
★ External Control Entry (ECE): An ECE is a unique subprocess identified

from a functional perspective. An ECE processes control data coming
from outside the application’s boundary. It is the lowest level of decom-
position of a process acting on one group of data. Consequently, if a
process enters two groups of data, there are at least two ECEs. In Exam-
ple 2, p. 36, 15 sensors send data to the application (control data cross
the application boundary). Since there is a unique subprocess for each
sensor, there are 15 ECEs.

★ External Control Exit (ECX): An ECX is a unique subprocess identified
from a functional perspective. An ECX processes control data going out-
side the application boundary. It is the lowest level of decomposition of a
process acting on one group of data. Consequently, if a process exits two
groups of data, there are at least two ECXs. In Example 2, the subprocess
that sends a message to the dashboard (control data sent outside the ap-
plication boundary) is an ECX.

★ Internal Control Read (ICR): An ICR is a unique subprocess identified
from a functional perspective. An ICR reads control data. It is the lowest
level of decomposition of a process acting on one group of data. Conse-
quently, if a process reads two groups of data, there are at least two ICRs.
In Example 2, 15 unique subprocesses read different kinds of threshold
values at different times for comparison purposes. Therefore, there are 15
ICRs.

★ Internal Control Write (ICW): An ICW is a unique subprocess identified
from a functional perspective. An ICW writes control data. It is the low-
est level of decomposition of a process acting on one group of data. Con-
sequently, if a process writes on two groups of data, there are at least two
ICWs.

8This means that the subprocess or group of data appears in the requirements of the
application, assuming they are complete.
9In Example 2, p. 36, the sensor data entered live only for one transaction, since af-
ter the diagnostic process, the system doesn’t remember them. In contrast, the
thresholds are reused for each new entry and, consequently, live for more than one
transaction.

38 November 1997

as compared to MIS software.
As we illustrated previously, this
is an important element to con-
sider in the measurement of
the functional size of real-time
software.

FIELD TESTS OF THE
EXTENSION PROPOSAL

Field Test Context

The objective of the field tests
was to measure some real-time
software applications to verify
in an empirical way the applicabil-
ity of the concepts proposed, an-
swering the following questions:

★ Do the users of the measure-
ment technique agree that the
proposed measure has met its
stated objective of measuring
the functional size of real-
time software?

★ Is the proposed measure
“good enough” from the us-
ers’ perspective, in the sense
that it is achieving the right
balance of multiple simultane-

ous goals, even though any
one goal might not have been
achieved optimally [2]?

★ Do the users agree that the ex-
tension proposal has been de-
signed objectively, precisely,
and in an auditable manner,
and that someone else with
the same set of rules would
come up with the same results
(relatively, and again, “good
enough”)?

★ Do the users agree that the
proposed measurement proce-
dures are based on current
practices of what is effectively
documented at the present
time?
To answer these questions,

it was mandatory that an applica-
tion specialist be present at the
counting sessions. Due to the
typical industrial constraints,
such as the availability of applica-
tion specialists, site measurement
sessions were kept to two-day
sessions. Therefore, the industrial
partners had to select small appli-

cations or a self-contained por-
tion (±25,000 LOC) of a me-
dium or large application. The
software applications were meas-
ured with the extension proposed
as well as with the standard ver-
sion of function points (IFPUG
version 4.0) in order to be able
to make some comparisons.

Three field tests were con-
ducted between December 1996
and March 1997. For the meas-
urement of these three applica-
tions, at least three people partici-
pated in the counting sessions:
at least one application specialist
and two certified function point
specialists who were members of
the FFP design team.

Analysis of the Counting
Results

Table 3 presents the FP and FFP
counting results for the transac-
tional function types. We can see
that in the presence of multiple
subprocesses of a single process,
FPs produce fewer points than
FFPs. Indeed, in a real-time

Figure 3: External control entry (FFP) vs. external input (FP)

November 1997 39

environment, FPs have been criti-
cized for generating low FP
counts [3, 9] that seem unrelated
to the perceived functional size
of the software measured [3].
Since FFPs take into account
the subprocesses integrated
within a single control process by
identifying the different groups
of data received, sent, read, and
written, they will generate more
points than the standard FP, as is
the case here. In fact, real-time
specialists strongly agree that a
measure that does not take into
account user-requested subproce-
sses (as the FP does not) cannot
be a good enough functional size
measure of their applications.
Therefore, FFP results will repre-
sent for them a more relevant
measure of the functional size of
their applications.

The results of the field tests
also confirmed that the number
of subprocesses of a real-time
process varies substantially.

For example, there were proc-
esses with only three subproce-
sses, while others had over 50
subprocesses.

One of the project’s industrial
partners conducted a fourth field
test without the assistance of the
FP specialists. The feedback ob-
tained from this industrial part-
ner can be summarized as follows:

★ Concepts and counting proce-
dures in the FFP counting
manual were relatively clear
and easy to understand. It was
not difficult to count without
the assistance of an FFP spe-
cialist.

★ FFPs counted 79 processes
out of the 81 they expected
were there to be counted,
with an adequate functional
size measure. At the end of
the field test, they concluded
that FFPs failed to count only
2 of the 81 processes, and this
was because FFPs do not

count processes containing
only internal algorithms. The
FFP count coverage rate was
therefore 97 percent of the
optimal coverage target.

Ease of Understanding

One criticism often made of FPs
is that the definitions and proce-
dures are complex and time con-
suming, and that it takes an FP
expert to produce an accurate FP
count. The new function types
have been designed to be simpler
to learn and master. This was
confirmed during the field test
counting sessions, where, once
the application specialists under-
stood the definitions of the new
function types, they had no prob-
lem identifying them. Indeed, af-
ter a full day of FFP counting,
they were able to count with lim-
ited assistance. According to ap-
plication specialists participating
in the counting sessions, this was
mostly due to the fact that it is
much easier to identify function
types that refer to only one type
of action (for example, receiving
data) as in FFP counting, than to
identify function types that po-
tentially refer to more than one
(some mandatory and some op-
tional; multiple possible combina-
tions, some of which qualify as
EIs and others of which do not),
as in FP counting. Furthermore,
if the software is almost entirely
real-time (with no MIS-type
functions), the specialists do not
even need to know the much
more complex IFPUG FP rules.

In addition, application spe-
cialists believed that the defini-
tions, counting procedures, and
rules were clear and detailed
enough that different people
would be able to come up with

Application A Application B Application C
Function Type Occurrences Points Occurrences Points Occurrences Points
Function Points (IFPUG 4.0)
External Input
(EI)

40 202 6 21 15 50

External Output
(EO)

2 14 2 11 17 73

External Inquiry
(EQ)

12 40 1 6 0 0

Total Points 54 256 9 38 32 123
Full Function Points (FFP)
External Control
Entry (ECE)

123 123 10 10 67 69

External Control
Exit (ECX)

93 97 8 10 136 139

Internal Control
Read (ICR)

395 403 14 18 100 103

Internal Control
Write (ICW)

142 154 8 8 165 168

Total Points 753 777 40 46 468 479

Table 3: FFP and FP counting results for transactional function types

40 November 1997

fairly similar results. They also be-
lieved that the proposed con-
cepts and measurement proce-
dures and rules were based on
current practices of what is docu-
mented at the present time.

Counting Effort

Regarding the effort required to
measure an application, the FFP
and FP counting efforts are
found to be similar. Even though
more function types had to be
counted with the FFP, they were
easily identified, and therefore no
greater effort was required. In-
deed, the application specialists
seemed to require less counting
assistance from FP experts when
counting with FFPs than with
FPs, so the identification of more
function types does not increase
the counting effort.

Attribution of Points

The counting results showed that
the total number of points as-
signed to a particular function
type is almost the same as the
number of occurrences of the
given function type (see Table
3). This is explained by the fact
that the majority of the function
types are located in the first
range of the table used to assign
the points according to the num-
ber of fields [15]. One can there-
fore question the usefulness of
the attribution of points. It is im-
portant to note that the weights
assigned to a particular function
were chosen with the purpose of
aligning the sizes of the new
function types as much as possi-
ble with the FP weight assign-
ment structure. The weights may
need to be recalibrated later by a
standard-setting body.

Early FFP Counts

FPs are often used to build esti-
mation models based on the func-
tional size of the project. One
can therefore inquire about the
possibility of counting the new
function types at an early stage of
development (feasibility, for ex-
ample), since they seem to re-
quire detailed specifications. In
practice, the FFP levels of detail
(Entry, Exit, Read, and Write)
are similar to the FP ones (DET,
FTR, RET) [5]. To use FPs at an
early stage of development, the
count must usually be approxi-
mated because not all the infor-
mation is available. Over the
years, a number of early count ap-
proximation techniques have
been developed for the IFPUG
FP. Similar approximation tech-
niques can be developed for the
FFP. Of course, FFP approxima-
tion techniques should not be ex-
pected to be as mature as FP ones.

CONCLUSION

The development of an FP exten-
sion for the measurement of real-
time software was a challenge. It
had to take into account not only
the specific functional charac-
teristics of real-time software in
an adequate way, but also to re-
tain the quality characteristics of
the FP as a measurement tech-
nique and to consider current in-
dustry practices in the design and
documentation of this type of
software.

Feedback from the industry
about the extension proposed,
the Full Function Point, was posi-
tive. We are confident that this
FFP measurement technique will
expand the domain of applicabil-

ity of function points and in-
crease their relevance to industry.

ACKNOWLEDGMENTS

This project was carried out by
the Software Engineering Man-
agement Research Laboratory at
the Université du Québec à Mon-
tréal and by its industrial partner,
the Software Engineering Labora-
tory in Applied Metrics (SELAM).
We thank Nortel, Bell Canada,
Hydro-Québec, and JECS Sys-
tem Research, a Japanese indus-
trial partner, for providing proj-
ect funds, industrial data, and
valuable feedback from real-time
software practitioners.

REFERENCES

1 Albrecht, A.J. “Measuring Ap-
plication Development Pro-
ductivity.” In Proceedings of the
Joint IBM/SHARE/GUIDE
Application Development
Conference (October 1979).
Reprinted in Capers Jones,
Programming Productivity:
Issues for the Eighties (Los
Alamitos, CA: IEEE Com-
puter Society Press, 1986).

2 Bach, J. “Good Enough
Quality: Beyond the Buzz-
word.” Computer, Vol. 30,
no. 8 (August 1997), pp.
96–98.

3 Galea, S. The Boeing Com-
pany: 3D Function Point Ex-
tensions, V2.0, Release 1.0.
Seattle, WA: Boeing Infor-
mation and Support Serv-
ices, Research and
Technology Software Engi-
neering, June 1995.

November 1997 41

4 IEEE. IEEE Standard Com-
puter Dictionary: A Compila-
tion of IEEE Standard
Computer Glossaries, IEEE
Std 610-1990. New York:
Institute of Electrical and
Electronics Engineers, 1990.

5 IFPUG. Function Point
Counting Practices Manual,
Release 4.0. Westerville,
OH: International Function
Point Users Group, 1994.

6 IFPUG. IFPUG Case Study
4 (draft). Westerville, OH:
International Function Point
Users Group, 1992.

7 Illingworth, V., ed. Diction-
ary of Computing, 3rd edi-
tion. New York: Oxford
University Press, 1991.

8 Jacquet, J.-P., and A. Abran.
“From Software Metrics to
Software Measurement
Methods: A Process
Model.” In Proceedings of
the Third International Sym-
posium and Forum on Soft-
ware Engineering Standards.
Los Alamitos, CA: IEEE
Computer Society Press,
1997.

9 Jones, C. Applied Software
Measurement: Assuring Pro-
ductivity and Quality. New
York: McGraw-Hill, 1991.

10 Jones, C. Applied Software
Measurement: Assuring Pro-
ductivity and Quality, 2nd
edition. New York: McGraw-
Hill, 1997.

11 Maya, M., D. St-Pierre, A.
Abran, and P. Bourque. Full
Function Points: Function
Points Extension for Real-
Time Software (Case Study),

Technical Report 1997-05.
Montréal: Software Engi-
neering Management Re-
search Laboratory,
Université du Québec à
Montréal, September 1997.

12 Mukhopadhyay, T., and S.
Kekre. “Software Effort
Models for Early Estimation
of Process Control Applica-
tions.” IEEE Transactions on
Software Engineering, Vol.
18, no. 10 (October 1992),
pp. 915–924.

13 Reifer, D.J. “Asset-R: A
Function Point Sizing Tool
for Scientific and Real-Time
Systems.” Journal of Systems
and Software, Vol. 11, no. 3
(March 1990), pp. 159–171.

14 St-Pierre, D., M. Maya, A.
Abran, and J.M., Deshar-
nais. Full Function Points:
Function Points Extension
for Real-Time Software;
Concepts and Definitions,
Technical Report 1997-03.
Montréal: Software Engi-
neering Management
Research Laboratory, Uni-
versité du Québec à Mon-
tréal, March 1997.

15 St-Pierre, D., M. Maya, A.
Abran, J.M. Desharnais, and
P. Bourque. Full Function
Points: Function Points Ex-
tension for Real-Time Soft-
ware; Concepts, Definitions,
and Procedures, Technical
Report 1997-04. Montréal:
Software Engineering Man-
agement Research Labora-
tory, Université du Québec
à Montréal, September 1997.

16 St-Pierre, D., A. Abran, M.
Araki, and J.M. Desharnais.

“Adapting Function Points
to Real-Time Software.” In
Proceedings of the IFPUG
1997 Fall Conference.
Westerville, OH: Interna-
tional Function Point Users
Group, 1997.

17 Symons, Charles R. “Func-
tion Point Analysis: Difficul-
ties and Improvements.”
IEEE Transactions on Soft-
ware Engineering, Vol. 14,
no. 1 (January 1988).

18 Whitmire, S.A. “3D Func-
tion Points: Scientific and
Real-Time Extensions to
Function Points.” In Pro-
ceedings of the 1992 Pacific
Northwest Software Quality
Conference. Portland, OR:
Pacific Agenda, 1992.

19 Whitmire, S.A. “An Intro-
duction to 3D Function
Points.” Software Development
(April 1995), pp. 43–53.

Alain Abran is the director of the
Software Engineering Manage-
ment Research Laboratory and a
professor at Université du Québec
à Montréal (Canada), where he
has taught graduate courses in soft-
ware engineering since 1993. Dr.
Abran also has over 20 years of in-
dustry experience in information
systems development and software
engineering. The maintenance
measurement program he devel-
oped and implemented at Mont-
real Trust has received one of the
1993 Best of the Best awards from
the Quality Assurance Institute.
Dr. Abran holds master’s degrees
in management sciences and elec-
trical engineering from the Uni-
versity of Ottawa, and a Ph.D in
software engineering from École
Polytechnique de Montréal. His

42 November 1997

research interests include software
productivity and estimation mod-
els, risk management, functional
size measurement models, and
econometrics models of software
reuse.

Dr. Abran can be reached
at the Software Engineering Man-
agement Research Laboratory,
Département d’informatique,
Université du Québec à Montréal,
P.O. Box 8888 (Centre-ville),
Montréal, PQ H3C 3P8, Canada
(+514 987 3000, ext. 8900;
fax +514 987 8477; e-mail:
abran.alain@uqam.ca).

Marcela Maya is currently a re-
search assistant at the Université
du Québec à Montréal. With over
10 years of experience in manage-
ment of information systems, she
joined the Software Engineering
Management Research Laboratory
after receiving her master’s degree
in software engineering at the
same university. Her areas of in-
terest are software metrics as ap-
plied to software maintenance
processes and real-time systems, soft-
ware reuse metrics, and productiv-
ity models. She has been a certified
function points specialist since
1996.

Ms. Maya can be reached at the
Software Engineering Manage-
ment Research Laboratory,
Département d’informatique,
Université du Québec à Montréal,
P.O. Box 8888 (Centre-ville),
Montréal, PQ H3C 3P8, Can-
ada (+514 987 3000, ext. 6477;
fax +514 987 8477; e-mail:
maya.marcela@uqam.ca).

Jean-Marc Desharnais is a special-
ist in software engineering met-
rics. He has carried out a number
of software engineering research

projects covering assessment, budg-
eting, and productivity evalu-
ation. Mr. Desharnais has also
evaluated productivity levels in sev-
eral organizations and set up
quantification programs to in-
clude the assessment, productivity,
quality, and budgeting of software
maintenance. Mr. Desharnais
holds master’s degrees in computer
management and public admini-
stration. He is the owner of the
Software Engineering Laboratory
in Applied Metrics (SELAM).
A certified function points special-
ist since 1993, he has participated
in several committees of the Inter-
national Function Point Users
Group (IFPUG) and is a member of
the IFPUG Education Committee.

Mr. Desharnais can be reached
at the Software Engineering Labo-
ratory in Applied Metrics, 7415
Beaubien East, Suite 509, Anjou,
PQ H1M 3R5, Canada (+514 355
2872; fax +514 355 3600; e-mail:
desharnais.jean-marc@uqam.ca).

Denis St-Pierre is an experienced
senior software metrics consultant.
Equipped with a master’s degree
in function points, he has con-
sulted widely to American, Asian,
and European firms. Recently,
Mr. St-Pierre has developed an in-
tegrated corporate measurement
framework as well as a function
point extension for real-time soft-
ware. He founded and moderates
the Internet Function Point List-
serv, comprising 700 members,
and has published a significant
number of industrial and scien-
tific articles. A certified function
points specialist since 1993, he has
participated in developing case
studies and guidelines to Software
Measurement for the Interna-
tional Function Point Users
Group (IFPUG). Mr. St-Pierre

is co-author of the IFPUG Stan-
dard, and has been a member of
the Counting Practices Committee
since 1993.

Mr. St-Pierre can be reached at
the Software Engineering Labora-
tory in Applied Metrics, 7415
Beaubien East, Suite 509, Anjou,
PQ H1M 3R5, Canada (+514
355-2872; fax +514 355 3600;
e-mail: denis.st-pierre@crim.ca). ★

November 1997 43

